18 |
\section{Where to find information} |
\section{Where to find information} |
19 |
\label{sect:whereToFindInfo} |
\label{sect:whereToFindInfo} |
20 |
|
|
21 |
A web site is maintained for release 1 (Sealion) of MITgcm: |
A web site is maintained for release 2 (``Pelican'') of MITgcm: |
22 |
|
\begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml} |
23 |
\begin{verbatim} |
\begin{verbatim} |
24 |
http://mitgcm.org/sealion |
http://mitgcm.org/pelican |
25 |
\end{verbatim} |
\end{verbatim} |
26 |
|
\begin{rawhtml} </A> \end{rawhtml} |
27 |
Here you will find an on-line version of this document, a |
Here you will find an on-line version of this document, a |
28 |
``browsable'' copy of the code and a searchable database of the model |
``browsable'' copy of the code and a searchable database of the model |
29 |
and site, as well as links for downloading the model and |
and site, as well as links for downloading the model and |
30 |
documentation, to data-sources and other related sites. |
documentation, to data-sources, and other related sites. |
31 |
|
|
32 |
There is also a support news group for the model that you can email at |
There is also a web-archived support mailing list for the model that |
33 |
\texttt{support@mitgcm.org} or browse at: |
you can email at \texttt{MITgcm-support@mitgcm.org} or browse at: |
34 |
|
\begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml} |
35 |
|
\begin{verbatim} |
36 |
|
http://mitgcm.org/mailman/listinfo/mitgcm-support/ |
37 |
|
http://mitgcm.org/pipermail/mitgcm-support/ |
38 |
|
\end{verbatim} |
39 |
|
\begin{rawhtml} </A> \end{rawhtml} |
40 |
|
Essentially all of the MITgcm web pages can be searched using a |
41 |
|
popular web crawler such as Google or through our own search facility: |
42 |
|
\begin{rawhtml} <A href=http://mitgcm.org/mailman/htdig/ target="idontexist"> \end{rawhtml} |
43 |
\begin{verbatim} |
\begin{verbatim} |
44 |
news://mitgcm.org/mitgcm.support |
http://mitgcm.org/htdig/ |
45 |
\end{verbatim} |
\end{verbatim} |
46 |
A mail to the email list will reach all the developers and be archived |
\begin{rawhtml} </A> \end{rawhtml} |
47 |
on the newsgroup. A users email list will be established at some time |
%%% http://www.google.com/search?q=hydrostatic+site%3Amitgcm.org |
48 |
in the future. |
|
49 |
|
|
50 |
|
|
51 |
\section{Obtaining the code} |
\section{Obtaining the code} |
52 |
\label{sect:obtainingCode} |
\label{sect:obtainingCode} |
53 |
|
|
54 |
MITgcm can be downloaded from our system by following |
MITgcm can be downloaded from our system by following |
55 |
the instructions below. As a courtesy we ask that you send e-mail to us at |
the instructions below. As a courtesy we ask that you send e-mail to us at |
56 |
\begin{rawhtml} <A href=mailto:support@mitgcm.org> \end{rawhtml} |
\begin{rawhtml} <A href=mailto:MITgcm-support@mitgcm.org> \end{rawhtml} |
57 |
support@mitgcm.org |
MITgcm-support@mitgcm.org |
58 |
\begin{rawhtml} </A> \end{rawhtml} |
\begin{rawhtml} </A> \end{rawhtml} |
59 |
to enable us to keep track of who's using the model and in what application. |
to enable us to keep track of who's using the model and in what application. |
60 |
You can download the model two ways: |
You can download the model two ways: |
84 |
track of your changes. If CVS is not available on your machine, you can also |
track of your changes. If CVS is not available on your machine, you can also |
85 |
download a tar file. |
download a tar file. |
86 |
|
|
87 |
Before you can use CVS, the following environment variable has to be set in |
Before you can use CVS, the following environment variable(s) should |
88 |
your .cshrc or .tcshrc: |
be set within your shell. For a csh or tcsh shell, put the following |
89 |
|
\begin{verbatim} |
90 |
|
% setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack |
91 |
|
\end{verbatim} |
92 |
|
in your .cshrc or .tcshrc file. For bash or sh shells, put: |
93 |
\begin{verbatim} |
\begin{verbatim} |
94 |
% setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/u0/gcmpack |
% export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack' |
95 |
\end{verbatim} |
\end{verbatim} |
96 |
|
in your .profile or .bashrc file. |
97 |
|
|
98 |
|
|
99 |
To start using CVS, register with the MITgcm CVS server using command: |
To get MITgcm through CVS, first register with the MITgcm CVS server |
100 |
|
