/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.18 by edhill, Thu Jan 29 19:22:35 2004 UTC revision 1.46 by dimitri, Sat Nov 21 03:19:54 2015 UTC
# Line 3  Line 3 
3    
4  %\section{Getting started}  %\section{Getting started}
5    
6  In this section, we describe how to use the model. In the first  We believe the best way to familiarize yourself with the
 section, we provide enough information to help you get started with  
 the model. We believe the best way to familiarize yourself with the  
7  model is to run the case study examples provided with the base  model is to run the case study examples provided with the base
8  version. Information on how to obtain, compile, and run the code is  version. Information on how to obtain, compile, and run the code is
9  found there as well as a brief description of the model structure  found here as well as a brief description of the model structure
10  directory and the case study examples.  The latter and the code  directory and the case study examples. Information is also provided
11  structure are described more fully in chapters  here on how to customize the code when you are ready to try implementing
12  \ref{chap:discretization} and \ref{chap:sarch}, respectively. Here, in  the configuration you have in mind.  The code and algorithm
13  this section, we provide information on how to customize the code when  are described more fully in chapters \ref{chap:discretization} and
14  you are ready to try implementing the configuration you have in mind.  \ref{chap:sarch}.
15    
16  \section{Where to find information}  \section{Where to find information}
17  \label{sect:whereToFindInfo}  \label{sec:whereToFindInfo}
18    \begin{rawhtml}
19    <!-- CMIREDIR:whereToFindInfo: -->
20    \end{rawhtml}
21    
22  A web site is maintained for release 2 (``Pelican'') of MITgcm:  There is a web-archived support mailing list for the model that
 \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}  
 \begin{verbatim}  
 http://mitgcm.org/pelican  
 \end{verbatim}  
 \begin{rawhtml} </A> \end{rawhtml}  
 Here you will find an on-line version of this document, a  
 ``browsable'' copy of the code and a searchable database of the model  
 and site, as well as links for downloading the model and  
 documentation, to data-sources, and other related sites.  
   
 There is also a web-archived support mailing list for the model that  
23  you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:  you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:
24  \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
25  \begin{verbatim}  \begin{verbatim}
# Line 37  http://mitgcm.org/mailman/listinfo/mitgc Line 27  http://mitgcm.org/mailman/listinfo/mitgc
27  http://mitgcm.org/pipermail/mitgcm-support/  http://mitgcm.org/pipermail/mitgcm-support/
28  \end{verbatim}  \end{verbatim}
29  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
 Essentially all of the MITgcm web pages can be searched using a  
 popular web crawler such as Google or through our own search facility:  
 \begin{rawhtml} <A href=http://mitgcm.org/mailman/htdig/ target="idontexist"> \end{rawhtml}  
 \begin{verbatim}  
 http://mitgcm.org/htdig/  
 \end{verbatim}  
 \begin{rawhtml} </A> \end{rawhtml}  
 %%% http://www.google.com/search?q=hydrostatic+site%3Amitgcm.org  
   
   
30    
31  \section{Obtaining the code}  \section{Obtaining the code}
32  \label{sect:obtainingCode}  \label{sec:obtainingCode}
33    \begin{rawhtml}
34    <!-- CMIREDIR:obtainingCode: -->
35    \end{rawhtml}
36    
37  MITgcm can be downloaded from our system by following  MITgcm can be downloaded from our system by following
38  the instructions below. As a courtesy we ask that you send e-mail to us at  the instructions below. As a courtesy we ask that you send e-mail to us at
# Line 79  provide easy support for maintenance upd Line 62  provide easy support for maintenance upd
62    
63  \end{enumerate}  \end{enumerate}
64    
65    \subsection{Method 1 - Checkout from CVS}
66    \label{sec:cvs_checkout}
67    
68  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
69  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
70  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
# Line 89  be set within your shell.  For a csh or Line 75  be set within your shell.  For a csh or
75  \begin{verbatim}  \begin{verbatim}
76  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
77  \end{verbatim}  \end{verbatim}
78  in your .cshrc or .tcshrc file.  For bash or sh shells, put:  in your \texttt{.cshrc} or \texttt{.tcshrc} file.  For bash or sh
79    shells, put:
80  \begin{verbatim}  \begin{verbatim}
81  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
82  \end{verbatim}  \end{verbatim}
83  in your .profile or .bashrc file.  in your \texttt{.profile} or \texttt{.bashrc} file.
84    
85    
86  To get MITgcm through CVS, first register with the MITgcm CVS server  To get MITgcm through CVS, first register with the MITgcm CVS server
# Line 105  You only need to do a ``cvs login'' once Line 92  You only need to do a ``cvs login'' once
92    
93  To obtain the latest sources type:  To obtain the latest sources type:
94  \begin{verbatim}  \begin{verbatim}
95  % cvs co MITgcm  % cvs co -P MITgcm
96  \end{verbatim}  \end{verbatim}
97  or to get a specific release type:  or to get a specific release type:
98  \begin{verbatim}  \begin{verbatim}
99  % cvs co -P -r checkpoint52i_post  MITgcm  % cvs co -P -r checkpoint52i_post MITgcm
100  \end{verbatim}  \end{verbatim}
101    The CVS command ``\texttt{cvs co}'' is the abreviation of the full-name
102    ``\texttt{cvs checkout}'' command and using the option ``-P'' (\texttt{cvs co -P})
103    will prevent to download unnecessary empty directories.
104    
105  The MITgcm web site contains further directions concerning the source  The MITgcm web site contains further directions concerning the source
106  code and CVS.  It also contains a web interface to our CVS archive so  code and CVS.  It also contains a web interface to our CVS archive so
107  that one may easily view the state of files, revisions, and other  that one may easily view the state of files, revisions, and other
108  development milestones:  development milestones:
109  \begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href="http://mitgcm.org/viewvc/MITgcm/MITgcm/" target="idontexist"> \end{rawhtml}
110  \begin{verbatim}  \begin{verbatim}
111  http://mitgcm.org/source_code.html  http://mitgcm.org/viewvc/MITgcm/MITgcm/
112  \end{verbatim}  \end{verbatim}
113  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
114    
115    As a convenience, the MITgcm CVS server contains aliases which are
116    named subsets of the codebase.  These aliases can be especially
117    helpful when used over slow internet connections or on machines with
118    restricted storage space.  Table \ref{tab:cvsModules} contains a list
119    of CVS aliases
120    \begin{table}[htb]
121      \centering
122      \begin{tabular}[htb]{|lp{3.25in}|}\hline
123        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
124        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
125        \texttt{MITgcm\_verif\_basic}
126        &  Source code plus a small set of the verification examples
127        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
128        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
129        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
130        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
131        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
132        verification examples. \\\hline
133      \end{tabular}
134      \caption{MITgcm CVS Modules}
135      \label{tab:cvsModules}
136    \end{table}
137    
138  The checkout process creates a directory called \textit{MITgcm}. If  The checkout process creates a directory called \texttt{MITgcm}. If
139  the directory \textit{MITgcm} exists this command updates your code  the directory \texttt{MITgcm} exists this command updates your code
140  based on the repository. Each directory in the source tree contains a  based on the repository. Each directory in the source tree contains a
141  directory \textit{CVS}. This information is required by CVS to keep  directory \texttt{CVS}. This information is required by CVS to keep
142  track of your file versions with respect to the repository. Don't edit  track of your file versions with respect to the repository. Don't edit
143  the files in \textit{CVS}!  You can also use CVS to download code  the files in \texttt{CVS}!  You can also use CVS to download code
144  updates.  More extensive information on using CVS for maintaining  updates.  More extensive information on using CVS for maintaining
145  MITgcm code can be found  MITgcm code can be found
146  \begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href="http://mitgcm.org/public/using_cvs.html" target="idontexist"> \end{rawhtml}
147  here  here
148  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}.
149  .  It is important to note that the CVS aliases in Table
150    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
151    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
152  \paragraph*{Conventional download method}  they create can be changed to a different name following the check-out:
153  \label{sect:conventionalDownload}  \begin{verbatim}
154       %  cvs co -P MITgcm_verif_basic
155       %  mv MITgcm MITgcm_verif_basic
156    \end{verbatim}
157    
158  If you do not have CVS on your system, you can download the model as a  Note that it is possible to checkout code without ``cvs login'' and without
159  tar file from the web site at:  setting any shell environment variables by specifying the pserver name and
160  \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}  password in one line, for example:
161  \begin{verbatim}  \begin{verbatim}
162  http://mitgcm.org/download/     %  cvs -d :pserver:cvsanon:cvsanon@mitgcm.org:/u/gcmpack co -P MITgcm
163  \end{verbatim}  \end{verbatim}
 \begin{rawhtml} </A> \end{rawhtml}  
 The tar file still contains CVS information which we urge you not to  
 delete; even if you do not use CVS yourself the information can help  
 us if you should need to send us your copy of the code.  If a recent  
 tar file does not exist, then please contact the developers through  
 the  
 \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}  
 MITgcm-support@mitgcm.org  
 \begin{rawhtml} </A> \end{rawhtml}  
 mailing list.  
164    
165  \paragraph*{Upgrading from an earlier version}  \subsubsection{Upgrading from an earlier version}
166    
167  If you already have an earlier version of the code you can ``upgrade''  If you already have an earlier version of the code you can ``upgrade''
168  your copy instead of downloading the entire repository again. First,  your copy instead of downloading the entire repository again. First,
# Line 166  your copy instead of downloading the ent Line 172  your copy instead of downloading the ent
172  \end{verbatim}  \end{verbatim}
173  and then issue the cvs update command such as:  and then issue the cvs update command such as:
174  \begin{verbatim}  \begin{verbatim}
175  % cvs -q update -r checkpoint52i_post -d -P  % cvs -q update -d -P -r checkpoint52i_post
176  \end{verbatim}  \end{verbatim}
177  This will update the ``tag'' to ``checkpoint52i\_post'', add any new  This will update the ``tag'' to ``checkpoint52i\_post'', add any new
178  directories (-d) and remove any empty directories (-P). The -q option  directories (-d) and remove any empty directories (-P). The -q option
# Line 212  have run into a problem for which ``we h Line 218  have run into a problem for which ``we h
218  latest code'' and we haven't made a ``tag'' or ``release'' since that  latest code'' and we haven't made a ``tag'' or ``release'' since that
219  patch then you'll need to get the latest code:  patch then you'll need to get the latest code:
220  \begin{verbatim}  \begin{verbatim}
221  % cvs -q update -A -d -P  % cvs -q update -d -P -A
222  \end{verbatim}  \end{verbatim}
223  Unlike, the ``check-out'' and ``update'' procedures above, there is no  Unlike, the ``check-out'' and ``update'' procedures above, there is no
224  ``tag'' or release name. The -A tells CVS to upgrade to the  ``tag'' or release name. The -A tells CVS to upgrade to the
# Line 222  that you may only have part of a patch. Line 228  that you may only have part of a patch.
228  also means we can't tell what version of the code you are working  also means we can't tell what version of the code you are working
229  with. So please be sure you understand what you're doing.  with. So please be sure you understand what you're doing.
230    
231    \subsection{Method 2 - Tar file download}
232    \label{sec:conventionalDownload}
233    
234    If you do not have CVS on your system, you can download the model as a
235    tar file from the web site at:
236    \begin{rawhtml} <A href=http://mitgcm.org/download/ target="idontexist"> \end{rawhtml}
237    \begin{verbatim}
238    http://mitgcm.org/download/
239    \end{verbatim}
240    \begin{rawhtml} </A> \end{rawhtml}
241    The tar file still contains CVS information which we urge you not to
242    delete; even if you do not use CVS yourself the information can help
243    us if you should need to send us your copy of the code.  If a recent
244    tar file does not exist, then please contact the developers through
245    the
246    \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
247    MITgcm-support@mitgcm.org
248    \begin{rawhtml} </A> \end{rawhtml}
249    mailing list.
250    
251  \section{Model and directory structure}  \section{Model and directory structure}
252    \begin{rawhtml}
253    <!-- CMIREDIR:directory_structure: -->
254    \end{rawhtml}
255    
256  The ``numerical'' model is contained within a execution environment  The ``numerical'' model is contained within a execution environment
257  support wrapper. This wrapper is designed to provide a general  support wrapper. This wrapper is designed to provide a general
# Line 230  framework for grid-point models. MITgcmU Line 259  framework for grid-point models. MITgcmU
259  model that uses the framework. Under this structure the model is split  model that uses the framework. Under this structure the model is split
260  into execution environment support code and conventional numerical  into execution environment support code and conventional numerical
261  model code. The execution environment support code is held under the  model code. The execution environment support code is held under the
262  \textit{eesupp} directory. The grid point model code is held under the  \texttt{eesupp} directory. The grid point model code is held under the
263  \textit{model} directory. Code execution actually starts in the  \texttt{model} directory. Code execution actually starts in the
264  \textit{eesupp} routines and not in the \textit{model} routines. For  \texttt{eesupp} routines and not in the \texttt{model} routines. For
265  this reason the top-level \textit{MAIN.F} is in the  this reason the top-level \texttt{MAIN.F} is in the
266  \textit{eesupp/src} directory. In general, end-users should not need  \texttt{eesupp/src} directory. In general, end-users should not need
267  to worry about this level. The top-level routine for the numerical  to worry about this level. The top-level routine for the numerical
268  part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F}. Here is  part of the code is in \texttt{model/src/THE\_MODEL\_MAIN.F}. Here is
269  a brief description of the directory structure of the model under the  a brief description of the directory structure of the model under the
270  root tree (a detailed description is given in section 3: Code  root tree (a detailed description is given in section 3: Code
271  structure).  structure).
272    
273  \begin{itemize}  \begin{itemize}
274    
275  \item \textit{bin}: this directory is initially empty. It is the  \item \texttt{doc}: contains brief documentation notes.
   default directory in which to compile the code.  
     