using command: |
101 |
\begin{verbatim} |
\begin{verbatim} |
102 |
% cvs login ( CVS password: cvsanon ) |
% cvs login ( CVS password: cvsanon ) |
103 |
\end{verbatim} |
\end{verbatim} |
104 |
You only need to do ``cvs login'' once. |
You only need to do a ``cvs login'' once. |
105 |
|
|
106 |
To obtain the sources for release1 type: |
To obtain the latest sources type: |
107 |
|
\begin{verbatim} |
108 |
|
% cvs co MITgcm |
109 |
|
\end{verbatim} |
110 |
|
or to get a specific release type: |
111 |
\begin{verbatim} |
\begin{verbatim} |
112 |
% cvs co -d directory -P -r release1_beta1 MITgcm |
% cvs co -P -r checkpoint52i_post MITgcm |
113 |
\end{verbatim} |
\end{verbatim} |
114 |
|
The MITgcm web site contains further directions concerning the source |
115 |
|
code and CVS. It also contains a web interface to our CVS archive so |
116 |
|
that one may easily view the state of files, revisions, and other |
117 |
|
development milestones: |
118 |
|
\begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml} |
119 |
|
\begin{verbatim} |
120 |
|
http://mitgcm.org/source_code.html |
121 |
|
\end{verbatim} |
122 |
|
\begin{rawhtml} </A> \end{rawhtml} |
123 |
|
|
124 |
|
|
125 |
This creates a directory called \textit{directory}. If \textit{directory} |
The checkout process creates a directory called \textit{MITgcm}. If |
126 |
exists this command updates your code based on the repository. Each |
the directory \textit{MITgcm} exists this command updates your code |
127 |
directory in the source tree contains a directory \textit{CVS}. This |
based on the repository. Each directory in the source tree contains a |
128 |
information is required by CVS to keep track of your file versions with |
directory \textit{CVS}. This information is required by CVS to keep |
129 |
respect to the repository. Don't edit the files in \textit{CVS}! |
track of your file versions with respect to the repository. Don't edit |
130 |
You can also use CVS to download code updates. More extensive |
the files in \textit{CVS}! You can also use CVS to download code |
131 |
information on using CVS for maintaining MITgcm code can be found |
updates. More extensive information on using CVS for maintaining |
132 |
\begin{rawhtml} <A href=http://mitgcm.org/usingcvstoget.html target="idontexist"> \end{rawhtml} |
MITgcm code can be found |
133 |
|
\begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml} |
134 |
here |
here |
135 |
\begin{rawhtml} </A> \end{rawhtml} |
\begin{rawhtml} </A> \end{rawhtml} |
136 |
. |
. |
140 |
\label{sect:conventionalDownload} |
\label{sect:conventionalDownload} |
141 |
|
|
142 |
If you do not have CVS on your system, you can download the model as a |
If you do not have CVS on your system, you can download the model as a |
143 |
tar file from the reference web site at: |
tar file from the web site at: |
144 |
\begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml} |
\begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml} |
145 |
\begin{verbatim} |
\begin{verbatim} |
146 |
http://mitgcm.org/download/ |
http://mitgcm.org/download/ |
148 |
\begin{rawhtml} </A> \end{rawhtml} |
\begin{rawhtml} </A> \end{rawhtml} |
149 |
The tar file still contains CVS information which we urge you not to |
The tar file still contains CVS information which we urge you not to |
150 |
delete; even if you do not use CVS yourself the information can help |
delete; even if you do not use CVS yourself the information can help |
151 |
us if you should need to send us your copy of the code. |
us if you should need to send us your copy of the code. If a recent |
152 |
|
tar file does not exist, then please contact the developers through |
153 |
|
the |
154 |
|
\begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml} |
155 |
|
MITgcm-support@mitgcm.org |
156 |
|
\begin{rawhtml} </A> \end{rawhtml} |
157 |
|
mailing list. |
158 |
|
|
159 |
|
\paragraph*{Upgrading from an earlier version} |
160 |
|
|
161 |
|
If you already have an earlier version of the code you can ``upgrade'' |
162 |
|
your copy instead of downloading the entire repository again. First, |
163 |
|
``cd'' (change directory) to the top of your working copy: |
164 |
|
\begin{verbatim} |
165 |
|
% cd MITgcm |
166 |
|
\end{verbatim} |
167 |
|
and then issue the cvs update command such as: |
168 |
|
\begin{verbatim} |
169 |
|
% cvs -q update -r checkpoint52i_post -d -P |
170 |
|
\end{verbatim} |
171 |
|
This will update the ``tag'' to ``checkpoint52i\_post'', add any new |
172 |
|
directories (-d) and remove any empty directories (-P). The -q option |
173 |
|
means be quiet which will reduce the number of messages you'll see in |
174 |
|
the terminal. If you have modified the code prior to upgrading, CVS |
175 |
|
will try to merge your changes with the upgrades. If there is a |
176 |
|
conflict between your modifications and the upgrade, it will report |
177 |
|
that file with a ``C'' in front, e.g.: |
178 |
|
\begin{verbatim} |
179 |
|
C model/src/ini_parms.F |
180 |
|
\end{verbatim} |
181 |
|
If the list of conflicts scrolled off the screen, you can re-issue the |
182 |
|
cvs update command and it will report the conflicts. Conflicts are |
183 |
|
indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and |
184 |
|
``$>>>>>>>$''. For example, |
185 |
|
{\small |
186 |
|
\begin{verbatim} |
187 |
|
<<<<<<< ini_parms.F |
188 |
|
& bottomDragLinear,myOwnBottomDragCoefficient, |
189 |
|
======= |
190 |
|
& bottomDragLinear,bottomDragQuadratic, |
191 |
|
>>>>>>> 1.18 |
192 |
|
\end{verbatim} |
193 |
|
} |
194 |
|
means that you added ``myOwnBottomDragCoefficient'' to a namelist at |
195 |
|
the same time and place that we added ``bottomDragQuadratic''. You |
196 |
|
need to resolve this conflict and in this case the line should be |
197 |
|
changed to: |
198 |
|
{\small |
199 |
|
\begin{verbatim} |
200 |
|
& bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient, |
201 |
|
\end{verbatim} |
202 |
|
} |
203 |
|
and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted. |
204 |
|
Unless you are making modifications which exactly parallel |
205 |
|
developments we make, these types of conflicts should be rare. |
206 |
|
|
207 |
|
\paragraph*{Upgrading to the current pre-release version} |
208 |
|
|
209 |
|
We don't make a ``release'' for every little patch and bug fix in |
210 |
|
order to keep the frequency of upgrades to a minimum. However, if you |
211 |
|
have run into a problem for which ``we have already fixed in the |
212 |
|
latest code'' and we haven't made a ``tag'' or ``release'' since that |
213 |
|
patch then you'll need to get the latest code: |
214 |
|
\begin{verbatim} |
215 |
|
% cvs -q update -A -d -P |
216 |
|
\end{verbatim} |
217 |
|
Unlike, the ``check-out'' and ``update'' procedures above, there is no |
218 |
|
``tag'' or release name. The -A tells CVS to upgrade to the |
219 |
|
very latest version. As a rule, we don't recommend this since you |
220 |
|
might upgrade while we are in the processes of checking in the code so |
221 |
|
that you may only have part of a patch. Using this method of updating |
222 |
|
also means we can't tell what version of the code you are working |
223 |
|
with. So please be sure you understand what you're doing. |
224 |
|
|
225 |
\section{Model and directory structure} |
\section{Model and directory structure} |
226 |
|
|
227 |
The ``numerical'' model is contained within a execution environment support |
The ``numerical'' model is contained within a execution environment |
228 |
wrapper. This wrapper is designed to provide a general framework for |
support wrapper. This wrapper is designed to provide a general |
229 |
grid-point models. MITgcmUV is a specific numerical model that uses the |
framework for grid-point models. MITgcmUV is a specific numerical |
230 |
framework. Under this structure the model is split into execution |
model that uses the framework. Under this structure the model is split |
231 |
environment support code and conventional numerical model code. The |
into execution environment support code and conventional numerical |
232 |
execution environment support code is held under the \textit{eesupp} |
model code. The execution environment support code is held under the |
233 |
directory. The grid point model code is held under the \textit{model} |
\textit{eesupp} directory. The grid point model code is held under the |
234 |
directory. Code execution actually starts in the \textit{eesupp} routines |
\textit{model} directory. Code execution actually starts in the |
235 |
and not in the \textit{model} routines. For this reason the top-level |
\textit{eesupp} routines and not in the \textit{model} routines. For |
236 |
\textit{MAIN.F} is in the \textit{eesupp/src} directory. In general, |