 \item \textit{diags}: contains the code relative to time-averaged  
   diagnostics. It is subdivided into two subdirectories \textit{inc}  
   and \textit{src} that contain include files (*.\textit{h} files) and  
   Fortran subroutines (*.\textit{F} files), respectively.  
   
 \item \textit{doc}: contains brief documentation notes.  
276        
277  \item \textit{eesupp}: contains the execution environment source code.  \item \texttt{eesupp}: contains the execution environment source code.
278    Also subdivided into two subdirectories \textit{inc} and    Also subdivided into two subdirectories \texttt{inc} and
279    \textit{src}.    \texttt{src}.
280      
281    \item \texttt{model}: this directory contains the main source code.
282      Also subdivided into two subdirectories \texttt{inc} and
283      \texttt{src}.
284        
285  \item \textit{exe}: this directory is initially empty. It is the  \item \texttt{pkg}: contains the source code for the packages. Each
286    default directory in which to execute the code.    package corresponds to a subdirectory. For example, \texttt{gmredi}
     
 \item \textit{model}: this directory contains the main source code.  
   Also subdivided into two subdirectories \textit{inc} and  
   \textit{src}.  
     
 \item \textit{pkg}: contains the source code for the packages. Each  
   package corresponds to a subdirectory. For example, \textit{gmredi}  
287    contains the code related to the Gent-McWilliams/Redi scheme,    contains the code related to the Gent-McWilliams/Redi scheme,
288    \textit{aim} the code relative to the atmospheric intermediate    \texttt{aim} the code relative to the atmospheric intermediate
289    physics. The packages are described in detail in section 3.    physics. The packages are described in detail in chapter \ref{chap:packagesI}.
290        
291  \item \textit{tools}: this directory contains various useful tools.  \item \texttt{tools}: this directory contains various useful tools.
292    For example, \textit{genmake2} is a script written in csh (C-shell)    For example, \texttt{genmake2} is a script written in csh (C-shell)
293    that should be used to generate your makefile. The directory    that should be used to generate your makefile. The directory
294    \textit{adjoint} contains the makefile specific to the Tangent    \texttt{adjoint} contains the makefile specific to the Tangent
295    linear and Adjoint Compiler (TAMC) that generates the adjoint code.    linear and Adjoint Compiler (TAMC) that generates the adjoint code.
296    The latter is described in details in part V.    The latter is described in detail in part \ref{chap.ecco}.
297      This directory also contains the subdirectory build\_options, which
298      contains the `optfiles' with the compiler options for the different
299      compilers and machines that can run MITgcm.
300        
301  \item \textit{utils}: this directory contains various utilities. The  \item \texttt{utils}: this directory contains various utilities. The
302    subdirectory \textit{knudsen2} contains code and a makefile that    subdirectory \texttt{knudsen2} contains code and a makefile that
303    compute coefficients of the polynomial approximation to the knudsen    compute coefficients of the polynomial approximation to the knudsen
304    formula for an ocean nonlinear equation of state. The    formula for an ocean nonlinear equation of state. The
305    \textit{matlab} subdirectory contains matlab scripts for reading    \texttt{matlab} subdirectory contains matlab scripts for reading
306    model output directly into matlab. \textit{scripts} contains C-shell    model output directly into matlab. \texttt{scripts} contains C-shell
307    post-processing scripts for joining processor-based and tiled-based    post-processing scripts for joining processor-based and tiled-based
308    model output.    model output. The subdirectory exch2 contains the code needed for
309        the exch2 package to work with different combinations of domain
310  \item \textit{verification}: this directory contains the model    decompositions.
   examples. See section \ref{sect:modelExamples}.  
   