this reason the top-level \textit{MAIN.F} is in the |
237 |
end-users should not need to worry about this level. The top-level routine |
\textit{eesupp/src} directory. In general, end-users should not need |
238 |
for the numerical part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F% |
to worry about this level. The top-level routine for the numerical |
239 |
}. Here is a brief description of the directory structure of the model under |
part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F}. Here is |
240 |
the root tree (a detailed description is given in section 3: Code structure). |
a brief description of the directory structure of the model under the |
241 |
|
root tree (a detailed description is given in section 3: Code |
242 |
|
structure). |
243 |
|
|
244 |
\begin{itemize} |
\begin{itemize} |
|
\item \textit{bin}: this directory is initially empty. It is the default |
|
|
directory in which to compile the code. |
|
245 |
|
|
246 |
|
\item \textit{bin}: this directory is initially empty. It is the |
247 |
|
default directory in which to compile the code. |
248 |
|
|
249 |
\item \textit{diags}: contains the code relative to time-averaged |
\item \textit{diags}: contains the code relative to time-averaged |
250 |
diagnostics. It is subdivided into two subdirectories \textit{inc} and |
diagnostics. It is subdivided into two subdirectories \textit{inc} |
251 |
\textit{src} that contain include files (*.\textit{h} files) and Fortran |
and \textit{src} that contain include files (*.\textit{h} files) and |
252 |
subroutines (*.\textit{F} files), respectively. |
Fortran subroutines (*.\textit{F} files), respectively. |
253 |
|
|
254 |
\item \textit{doc}: contains brief documentation notes. |
\item \textit{doc}: contains brief documentation notes. |
255 |
|
|
256 |
\item \textit{eesupp}: contains the execution environment source code. Also |
\item \textit{eesupp}: contains the execution environment source code. |
257 |
subdivided into two subdirectories \textit{inc} and \textit{src}. |
Also subdivided into two subdirectories \textit{inc} and |
258 |
|
\textit{src}. |
259 |
\item \textit{exe}: this directory is initially empty. It is the default |
|
260 |
directory in which to execute the code. |
\item \textit{exe}: this directory is initially empty. It is the |
261 |
|
default directory in which to execute the code. |
262 |
\item \textit{model}: this directory contains the main source code. Also |
|
263 |
subdivided into two subdirectories \textit{inc} and \textit{src}. |
\item \textit{model}: this directory contains the main source code. |
264 |
|
Also subdivided into two subdirectories \textit{inc} and |
265 |
\item \textit{pkg}: contains the source code for the packages. Each package |
\textit{src}. |
266 |
corresponds to a subdirectory. For example, \textit{gmredi} contains the |
|
267 |
code related to the Gent-McWilliams/Redi scheme, \textit{aim} the code |
\item \textit{pkg}: contains the source code for the packages. Each |
268 |
relative to the atmospheric intermediate physics. The packages are described |
package corresponds to a subdirectory. For example, \textit{gmredi} |
269 |
in detail in section 3. |
contains the code related to the Gent-McWilliams/Redi scheme, |
270 |
|
\textit{aim} the code relative to the atmospheric intermediate |
271 |
\item \textit{tools}: this directory contains various useful tools. For |
physics. The packages are described in detail in section 3. |
272 |
example, \textit{genmake} is a script written in csh (C-shell) that should |
|
273 |
be used to generate your makefile. The directory \textit{adjoint} contains |
\item \textit{tools}: this directory contains various useful tools. |
274 |
the makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that |
For example, \textit{genmake2} is a script written in csh (C-shell) |
275 |
generates the adjoint code. The latter is described in details in part V. |
that should be used to generate your makefile. The directory |
276 |
|
\textit{adjoint} contains the makefile specific to the Tangent |
277 |
|
linear and Adjoint Compiler (TAMC) that generates the adjoint code. |
278 |
|
The latter is described in details in part V. |
279 |
|
|
280 |
\item \textit{utils}: this directory contains various utilities. The |
\item \textit{utils}: this directory contains various utilities. The |
281 |
subdirectory \textit{knudsen2} contains code and a makefile that |