 \end{itemize}  
   
 \section{Example experiments}  
 \label{sect:modelExamples}  
   
 %% a set of twenty-four pre-configured numerical experiments  
   
 The MITgcm distribution comes with more than a dozen pre-configured  
 numerical experiments. Some of these example experiments are tests of  
 individual parts of the model code, but many are fully fledged  
 numerical simulations. A few of the examples are used for tutorial  
 documentation in sections \ref{sect:eg-baro} - \ref{sect:eg-global}.  
 The other examples follow the same general structure as the tutorial  
 examples. However, they only include brief instructions in a text file  
 called {\it README}.  The examples are located in subdirectories under  
 the directory \textit{verification}. Each example is briefly described  
 below.  
   
 \subsection{Full list of model examples}  
   
 \begin{enumerate}  
     
 \item \textit{exp0} - single layer, ocean double gyre (barotropic with  
   free-surface). This experiment is described in detail in section  
   \ref{sect:eg-baro}.  
   
 \item \textit{exp1} - Four layer, ocean double gyre. This experiment  
   is described in detail in section \ref{sect:eg-baroc}.  
311        
312  \item \textit{exp2} - 4x4 degree global ocean simulation with steady  \item \texttt{verification}: this directory contains the model
313    climatological forcing. This experiment is described in detail in    examples. See section \ref{sec:modelExamples}.
   section \ref{sect:eg-global}.  
     
 \item \textit{exp4} - Flow over a Gaussian bump in open-water or  
   channel with open boundaries.  
     
 \item \textit{exp5} - Inhomogenously forced ocean convection in a  
   doubly periodic box.  
   
 \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for  
 Gent/McWilliams scheme). 2D (Y-Z).  
314    
315  \item \textit{internal wave} - Ocean internal wave forced by open  \item \texttt{jobs}: contains sample job scripts for running MITgcm.
   boundary conditions.  
316        
317  \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP  \item \texttt{lsopt}: Line search code used for optimization.
   scheme; 1 month integration  
318        
319  \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and  \item \texttt{optim}: Interface between MITgcm and line search code.
   Suarez '94 forcing.  
320        
 \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and  
   Suarez '94 forcing.  
     
 \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  
   Suarez '94 forcing on the cubed sphere.  
     
 \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics.  
   Global Zonal Mean configuration, 1x64x5 resolution.  
     
 \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate  
   Atmospheric physics, equatorial Slice configuration.  2D (X-Z).  
     
 \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  
   physics. 3D Equatorial Channel configuration.  
     
 \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.  
   Global configuration, on latitude longitude grid with 128x64x5 grid  
   points ($2.8^\circ{\rm degree}$ resolution).  
     
 \item \textit{adjustment.128x64x1} Barotropic adjustment problem on  
   latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm  
     degree}$ resolution).  
     
 \item \textit{adjustment.cs-32x32x1} Barotropic adjustment problem on  
   cube sphere grid with 32x32 points per face ( roughly $2.8^\circ{\rm  
     degree}$ resolution).  
     
 \item \textit{advect\_cs} Two-dimensional passive advection test on  
   cube sphere grid.  
     
 \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive  
   advection test on Cartesian grid.  
     
 \item \textit{advect\_yz} Two-dimensional (vertical plane) passive  
   advection test on Cartesian grid.  
     
 \item \textit{carbon} Simple passive tracer experiment. Includes  
   derivative calculation. Described in detail in section  
   \ref{sect:eg-carbon-ad}.  
   
 \item \textit{flt\_example} Example of using float package.  
     
 \item \textit{global\_ocean.90x40x15} Global circulation with GM, flux  
   boundary conditions and poles.  
   
 \item \textit{global\_ocean\_pressure} Global circulation in pressure  
   coordinate (non-Boussinesq ocean model). Described in detail in  
   section \ref{sect:eg-globalpressure}.  
     
 \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube  
   sphere grid.  
   
 \end{enumerate}  
   
 \subsection{Directory structure of model examples}  
   
 Each example directory has the following subdirectories:  
   
 \begin{itemize}  
 \item \textit{code}: contains the code particular to the example. At a  
   minimum, this directory includes the following files:  
   
   \begin{itemize}  
   \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to  
     the ``execution environment'' part of the code. The default  
     version is located in \textit{eesupp/inc}.  
     
   \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to  
     the ``numerical model'' part of the code. The default version is  
     located in \textit{model/inc}.  
     
   \item \textit{code/SIZE.h}: declares size of underlying  
     computational grid.  The default version is located in  
     \textit{model/inc}.  
   \end{itemize}  
     
   In addition, other include files and subroutines might be present in  
   \textit{code} depending on the particular experiment. See Section 2  
   for more details.  
     
 \item \textit{input}: contains the input data files required to run  
   the example. At a minimum, the \textit{input} directory contains the  
   following files:  
   
   \begin{itemize}  
   \item \textit{input/data}: this file, written as a namelist,  
     specifies the main parameters for the experiment.  
     
   \item \textit{input/data.pkg}: contains parameters relative to the  
     packages used in the experiment.  
     
   \item \textit{input/eedata}: this file contains ``execution  
     environment'' data. At present, this consists of a specification  
     of the number of threads to use in $X$ and $Y$ under multithreaded  
     execution.  
   \end{itemize}  
     
   In addition, you will also find in this directory the forcing and  
   topography files as well as the files describing the initial state  
   of the experiment.  This varies from experiment to experiment. See  
   section 2 for more details.  
   
 \item \textit{results}: this directory contains the output file  
   \textit{output.txt} produced by the simulation example. This file is  
   useful for comparison with your own output when you run the  
   experiment.  
321  \end{itemize}  \end{itemize}
322    
323  Once you have chosen the example you want to run, you are ready to  \section[Building MITgcm]{Building the code}
324  compile the code.  \label{sec:buildingCode}
325    \begin{rawhtml}
326  \section{Building the code}  <!-- CMIREDIR:buildingCode: -->
327  \label{sect:buildingCode}  \end{rawhtml}
328    
329  To compile the code, we use the {\em make} program. This uses a file  To compile the code, we use the \texttt{make} program. This uses a
330  ({\em Makefile}) that allows us to pre-process source files, specify  file (\texttt{Makefile}) that allows us to pre-process source files,
331  compiler and optimization options and also figures out any file  specify compiler and optimization options and also figures out any
332  dependencies. We supply a script ({\em genmake2}), described in  file dependencies. We supply a script (\texttt{genmake2}), described
333  section \ref{sect:genmake}, that automatically creates the {\em  in section \ref{sec:genmake}, that automatically creates the
334    Makefile} for you. You then need to build the dependencies and  \texttt{Makefile} for you. You then need to build the dependencies and
335  compile the code.  compile the code.
336    
337  As an example, let's assume that you want to build and run experiment  As an example, assume that you want to build and run experiment
338  \textit{verification/exp2}. The are multiple ways and places to  \texttt{verification/exp2}. The are multiple ways and places to
339  actually do this but here let's build the code in  actually do this but here let's build the code in
340  \textit{verification/exp2/input}:  \texttt{verification/exp2/build}:
341  \begin{verbatim}  \begin{verbatim}
342  % cd verification/exp2/input  % cd verification/exp2/build
343  \end{verbatim}  \end{verbatim}
344  First, build the {\em Makefile}:  First, build the \texttt{Makefile}:
345  \begin{verbatim}  \begin{verbatim}
346  % ../../../tools/genmake2 -mods=../code  % ../../../tools/genmake2 -mods=../code
347  \end{verbatim}  \end{verbatim}
348  The command line option tells {\em genmake} to override model source  The command line option tells \texttt{genmake} to override model source
349  code with any files in the directory {\em ./code/}.  code with any files in the directory \texttt{../code/}.
350    
351  On many systems, the {\em genmake2} program will be able to  On many systems, the \texttt{genmake2} program will be able to
352  automatically recognize the hardware, find compilers and other tools  automatically recognize the hardware, find compilers and other tools
353  within the user's path (``echo \$PATH''), and then choose an  within the user's path (``\texttt{echo \$PATH}''), and then choose an
354  appropriate set of options from the files contained in the {\em  appropriate set of options from the files (``optfiles'') contained in
355    tools/build\_options} directory.  Under some circumstances, a user  the \texttt{tools/build\_options} directory.  Under some
356  may have to create a new ``optfile'' in order to specify the exact  circumstances, a user may have to create a new ``optfile'' in order to
357  combination of compiler, compiler flags, libraries, and other options  specify the exact combination of compiler, compiler flags, libraries,
358  necessary to build a particular configuration of MITgcm.  In such  and other options necessary to build a particular configuration of
359  cases, it is generally helpful to read the existing ``optfiles'' and  MITgcm.  In such cases, it is generally helpful to read the existing
360  mimic their syntax.  ``optfiles'' and mimic their syntax.
361    
362  Through the MITgcm-support list, the MITgcm developers are willing to  Through the MITgcm-support list, the MITgcm developers are willing to
363  provide help writing or modifing ``optfiles''.  And we encourage users  provide help writing or modifing ``optfiles''.  And we encourage users
364  to post new ``optfiles'' (particularly ones for new machines or  to post new ``optfiles'' (particularly ones for new machines or
365  architectures) to the  architectures) to the
366  \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}  \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
367  MITgcm-support@mitgcm.org  MITgcm-support@mitgcm.org
368  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
369  list.  list.
370    
371  To specify an optfile to {\em genmake2}, the syntax is:  To specify an optfile to \texttt{genmake2}, the syntax is:
372  \begin{verbatim}  \begin{verbatim}
373  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
374  \end{verbatim}  \end{verbatim}
375    
376  Once a {\em Makefile} has been generated, we create the dependencies:  Once a \texttt{Makefile} has been generated, we create the
377    dependencies with the command:
378  \begin{verbatim}  \begin{verbatim}
379  % make depend  % make depend
380  \end{verbatim}  \end{verbatim}
381  This modifies the {\em Makefile} by attaching a [long] list of files  This modifies the \texttt{Makefile} by attaching a (usually, long)
382  upon which other files depend. The purpose of this is to reduce  list of files upon which other files depend. The purpose of this is to
383  re-compilation if and when you start to modify the code. The {\tt make  reduce re-compilation if and when you start to modify the code. The
384    depend} command also creates links from the model source to this  {\tt make depend} command also creates links from the model source to
385  directory.  this directory.  It is important to note that the {\tt make depend}
386    stage will occasionally produce warnings or errors since the
387    dependency parsing tool is unable to find all of the necessary header
388    files (\textit{eg.}  \texttt{netcdf.inc}).  In these circumstances, it
389    is usually OK to ignore the warnings/errors and proceed to the next
390    step.
391    
392  Next compile the code:  Next one can compile the code using:
393  \begin{verbatim}  \begin{verbatim}
394  % make  % make
395  \end{verbatim}  \end{verbatim}
396  The {\tt make} command creates an executable called \textit{mitgcmuv}.  The {\tt make} command creates an executable called \texttt{mitgcmuv}.
397  Additional make ``targets'' are defined within the makefile to aid in  Additional make ``targets'' are defined within the makefile to aid in
398  the production of adjoint and other versions of MITgcm.  the production of adjoint and other versions of MITgcm.  On SMP
399    (shared multi-processor) systems, the build process can often be sped
400    up appreciably using the command:
401    \begin{verbatim}
402    % make -j 2
403    \end{verbatim}
404    where the ``2'' can be replaced with a number that corresponds to the
405    number of CPUs available.
406    
407  Now you are ready to run the model. General instructions for doing so are  Now you are ready to run the model. General instructions for doing so are
408  given in section \ref{sect:runModel}. Here, we can run the model with:  given in section \ref{sec:runModel}. Here, we can run the model by
409    first creating links to all the input files:
410    \begin{verbatim}
411    ln -s ../input/* .
412    \end{verbatim}
413    and then calling the executable with:
414  \begin{verbatim}  \begin{verbatim}
415  ./mitgcmuv > output.txt  ./mitgcmuv > output.txt
416  \end{verbatim}  \end{verbatim}
417  where we are re-directing the stream of text output to the file {\em  where we are re-directing the stream of text output to the file
418  output.txt}.  \texttt{output.txt}.
   
419    
420  \subsection{Building/compiling the code elsewhere}  \subsection{Building/compiling the code elsewhere}
421    
422  In the example above (section \ref{sect:buildingCode}) we built the  In the example above (section \ref{sec:buildingCode}) we built the
423  executable in the {\em input} directory of the experiment for  executable in the {\em input} directory of the experiment for
424  convenience. You can also configure and compile the code in other  convenience. You can also configure and compile the code in other
425  locations, for example on a scratch disk with out having to copy the  locations, for example on a scratch disk with out having to copy the
# Line 633  the one experiment: Line 522  the one experiment:
522  \end{verbatim}  \end{verbatim}
523    
524    
525    \subsection{Using \texttt{genmake2}}
526  \subsection{Using \textit{genmake2}}  \label{sec:genmake}
 \label{sect:genmake}  
527    
528  To compile the code, first use the program \texttt{genmake2} (located  To compile the code, first use the program \texttt{genmake2} (located
529  in the \textit{tools} directory) to generate a Makefile.  in the \texttt{tools} directory) to generate a Makefile.
530  \texttt{genmake2} is a shell script written to work with all  \texttt{genmake2} is a shell script written to work with all
531  ``sh''--compatible shells including bash v1, bash v2, and Bourne.  ``sh''--compatible shells including bash v1, bash v2, and Bourne.
532  Internally, \texttt{genmake2} determines the locations of needed  %Internally, \texttt{genmake2} determines the locations of needed
533  files, the compiler, compiler options, libraries, and Unix tools.  It  %files, the compiler, compiler options, libraries, and Unix tools.  It
534  relies upon a number of ``optfiles'' located in the {\em  %relies upon a number of ``optfiles'' located in the
535    tools/build\_options} directory.  %\texttt{tools/build\_options} directory.
536    \texttt{genmake2} parses information from the following sources:
537    \begin{description}
538    \item[-] a {\em gemake\_local} file if one is found in the current
539      directory
540    \item[-] command-line options
541    \item[-] an "options file" as specified by the command-line option
542      \texttt{--optfile=/PATH/FILENAME}
543    \item[-] a {\em packages.conf} file (if one is found) with the
544      specific list of packages to compile. The search path for
545      file {\em packages.conf} is, first, the current directory and
546      then each of the "MODS" directories in the given order (see below).
547    \end{description}
548    
549    \subsubsection{Optfiles in \texttt{tools/build\_options} directory:}
550    
551  The purpose of the optfiles is to provide all the compilation options  The purpose of the optfiles is to provide all the compilation options
552  for particular ``platforms'' (where ``platform'' roughly means the  for particular ``platforms'' (where ``platform'' roughly means the
# Line 717  for inclusion.  Please send the file to Line 619  for inclusion.  Please send the file to
619  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
620  mailing list.  mailing list.
621    
622    \subsubsection{Command-line options:}
623    
624  In addition to the optfiles, \texttt{genmake2} supports a number of  In addition to the optfiles, \texttt{genmake2} supports a number of
625  helpful command-line options.  A complete list of these options can be  helpful command-line options.  A complete list of these options can be
626  obtained from:  obtained from:
# Line 739  The most important command-line options Line 643  The most important command-line options
643    the user's path.  When these three items have been identified,    the user's path.  When these three items have been identified,
644    genmake2 will try to find an optfile that has a matching name.    genmake2 will try to find an optfile that has a matching name.
645        
646    \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
647      directories containing ``modifications''.  These directories contain
648      files with names that may (or may not) exist in the main MITgcm
649      source tree but will be overridden by any identically-named sources
650      within the ``MODS'' directories.
651      
652      The order of precedence for this "name-hiding" is as follows:
653      \begin{itemize}
654      \item ``MODS'' directories (in the order given)
655      \item Packages either explicitly specified or provided by default
656        (in the order given)
657      \item Packages included due to package dependencies (in the order
658        that that package dependencies are parsed)
659      \item The "standard dirs" (which may have been specified by the
660        ``-standarddirs'' option)
661      \end{itemize}
662      
663    \item[\texttt{--pgroups=/PATH/FILENAME}] specifies the file
664      where package groups are defined. If not set, the package-groups
665      definition will be read from {\em pkg/pkg\_groups}.
666      It also contains the default list of packages (defined
667      as the group ``{\it default\_pkg\_list}'' which is used
668      when no specific package list ({\em packages.conf})
669      is found in current directory or in any "MODS" directory.
670    
671  \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file  \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
672    used for packages.    used for packages.
673        
# Line 751  The most important command-line options Line 680  The most important command-line options
680    assumed that the two packages are compatible and will function    assumed that the two packages are compatible and will function
681    either with or without each other.    either with or without each other.
682        
 \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default  
   set of packages to be used.  
     
   If not set, the default package list will be read from {\em  
     pkg/pkg\_default}  
     
683  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
684    automatic differentiation options file to be used.  The file is    automatic differentiation options file to be used.  The file is
685    analogous to the ``optfile'' defined above but it specifies    analogous to the ``optfile'' defined above but it specifies
# Line 769  The most important command-line options Line 692  The most important command-line options
692    "STAF" compiler.  As with any compilers, it is helpful to have their    "STAF" compiler.  As with any compilers, it is helpful to have their
693    directories listed in your {\tt \$PATH} environment variable.    directories listed in your {\tt \$PATH} environment variable.
694        
695  \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of  \item[\texttt{--mpi}] This option enables certain MPI features (using
696    directories containing ``modifications''.  These directories contain    CPP \texttt{\#define}s) within the code and is necessary for MPI
697    files with names that may (or may not) exist in the main MITgcm    builds (see Section \ref{sec:mpi-build}).
   source tree but will be overridden by any identically-named sources  
   within the ``MODS'' directories.  
     