subdirectory \textit{knudsen2} contains code and a makefile that |
282 |
compute coefficients of the polynomial approximation to the knudsen |
compute coefficients of the polynomial approximation to the knudsen |
283 |
formula for an ocean nonlinear equation of state. The \textit{matlab} |
formula for an ocean nonlinear equation of state. The |
284 |
subdirectory contains matlab scripts for reading model output directly |
\textit{matlab} subdirectory contains matlab scripts for reading |
285 |
into matlab. \textit{scripts} contains C-shell post-processing |
model output directly into matlab. \textit{scripts} contains C-shell |
286 |
scripts for joining processor-based and tiled-based model output. |
post-processing scripts for joining processor-based and tiled-based |
287 |
|
model output. |
288 |
|
|
289 |
|
\item \textit{verification}: this directory contains the model |
290 |
|
examples. See section \ref{sect:modelExamples}. |
291 |
|
|
|
\item \textit{verification}: this directory contains the model examples. See |
|
|
section \ref{sect:modelExamples}. |
|
292 |
\end{itemize} |
\end{itemize} |
293 |
|
|
294 |
\section{Example experiments} |
\section{Example experiments} |
295 |
\label{sect:modelExamples} |
\label{sect:modelExamples} |
296 |
|
|
297 |
The MITgcm distribution comes with a set of twenty-four pre-configured |
%% a set of twenty-four pre-configured numerical experiments |
298 |
numerical experiments. Some of these examples experiments are tests of |
|
299 |
individual parts of the model code, but many are fully fledged numerical |
The MITgcm distribution comes with more than a dozen pre-configured |
300 |
simulations. A few of the examples are used for tutorial documentation |
numerical experiments. Some of these example experiments are tests of |
301 |
in sections \ref{sect:eg-baro} - \ref{sect:eg-global}. The other examples |
individual parts of the model code, but many are fully fledged |
302 |
follow the same general structure as the tutorial examples. However, |
numerical simulations. A few of the examples are used for tutorial |
303 |
they only include brief instructions in a text file called {\it README}. |
documentation in sections \ref{sect:eg-baro} - \ref{sect:eg-global}. |
304 |
The examples are located in subdirectories under |
The other examples follow the same general structure as the tutorial |
305 |
the directory \textit{verification}. Each |
examples. However, they only include brief instructions in a text file |
306 |
example is briefly described below. |
called {\it README}. The examples are located in subdirectories under |
307 |
|
the directory \textit{verification}. Each example is briefly described |
308 |
|
below. |
309 |
|
|
310 |
\subsection{Full list of model examples} |
\subsection{Full list of model examples} |
311 |
|
|
312 |
\begin{enumerate} |
\begin{enumerate} |
313 |
|
|
314 |
\item \textit{exp0} - single layer, ocean double gyre (barotropic with |
\item \textit{exp0} - single layer, ocean double gyre (barotropic with |
315 |
free-surface). This experiment is described in detail in section |
free-surface). This experiment is described in detail in section |
316 |
\ref{sect:eg-baro}. |
\ref{sect:eg-baro}. |
|
|
|
|
\item \textit{exp1} - Four layer, ocean double gyre. This experiment is described in detail in section |
|
|
\ref{sect:eg-baroc}. |
|
317 |
|
|
318 |
|
\item \textit{exp1} - Four layer, ocean double gyre. This experiment |
319 |
|
is described in detail in section \ref{sect:eg-baroc}. |
320 |
|
|
321 |
\item \textit{exp2} - 4x4 degree global ocean simulation with steady |
\item \textit{exp2} - 4x4 degree global ocean simulation with steady |
322 |
climatological forcing. This experiment is described in detail in section |
climatological forcing. This experiment is described in detail in |
323 |
\ref{sect:eg-global}. |
section \ref{sect:eg-global}. |
324 |
|
|
325 |
\item \textit{exp4} - Flow over a Gaussian bump in open-water or channel |
\item \textit{exp4} - Flow over a Gaussian bump in open-water or |
326 |
with open boundaries. |
channel with open boundaries. |
327 |
|
|
328 |
\item \textit{exp5} - Inhomogenously forced ocean convection in a doubly |
\item \textit{exp5} - Inhomogenously forced ocean convection in a |
329 |
periodic box. |
doubly periodic box. |
330 |
|
|
331 |
\item \textit{front\_relax} - Relaxation of an ocean thermal front (test for |
\item \textit{front\_relax} - Relaxation of an ocean thermal front (test for |
332 |
Gent/McWilliams scheme). 2D (Y-Z). |
Gent/McWilliams scheme). 2D (Y-Z). |
333 |
|
|
334 |
\item \textit{internal wave} - Ocean internal wave forced by open boundary |
\item \textit{internal wave} - Ocean internal wave forced by open |
335 |
conditions. |
boundary conditions. |
336 |
|
|
337 |
\item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP |
\item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP |
338 |
scheme; 1 month integration |
scheme; 1 month integration |
339 |
|
|
340 |
\item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and Suarez |
\item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and |
341 |
'94 forcing. |
Suarez '94 forcing. |
342 |
|
|
343 |
\item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and Suarez |
\item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and |
344 |
'94 forcing. |
Suarez '94 forcing. |
345 |
|
|
346 |
\item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and |
\item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and |
347 |
Suarez '94 forcing on the cubed sphere. |
Suarez '94 forcing on the cubed sphere. |
348 |
|
|
349 |
\item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics. Global |
\item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics. |
350 |
Zonal Mean configuration, 1x64x5 resolution. |
Global Zonal Mean configuration, 1x64x5 resolution. |
351 |
|
|
352 |
\item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate Atmospheric |
\item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate |
353 |
physics, equatorial Slice configuration. |
Atmospheric physics, equatorial Slice configuration. 2D (X-Z). |
354 |
2D (X-Z). |
|
|
|
|
355 |
\item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric |
\item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric |
356 |
physics. 3D Equatorial Channel configuration. |
physics. 3D Equatorial Channel configuration. |
357 |
|
|
358 |
\item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics. |
\item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics. |
359 |
Global configuration, on latitude longitude grid with 128x64x5 grid points |
Global configuration, on latitude longitude grid with 128x64x5 grid |
360 |
($2.8^\circ{\rm degree}$ resolution). |
points ($2.8^\circ{\rm degree}$ resolution). |
361 |
|
|
362 |
\item \textit{adjustment.128x64x1} Barotropic adjustment |
\item \textit{adjustment.128x64x1} Barotropic adjustment problem on |
363 |
problem on latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm degree}$ resolution). |
latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm |
364 |
|
degree}$ resolution). |
365 |
\item \textit{adjustment.cs-32x32x1} |
|
366 |
Barotropic adjustment |
\item \textit{adjustment.cs-32x32x1} Barotropic adjustment problem on |
367 |
problem on cube sphere grid with 32x32 points per face ( roughly |
cube sphere grid with 32x32 points per face ( roughly $2.8^\circ{\rm |
368 |
$2.8^\circ{\rm degree}$ resolution). |
degree}$ resolution). |
369 |
|
|
370 |
\item \textit{advect\_cs} Two-dimensional passive advection test on |
\item \textit{advect\_cs} Two-dimensional passive advection test on |
371 |
cube sphere grid. |
cube sphere grid. |
372 |
|
|
373 |
\item \textit{advect\_xy} Two-dimensional (horizontal plane) passive advection |
\item \textit{advect\_xy} Two-dimensional (horizontal plane) passive |
374 |
test on Cartesian grid. |
advection test on Cartesian grid. |
375 |
|
|
376 |
\item \textit{advect\_yz} Two-dimensional (vertical plane) passive advection test on Cartesian grid. |
\item \textit{advect\_yz} Two-dimensional (vertical plane) passive |
377 |
|
advection test on Cartesian grid. |
378 |
\item \textit{carbon} Simple passive tracer experiment. Includes derivative |
|
379 |
calculation. Described in detail in section \ref{sect:eg-carbon-ad}. |
\item \textit{carbon} Simple passive tracer experiment. Includes |
380 |
|
derivative calculation. Described in detail in section |
381 |
|
\ref{sect:eg-carbon-ad}. |
382 |
|
|
383 |
\item \textit{flt\_example} Example of using float package. |
\item \textit{flt\_example} Example of using float package. |
384 |
|
|
385 |
\item \textit{global\_ocean.90x40x15} Global circulation with |
\item \textit{global\_ocean.90x40x15} Global circulation with GM, flux |