   The order of precedence for this "name-hiding" is as follows:  
   \begin{itemize}  
   \item ``MODS'' directories (in the order given)  
   \item Packages either explicitly specified or provided by default  
     (in the order given)  
   \item Packages included due to package dependencies (in the order  
     that that package dependencies are parsed)  
   \item The "standard dirs" (which may have been specified by the  
     ``-standarddirs'' option)  
   \end{itemize}  
698        
699  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
700    soft-links and other bugs common with the \texttt{make} versions    soft-links and other bugs common with the \texttt{make} versions
701    provided by commercial Unix vendors, GNU \texttt{make} (sometimes    provided by commercial Unix vendors, GNU \texttt{make} (sometimes
702    called \texttt{gmake}) should be preferred.  This option provides a    called \texttt{gmake}) should be preferred.  This option provides a
703    means for specifying the make executable to be used.    means for specifying the make executable to be used.
704      
705    \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
706      machines, the ``bash'' shell is unavailable.  To run on these
707      systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
708      a Bourne, POSIX, or compatible) shell.  The syntax in these
709      circumstances is:
710      \begin{center}
711        \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
712      \end{center}
713      where \texttt{/bin/sh} can be replaced with the full path and name
714      of the desired shell.
715    
716  \end{description}  \end{description}
717    
718    
719    \subsection{Building with MPI}
720    \label{sec:mpi-build}
721    
722  \section{Running the model}  Building MITgcm to use MPI libraries can be complicated due to the
723  \label{sect:runModel}  variety of different MPI implementations available, their dependencies
724    or interactions with different compilers, and their often ad-hoc
725    locations within file systems.  For these reasons, its generally a
726    good idea to start by finding and reading the documentation for your
727    machine(s) and, if necessary, seeking help from your local systems
728    administrator.
729    
730  If compilation finished succesfuully (section \ref{sect:buildModel})  The steps for building MITgcm with MPI support are:
731  then an executable called {\em mitgcmuv} will now exist in the local  \begin{enumerate}
732  directory.    
733    \item Determine the locations of your MPI-enabled compiler and/or MPI
734      libraries and put them into an options file as described in Section
735      \ref{sec:genmake}.  One can start with one of the examples in:
736      \begin{rawhtml} <A
737        href="http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/build_options/">
738      \end{rawhtml}
739      \begin{center}
740        \texttt{MITgcm/tools/build\_options/}
741      \end{center}
742      \begin{rawhtml} </A> \end{rawhtml}
743      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
744      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
745      hand.  You may need help from your user guide or local systems
746      administrator to determine the exact location of the MPI libraries.
747      If libraries are not installed, MPI implementations and related
748      tools are available including:
749      \begin{itemize}
750      \item \begin{rawhtml} <A
751          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
752        \end{rawhtml}
753        MPICH
754        \begin{rawhtml} </A> \end{rawhtml}
755    
756      \item \begin{rawhtml} <A
757          href="http://www.lam-mpi.org/">
758        \end{rawhtml}
759        LAM/MPI
760        \begin{rawhtml} </A> \end{rawhtml}
761    
762      \item \begin{rawhtml} <A
763          href="http://www.osc.edu/~pw/mpiexec/">
764        \end{rawhtml}
765        MPIexec
766        \begin{rawhtml} </A> \end{rawhtml}
767      \end{itemize}
768      
769    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
770      (see Section \ref{sec:genmake}) using commands such as:
771    {\footnotesize \begin{verbatim}
772      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
773      %  make depend
774      %  make
775    \end{verbatim} }
776      
777    \item Run the code with the appropriate MPI ``run'' or ``exec''
778      program provided with your particular implementation of MPI.
779      Typical MPI packages such as MPICH will use something like:
780    \begin{verbatim}
781      %  mpirun -np 4 -machinefile mf ./mitgcmuv
782    \end{verbatim}
783      Sightly more complicated scripts may be needed for many machines
784      since execution of the code may be controlled by both the MPI
785      library and a job scheduling and queueing system such as PBS,
786      LoadLeveller, Condor, or any of a number of similar tools.  A few
787      example scripts (those used for our \begin{rawhtml} <A
788        href="http://mitgcm.org/public/testing.html"> \end{rawhtml}regular
789      verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
790      at:
791      \begin{rawhtml} <A
792        href="http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example_scripts/">
793      \end{rawhtml}
794      {\footnotesize \tt
795        http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example\_scripts/ }
796      \begin{rawhtml} </A> \end{rawhtml}
797      or at:
798      \begin{rawhtml} <A
799        href="http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/test_scripts/">
800      \end{rawhtml}
801      {\footnotesize \tt
802        http://mitgcm.org/viewvc/MITgcm/MITgcm\_contrib/test\_scripts/ }
803      \begin{rawhtml} </A> \end{rawhtml}
804    
805    \end{enumerate}
806    
807  To run the model as a single process (ie. not in parallel) simply  An example of the above process on the MITgcm cluster (``cg01'') using
808  type:  the GNU g77 compiler and the mpich MPI library is:
809    
810    {\footnotesize \begin{verbatim}
811      %  cd MITgcm/verification/exp5
812      %  mkdir build
813      %  cd build
814      %  ../../../tools/genmake2 -mpi -mods=../code \
815           -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
816      %  make depend
817      %  make
818      %  cd ../input
819      %  /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
820           -machinefile mf --gm-kill 5 -v -np 2  ../build/mitgcmuv
821    \end{verbatim} }
822    
823    \section[Running MITgcm]{Running the model in prognostic mode}
824    \label{sec:runModel}
825    \begin{rawhtml}
826    <!-- CMIREDIR:runModel: -->
827    \end{rawhtml}
828    
829    If compilation finished succesfully (section \ref{sec:buildingCode})
830    then an executable called \texttt{mitgcmuv} will now exist in the
831    local directory.
832    
833    To run the model as a single process (\textit{ie.} not in parallel)
834    simply type:
835  \begin{verbatim}  \begin{verbatim}
836  % ./mitgcmuv  % ./mitgcmuv
837  \end{verbatim}  \end{verbatim}
# Line 814  do!). The above command will spew out ma Line 841  do!). The above command will spew out ma
841  your screen.  This output contains details such as parameter values as  your screen.  This output contains details such as parameter values as
842  well as diagnostics such as mean Kinetic energy, largest CFL number,  well as diagnostics such as mean Kinetic energy, largest CFL number,
843  etc. It is worth keeping this text output with the binary output so we  etc. It is worth keeping this text output with the binary output so we
844  normally re-direct the {\em stdout} stream as follows:  normally re-direct the \texttt{stdout} stream as follows:
845  \begin{verbatim}  \begin{verbatim}
846  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
847  \end{verbatim}  \end{verbatim}
848    In the event that the model encounters an error and stops, it is very
849  For the example experiments in {\em verification}, an example of the  helpful to include the last few line of this \texttt{output.txt} file
850  output is kept in {\em results/output.txt} for comparison. You can compare  along with the (\texttt{stderr}) error message within any bug reports.
851  your {\em output.txt} with this one to check that the set-up works.  
852    For the example experiments in \texttt{verification}, an example of the
853    output is kept in \texttt{results/output.txt} for comparison. You can
854    compare your \texttt{output.txt} with the corresponding one for that
855    experiment to check that the set-up works.
856    
857    
858    
859  \subsection{Output files}  \subsection{Output files}
860    
861  The model produces various output files. At a minimum, the instantaneous  The model produces various output files and, when using \texttt{mnc},
862  ``state'' of the model is written out, which is made of the following files:  sometimes even directories.  Depending upon the I/O package(s)
863    selected at compile time (either \texttt{mdsio} or \texttt{mnc} or
864    both as determined by \texttt{code/packages.conf}) and the run-time
865    flags set (in \texttt{input/data.pkg}), the following output may
866    appear.
867    
868    
869    \subsubsection{MDSIO output files}
870    
871    The ``traditional'' output files are generated by the \texttt{mdsio}
872    package.  At a minimum, the instantaneous ``state'' of the model is
873    written out, which is made of the following files:
874    
875  \begin{itemize}  \begin{itemize}
876  \item \textit{U.00000nIter} - zonal component of velocity field (m/s and $>  \item \texttt{U.00000nIter} - zonal component of velocity field (m/s
877  0 $ eastward).    and positive eastward).
878    
879  \item \textit{V.00000nIter} - meridional component of velocity field (m/s  \item \texttt{V.00000nIter} - meridional component of velocity field
880  and $> 0$ northward).    (m/s and positive northward).
881    
882  \item \textit{W.00000nIter} - vertical component of velocity field (ocean:  \item \texttt{W.00000nIter} - vertical component of velocity field
883  m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure    (ocean: m/s and positive upward, atmosphere: Pa/s and positive
884  i.e. downward).    towards increasing pressure i.e. downward).
885    
886  \item \textit{T.00000nIter} - potential temperature (ocean: $^{0}$C,  \item \texttt{T.00000nIter} - potential temperature (ocean:
887  atmosphere: $^{0}$K).    $^{\circ}\mathrm{C}$, atmosphere: $^{\circ}\mathrm{K}$).
888    
889  \item \textit{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor  \item \texttt{S.00000nIter} - ocean: salinity (psu), atmosphere: water
890  (g/kg).    vapor (g/kg).
891    
892  \item \textit{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:  \item \texttt{Eta.00000nIter} - ocean: surface elevation (m),
893  surface pressure anomaly (Pa).    atmosphere: surface pressure anomaly (Pa).
894  \end{itemize}  \end{itemize}
895    
896  The chain \textit{00000nIter} consists of ten figures that specify the  The chain \texttt{00000nIter} consists of ten figures that specify the
897  iteration number at which the output is written out. For example, \textit{%  iteration number at which the output is written out. For example,
898  U.0000000300} is the zonal velocity at iteration 300.  \texttt{U.0000000300} is the zonal velocity at iteration 300.
899    
900  In addition, a ``pickup'' or ``checkpoint'' file called:  In addition, a ``pickup'' or ``checkpoint'' file called:
901    
902  \begin{itemize}  \begin{itemize}
903  \item \textit{pickup.00000nIter}  \item \texttt{pickup.00000nIter}
904  \end{itemize}  \end{itemize}
905    
906  is written out. This file represents the state of the model in a condensed  is written out. This file represents the state of the model in a condensed
# Line 866  form and is used for restarting the inte Line 908  form and is used for restarting the inte
908  there is an additional ``pickup'' file:  there is an additional ``pickup'' file:
909    
910  \begin{itemize}  \begin{itemize}
911  \item \textit{pickup\_cd.00000nIter}  \item \texttt{pickup\_cd.00000nIter}
912  \end{itemize}  \end{itemize}
913    
914  containing the D-grid velocity data and that has to be written out as well  containing the D-grid velocity data and that has to be written out as well
915  in order to restart the integration. Rolling checkpoint files are the same  in order to restart the integration. Rolling checkpoint files are the same
916  as the pickup files but are named differently. Their name contain the chain  as the pickup files but are named differently. Their name contain the chain
917  \textit{ckptA} or \textit{ckptB} instead of \textit{00000nIter}. They can be  \texttt{ckptA} or \texttt{ckptB} instead of \texttt{00000nIter}. They can be
918  used to restart the model but are overwritten every other time they are  used to restart the model but are overwritten every other time they are
919  output to save disk space during long integrations.  output to save disk space during long integrations.
920    
921    \subsubsection{MNC output files}
922    
923    Unlike the \texttt{mdsio} output, the \texttt{mnc}--generated output
924    is usually (though not necessarily) placed within a subdirectory with
925    a name such as \texttt{mnc\_test\_\${DATE}\_\${SEQ}}.  
926    
927  \subsection{Looking at the output}  \subsection{Looking at the output}
928    
929  All the model data are written according to a ``meta/data'' file format.  The ``traditional'' or mdsio model data are written according to a
930  Each variable is associated with two files with suffix names \textit{.data}  ``meta/data'' file format.  Each variable is associated with two files
931  and \textit{.meta}. The \textit{.data} file contains the data written in  with suffix names \texttt{.data} and \texttt{.meta}. The
932  binary form (big\_endian by default). The \textit{.meta} file is a  \texttt{.data} file contains the data written in binary form
933  ``header'' file that contains information about the size and the structure  (big\_endian by default). The \texttt{.meta} file is a ``header'' file
934  of the \textit{.data} file. This way of organizing the output is  that contains information about the size and the structure of the
935  particularly useful when running multi-processors calculations. The base  \texttt{.data} file. This way of organizing the output is particularly
936  version of the model includes a few matlab utilities to read output files  useful when running multi-processors calculations. The base version of
937  written in this format. The matlab scripts are located in the directory  the model includes a few matlab utilities to read output files written
938  \textit{utils/matlab} under the root tree. The script \textit{rdmds.m} reads  in this format. The matlab scripts are located in the directory
939  the data. Look at the comments inside the script to see how to use it.  \texttt{utils/matlab} under the root tree. The script \texttt{rdmds.m}
940    reads the data. Look at the comments inside the script to see how to
941    use it.
942    
943  Some examples of reading and visualizing some output in {\em Matlab}:  Some examples of reading and visualizing some output in {\em Matlab}:
944  \begin{verbatim}  \begin{verbatim}
# Line 905  Some examples of reading and visualizing Line 955  Some examples of reading and visualizing
955  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
956  \end{verbatim}  \end{verbatim}
957    
958  \section{Doing it yourself: customizing the code}  Similar scripts for netCDF output (\texttt{rdmnc.m}) are available and
959    they are described in Section \ref{sec:pkg:mnc}.
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies  
 experiment (described previously) that is the closest to your  
 configuration. Then, the amount of setup will be minimized. In this  
 section, we focus on the setup relative to the ``numerical model''  
 part of the code (the setup relative to the ``execution environment''  
 part is covered in the parallel implementation section) and on the  
 variables and parameters that you are likely to change.  
   
 \subsection{Configuration and setup}  
   
 The CPP keys relative to the ``numerical model'' part of the code are  
 all defined and set in the file \textit{CPP\_OPTIONS.h }in the  
 directory \textit{ model/inc }or in one of the \textit{code  
 }directories of the case study experiments under  
 \textit{verification.} The model parameters are defined and declared  
 in the file \textit{model/inc/PARAMS.h }and their default values are  
 set in the routine \textit{model/src/set\_defaults.F. }The default  
 values can be modified in the namelist file \textit{data }which needs  
 to be located in the directory where you will run the model. The  
 parameters are initialized in the routine  
 \textit{model/src/ini\_parms.F}.  Look at this routine to see in what  
 part of the namelist the parameters are located.  
   
 In what follows the parameters are grouped into categories related to  
 the computational domain, the equations solved in the model, and the  
 simulation controls.  
   
 \subsection{Computational domain, geometry and time-discretization}  
   
 \begin{description}  
 \item[dimensions] \  
     
   The number of points in the x, y, and r directions are represented  
   by the variables \textbf{sNx}, \textbf{sNy} and \textbf{Nr}  
   respectively which are declared and set in the file  
   \textit{model/inc/SIZE.h}.  (Again, this assumes a mono-processor  
   calculation. For multiprocessor calculations see the section on  
   parallel implementation.)  
   
 \item[grid] \  
     
   Three different grids are available: cartesian, spherical polar, and  
   curvilinear (which includes the cubed sphere). The grid is set  
   through the logical variables \textbf{usingCartesianGrid},  
   \textbf{usingSphericalPolarGrid}, and \textbf{usingCurvilinearGrid}.  
   In the case of spherical and curvilinear grids, the southern  
   boundary is defined through the variable \textbf{phiMin} which  
   corresponds to the latitude of the southern most cell face (in  
   degrees). The resolution along the x and y directions is controlled  
   by the 1D arrays \textbf{delx} and \textbf{dely} (in meters in the  
   case of a cartesian grid, in degrees otherwise).  The vertical grid  
   spacing is set through the 1D array \textbf{delz} for the ocean (in  
   meters) or \textbf{delp} for the atmosphere (in Pa).  The variable  
   \textbf{Ro\_SeaLevel} represents the standard position of Sea-Level  
   in ``R'' coordinate. This is typically set to 0m for the ocean  
   (default value) and 10$^{5}$Pa for the atmosphere. For the  
   atmosphere, also set the logical variable \textbf{groundAtK1} to  
   \texttt{'.TRUE.'} which puts the first level (k=1) at the lower  
   boundary (ground).  
     
   For the cartesian grid case, the Coriolis parameter $f$ is set  
   through the variables \textbf{f0} and \textbf{beta} which correspond  
   to the reference Coriolis parameter (in s$^{-1}$) and  
   $\frac{\partial f}{ \partial y}$(in m$^{-1}$s$^{-1}$) respectively.  
   If \textbf{beta } is set to a nonzero value, \textbf{f0} is the  
   value of $f$ at the southern edge of the domain.  
   
 \item[topography - full and partial cells] \  
     
   The domain bathymetry is read from a file that contains a 2D (x,y)  
   map of depths (in m) for the ocean or pressures (in Pa) for the  
   atmosphere. The file name is represented by the variable  
   \textbf{bathyFile}. The file is assumed to contain binary numbers  
   giving the depth (pressure) of the model at each grid cell, ordered  
   with the x coordinate varying fastest. The points are ordered from  
   low coordinate to high coordinate for both axes. The model code  
   applies without modification to enclosed, periodic, and double  
   periodic domains. Periodicity is assumed by default and is  
   suppressed by setting the depths to 0m for the cells at the limits  
   of the computational domain (note: not sure this is the case for the  
   atmosphere). The precision with which to read the binary data is  
   controlled by the integer variable \textbf{readBinaryPrec} which can  
   take the value \texttt{32} (single precision) or \texttt{64} (double  
   precision). See the matlab program \textit{gendata.m} in the  
   \textit{input} directories under \textit{verification} to see how  
   the bathymetry files are generated for the case study experiments.  
     
   To use the partial cell capability, the variable \textbf{hFacMin}  
   needs to be set to a value between 0 and 1 (it is set to 1 by  
   default) corresponding to the minimum fractional size of the cell.  
   For example if the bottom cell is 500m thick and \textbf{hFacMin} is  
   set to 0.1, the actual thickness of the cell (i.e. used in the code)  
   can cover a range of discrete values 50m apart from 50m to 500m  
   depending on the value of the bottom depth (in \textbf{bathyFile})  
   at this point.  
     
   Note that the bottom depths (or pressures) need not coincide with  
   the models levels as deduced from \textbf{delz} or \textbf{delp}.  
   The model will interpolate the numbers in \textbf{bathyFile} so that  
   they match the levels obtained from \textbf{delz} or \textbf{delp}  
   and \textbf{hFacMin}.  
     
   (Note: the atmospheric case is a bit more complicated than what is  
   written here I think. To come soon...)  
   
 \item[time-discretization] \  
     
   The time steps are set through the real variables \textbf{deltaTMom}  
   and \textbf{deltaTtracer} (in s) which represent the time step for  
   the momentum and tracer equations, respectively. For synchronous  
   integrations, simply set the two variables to the same value (or you  
   can prescribe one time step only through the variable  
   \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set  
   through the variable \textbf{abEps} (dimensionless). The stagger  
   baroclinic time stepping can be activated by setting the logical  
   variable \textbf{staggerTimeStep} to \texttt{'.TRUE.'}.  
   
 \end{description}  
   
   
 \subsection{Equation of state}  
   
 First, because the model equations are written in terms of  
 perturbations, a reference thermodynamic state needs to be specified.  
 This is done through the 1D arrays \textbf{tRef} and \textbf{sRef}.  
 \textbf{tRef} specifies the reference potential temperature profile  
 (in $^{o}$C for the ocean and $^{o}$K for the atmosphere) starting  
 from the level k=1. Similarly, \textbf{sRef} specifies the reference  
 salinity profile (in ppt) for the ocean or the reference specific  
 humidity profile (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character  
 variables \textbf{buoyancyRelation} and \textbf{eosType}.  
 \textbf{buoyancyRelation} is set to \texttt{'OCEANIC'} by default and  
 needs to be set to \texttt{'ATMOSPHERIC'} for atmosphere simulations.  
 In this case, \textbf{eosType} must be set to \texttt{'IDEALGAS'}.  
 For the ocean, two forms of the equation of state are available:  
 linear (set \textbf{eosType} to \texttt{'LINEAR'}) and a polynomial  
 approximation to the full nonlinear equation ( set \textbf{eosType} to  
 \texttt{'POLYNOMIAL'}). In the linear case, you need to specify the  
 thermal and haline expansion coefficients represented by the variables  
 \textbf{tAlpha} (in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For  
 the nonlinear case, you need to generate a file of polynomial  
 coefficients called \textit{POLY3.COEFFS}. To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number  
 and the values of the vertical levels in \textit{knudsen2.f} so that  
 they match those of your configuration).  
   
 There there are also higher polynomials for the equation of state:  
 \begin{description}  
 \item[\texttt{'UNESCO'}:] The UNESCO equation of state formula of  
   Fofonoff and Millard \cite{fofonoff83}. This equation of state  
   assumes in-situ temperature, which is not a model variable; {\em its  
     use is therefore discouraged, and it is only listed for  
     completeness}.  
 \item[\texttt{'JMD95Z'}:] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The \texttt{'Z'} indicates that this equation  
   of state uses a horizontally and temporally constant pressure  
   $p_{0}=-g\rho_{0}z$.  
 \item[\texttt{'JMD95P'}:] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The \texttt{'P'} indicates that this equation  
   of state uses the actual hydrostatic pressure of the last time  
   step. Lagging the pressure in this way requires an additional pickup  
   file for restarts.  
 \item[\texttt{'MDJWF'}:] The new, more accurate and less expensive  
   equation of state by McDougall et~al. \cite{mcdougall03}. It also  
   requires lagging the pressure and therefore an additional pickup  
   file for restarts.  
 \end{description}  
 For none of these options an reference profile of temperature or  
 salinity is required.  
   
 \subsection{Momentum equations}  
960    
961  In this section, we only focus for now on the parameters that you are  The MNC output files are all in the ``self-describing'' netCDF
962  likely to change, i.e. the ones relative to forcing and dissipation  format and can thus be browsed and/or plotted using tools such as:
963  for example.  The details relevant to the vector-invariant form of the  \begin{itemize}
964  equations and the various advection schemes are not covered for the  \item \texttt{ncdump} is a utility which is typically included
965  moment. We assume that you use the standard form of the momentum    with every netCDF install:
966  equations (i.e. the flux-form) with the default advection scheme.    \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
967  Also, there are a few logical variables that allow you to turn on/off  \begin{verbatim}
968  various terms in the momentum equation. These variables are called  http://www.unidata.ucar.edu/packages/netcdf/
969  \textbf{momViscosity, momAdvection, momForcing, useCoriolis,  \end{verbatim}
970    momPressureForcing, momStepping} and \textbf{metricTerms }and are    \begin{rawhtml} </A> \end{rawhtml} and it converts the netCDF
971  assumed to be set to \texttt{'.TRUE.'} here.  Look at the file    binaries into formatted ASCII text files.
 \textit{model/inc/PARAMS.h }for a precise definition of these  
 variables.  
   
 \begin{description}  
 \item[initialization] \  
     
   The velocity components are initialized to 0 unless the simulation  
   is starting from a pickup file (see section on simulation control  
   parameters).  
   
 \item[forcing] \  
     
   This section only applies to the ocean. You need to generate  
   wind-stress data into two files \textbf{zonalWindFile} and  
   \textbf{meridWindFile} corresponding to the zonal and meridional  
   components of the wind stress, respectively (if you want the stress  
   to be along the direction of only one of the model horizontal axes,  
   you only need to generate one file). The format of the files is  
   similar to the bathymetry file. The zonal (meridional) stress data  
   are assumed to be in Pa and located at U-points (V-points). As for  
   the bathymetry, the precision with which to read the binary data is  
   controlled by the variable \textbf{readBinaryPrec}.  See the matlab  
   program \textit{gendata.m} in the \textit{input} directories under  
   \textit{verification} to see how simple analytical wind forcing data  
   are generated for the case study experiments.  
     
   There is also the possibility of prescribing time-dependent periodic  
   forcing. To do this, concatenate the successive time records into a  
   single file (for each stress component) ordered in a (x,y,t) fashion  
   and set the following variables: \textbf{periodicExternalForcing }to  
   \texttt{'.TRUE.'}, \textbf{externForcingPeriod }to the period (in s)  
   of which the forcing varies (typically 1 month), and  
   \textbf{externForcingCycle} to the repeat time (in s) of the forcing  
   (typically 1 year -- note: \textbf{ externForcingCycle} must be a  
   multiple of \textbf{externForcingPeriod}).  With these variables set  
   up, the model will interpolate the forcing linearly at each  
   iteration.  
   
 \item[dissipation] \  
     
   The lateral eddy viscosity coefficient is specified through the  
   variable \textbf{viscAh} (in m$^{2}$s$^{-1}$). The vertical eddy  
   viscosity coefficient is specified through the variable  
   \textbf{viscAz} (in m$^{2}$s$^{-1}$) for the ocean and  
   \textbf{viscAp} (in Pa$^{2}$s$^{-1}$) for the atmosphere.  The  
   vertical diffusive fluxes can be computed implicitly by setting the  
   logical variable \textbf{implicitViscosity }to \texttt{'.TRUE.'}.  
   In addition, biharmonic mixing can be added as well through the  
   variable \textbf{viscA4} (in m$^{4}$s$^{-1}$). On a spherical polar  
   grid, you might also need to set the variable \textbf{cosPower}  
   which is set to 0 by default and which represents the power of  
   cosine of latitude to multiply viscosity. Slip or no-slip conditions  
   at lateral and bottom boundaries are specified through the logical  
   variables \textbf{no\_slip\_sides} and \textbf{no\_slip\_bottom}. If  
   set to \texttt{'.FALSE.'}, free-slip boundary conditions are  
   applied. If no-slip boundary conditions are applied at the bottom, a  
   bottom drag can be applied as well. Two forms are available: linear  
   (set the variable \textbf{bottomDragLinear} in s$ ^{-1}$) and  
   quadratic (set the variable \textbf{bottomDragQuadratic} in  
   m$^{-1}$).  
   
   The Fourier and Shapiro filters are described elsewhere.  
   
 \item[C-D scheme] \  
     
   If you run at a sufficiently coarse resolution, you will need the  
   C-D scheme for the computation of the Coriolis terms. The  
   variable\textbf{\ tauCD}, which represents the C-D scheme coupling  
   timescale (in s) needs to be set.  
     
 \item[calculation of pressure/geopotential] \  
     
   First, to run a non-hydrostatic ocean simulation, set the logical  
   variable \textbf{nonHydrostatic} to \texttt{'.TRUE.'}. The pressure  
   field is then inverted through a 3D elliptic equation. (Note: this  
   capability is not available for the atmosphere yet.) By default, a  
   hydrostatic simulation is assumed and a 2D elliptic equation is used  
   to invert the pressure field. The parameters controlling the  
   behaviour of the elliptic solvers are the variables  
   \textbf{cg2dMaxIters} and \textbf{cg2dTargetResidual } for  
   the 2D case and \textbf{cg3dMaxIters} and  
   \textbf{cg3dTargetResidual} for the 3D case. You probably won't need to  
   alter the default values (are we sure of this?).  
     
   For the calculation of the surface pressure (for the ocean) or  
   surface geopotential (for the atmosphere) you need to set the  
   logical variables \textbf{rigidLid} and \textbf{implicitFreeSurface}  
   (set one to \texttt{'.TRUE.'} and the other to \texttt{'.FALSE.'}  
   depending on how you want to deal with the ocean upper or atmosphere  
   lower boundary).  
   
 \end{description}  
   
 \subsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential  
 temperature equation and the salinity (for the ocean) or specific  
 humidity (for the atmosphere) equation. As for the momentum equations,  
 we only describe for now the parameters that you are likely to change.  
 The logical variables \textbf{tempDiffusion} \textbf{tempAdvection}  
 \textbf{tempForcing}, and \textbf{tempStepping} allow you to turn  
 on/off terms in the temperature equation (same thing for salinity or  
 specific humidity with variables \textbf{saltDiffusion},  
 \textbf{saltAdvection} etc.). These variables are all assumed here to  
 be set to \texttt{'.TRUE.'}. Look at file \textit{model/inc/PARAMS.h}  
 for a precise definition.  
   
 \begin{description}  
 \item[initialization] \  
     
   The initial tracer data can be contained in the binary files  
   \textbf{hydrogThetaFile} and \textbf{hydrogSaltFile}. These files  
   should contain 3D data ordered in an (x,y,r) fashion with k=1 as the  
   first vertical level.  If no file names are provided, the tracers  
   are then initialized with the values of \textbf{tRef} and  
   \textbf{sRef} mentioned above (in the equation of state section). In  
   this case, the initial tracer data are uniform in x and y for each  
   depth level.  
   
 \item[forcing] \  
     
   This part is more relevant for the ocean, the procedure for the  
   atmosphere not being completely stabilized at the moment.  
     
   A combination of fluxes data and relaxation terms can be used for  
   driving the tracer equations.  For potential temperature, heat flux  
   data (in W/m$ ^{2}$) can be stored in the 2D binary file  
   \textbf{surfQfile}.  Alternatively or in addition, the forcing can  
   be specified through a relaxation term. The SST data to which the  
   model surface temperatures are restored to are supposed to be stored  
   in the 2D binary file \textbf{thetaClimFile}. The corresponding  
   relaxation time scale coefficient is set through the variable  
   \textbf{tauThetaClimRelax} (in s). The same procedure applies for  
   salinity with the variable names \textbf{EmPmRfile},  
   \textbf{saltClimFile}, and \textbf{tauSaltClimRelax} for freshwater  
   flux (in m/s) and surface salinity (in ppt) data files and  
   relaxation time scale coefficient (in s), respectively. Also for  
   salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on,  
   natural boundary conditions are applied i.e. when computing the  
   surface salinity tendency, the freshwater flux is multiplied by the  
   model surface salinity instead of a constant salinity value.  
     
   As for the other input files, the precision with which to read the  
   data is controlled by the variable \textbf{readBinaryPrec}.  
   Time-dependent, periodic forcing can be applied as well following  
   the same procedure used for the wind forcing data (see above).  
   
 \item[dissipation] \  
     
   Lateral eddy diffusivities for temperature and salinity/specific  
   humidity are specified through the variables \textbf{diffKhT} and  
   \textbf{diffKhS} (in m$^{2}$/s). Vertical eddy diffusivities are  
   specified through the variables \textbf{diffKzT} and  
   \textbf{diffKzS} (in m$^{2}$/s) for the ocean and \textbf{diffKpT  
   }and \textbf{diffKpS} (in Pa$^{2}$/s) for the atmosphere. The  
   vertical diffusive fluxes can be computed implicitly by setting the  
   logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}.  
   In addition, biharmonic diffusivities can be specified as well  
   through the coefficients \textbf{diffK4T} and \textbf{diffK4S} (in  
   m$^{4}$/s). Note that the cosine power scaling (specified through  
   \textbf{cosPower}---see the momentum equations section) is applied to  
   the tracer diffusivities (Laplacian and biharmonic) as well. The  
   Gent and McWilliams parameterization for oceanic tracers is  
   described in the package section. Finally, note that tracers can be  
   also subject to Fourier and Shapiro filtering (see the corresponding  
   section on these filters).  
   
 \item[ocean convection] \  
     
   Two options are available to parameterize ocean convection: one is  
   to use the convective adjustment scheme. In this case, you need to  
   set the variable \textbf{cadjFreq}, which represents the frequency  
   (in s) with which the adjustment algorithm is called, to a non-zero  
   value (if set to a negative value by the user, the model will set it  
   to the tracer time step). The other option is to parameterize  
   convection with implicit vertical diffusion. To do this, set the  
   logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}  
   and the real variable \textbf{ivdc\_kappa} to a value (in m$^{2}$/s)  
   you wish the tracer vertical diffusivities to have when mixing  
   tracers vertically due to static instabilities. Note that  
   \textbf{cadjFreq} and \textbf{ivdc\_kappa}can not both have non-zero  
   value.  
   
 \end{description}  
   
 \subsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock}  
 (in s) which determines the IO frequencies and is used in tagging  
 output.  Typically, you will set it to the tracer time step for  
 accelerated runs (otherwise it is simply set to the default time step  
 \textbf{deltaT}).  Frequency of checkpointing and dumping of the model  
 state are referenced to this clock (see below).  
972    
973  \begin{description}  \item \texttt{ncview} utility is a very convenient and quick way
974  \item[run duration] \    to plot netCDF data and it runs on most OSes:
975      \begin{rawhtml} <A href="http://meteora.ucsd.edu/~pierce/ncview_home_page.html"> \end{rawhtml}
976    \begin{verbatim}
977    http://meteora.ucsd.edu/~pierce/ncview_home_page.html
978    \end{verbatim}
979      \begin{rawhtml} </A> \end{rawhtml}
980        
981    The beginning of a simulation is set by specifying a start time (in  \item MatLAB(c) and other common post-processing environments provide
982    s) through the real variable \textbf{startTime} or by specifying an    various netCDF interfaces including:
983    initial iteration number through the integer variable    \begin{rawhtml} <A href="http://mexcdf.sourceforge.net/"> \end{rawhtml}
984    \textbf{nIter0}. If these variables are set to nonzero values, the  \begin{verbatim}
985    model will look for a ''pickup'' file \textit{pickup.0000nIter0} to  http://mexcdf.sourceforge.net/
986    restart the integration. The end of a simulation is set through the  \end{verbatim}
987    real variable \textbf{endTime} (in s).  Alternatively, you can    \begin{rawhtml} </A> \end{rawhtml}
988    specify instead the number of time steps to execute through the    \begin{rawhtml} <A href="http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html"> \end{rawhtml}
989    integer variable \textbf{nTimeSteps}.  \begin{verbatim}
990    http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html
991  \item[frequency of output] \  \end{verbatim}
992        \begin{rawhtml} </A> \end{rawhtml}
993    Real variables defining frequencies (in s) with which output files  \end{itemize}
   are written on disk need to be set up. \textbf{dumpFreq} controls  
   the frequency with which the instantaneous state of the model is  
   saved. \textbf{chkPtFreq} and \textbf{pchkPtFreq} control the output  
   frequency of rolling and permanent checkpoint files, respectively.  
   See section 1.5.1 Output files for the definition of model state and  
   checkpoint files. In addition, time-averaged fields can be written  
   out by setting the variable \textbf{taveFreq} (in s).  The precision  
   with which to write the binary data is controlled by the integer  
   variable w\textbf{riteBinaryPrec} (set it to \texttt{32} or  
   \texttt{64}).  
   
 \end{description}  
   
994    
 %%% Local Variables:  
 %%% mode: latex  
 %%% TeX-master: t  
 %%% End:  

Legend:
Removed from v.1.18  
changed lines
  Added in v.1.46

  ViewVC Help
Powered by ViewVC 1.1.22