386 |
GM, flux boundary conditions and poles. |
boundary conditions and poles. |
387 |
|
|
388 |
\item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube sphere |
\item \textit{global\_ocean\_pressure} Global circulation in pressure |
389 |
grid. |
coordinate (non-Boussinesq ocean model). Described in detail in |
390 |
|
section \ref{sect:eg-globalpressure}. |
391 |
|
|
392 |
|
\item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube |
393 |
|
sphere grid. |
394 |
|
|
395 |
\end{enumerate} |
\end{enumerate} |
396 |
|
|
400 |
|
|
401 |
\begin{itemize} |
\begin{itemize} |
402 |
\item \textit{code}: contains the code particular to the example. At a |
\item \textit{code}: contains the code particular to the example. At a |
403 |
minimum, this directory includes the following files: |
minimum, this directory includes the following files: |
404 |
|
|
405 |
\begin{itemize} |
\begin{itemize} |
406 |
\item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to the |
\item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to |
407 |
``execution environment'' part of the code. The default version is located |
the ``execution environment'' part of the code. The default |
408 |
in \textit{eesupp/inc}. |
version is located in \textit{eesupp/inc}. |
409 |
|
|
410 |
\item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to the |
\item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to |
411 |
``numerical model'' part of the code. The default version is located in |
the ``numerical model'' part of the code. The default version is |
412 |
\textit{model/inc}. |
located in \textit{model/inc}. |
413 |
|
|
414 |
\item \textit{code/SIZE.h}: declares size of underlying computational grid. |
\item \textit{code/SIZE.h}: declares size of underlying |
415 |
The default version is located in \textit{model/inc}. |
computational grid. The default version is located in |
416 |
|
\textit{model/inc}. |
417 |
|
\end{itemize} |
418 |
|
|
419 |
|
In addition, other include files and subroutines might be present in |
420 |
|
\textit{code} depending on the particular experiment. See Section 2 |
421 |
|
for more details. |
422 |
|
|
423 |
|
\item \textit{input}: contains the input data files required to run |
424 |
|
the example. At a minimum, the \textit{input} directory contains the |
425 |
|
following files: |
426 |
|
|
427 |
|
\begin{itemize} |
428 |
|
\item \textit{input/data}: this file, written as a namelist, |
429 |
|
specifies the main parameters for the experiment. |
430 |
|
|
431 |
|
\item \textit{input/data.pkg}: contains parameters relative to the |
432 |
|
packages used in the experiment. |
433 |
|
|
434 |
|
\item \textit{input/eedata}: this file contains ``execution |
435 |
|
environment'' data. At present, this consists of a specification |
436 |
|
of the number of threads to use in $X$ and $Y$ under multithreaded |
437 |
|
execution. |
438 |
|
\end{itemize} |
439 |
|
|
440 |
|
In addition, you will also find in this directory the forcing and |
441 |
|
topography files as well as the files describing the initial state |
442 |
|
of the experiment. This varies from experiment to experiment. See |
443 |
|
section 2 for more details. |
444 |
|
|
445 |
|
\item \textit{results}: this directory contains the output file |
446 |
|
\textit{output.txt} produced by the simulation example. This file is |
447 |
|
useful for comparison with your own output when you run the |
448 |
|
experiment. |
449 |
\end{itemize} |
\end{itemize} |
450 |
|
|
451 |
In addition, other include files and subroutines might be present in \textit{% |
Once you have chosen the example you want to run, you are ready to |
452 |
code} depending on the particular experiment. See section 2 for more details. |
compile the code. |
|
|
|
|
\item \textit{input}: contains the input data files required to run the |
|
|
example. At a minimum, the \textit{input} directory contains the following |
|
|
files: |
|
|
|
|
|
\begin{itemize} |
|
|
\item \textit{input/data}: this file, written as a namelist, specifies the |
|
|
main parameters for the experiment. |
|
|
|
|
|
\item \textit{input/data.pkg}: contains parameters relative to the packages |
|
|
used in the experiment. |
|
|
|
|
|
\item \textit{input/eedata}: this file contains ``execution environment'' |
|
|
data. At present, this consists of a specification of the number of threads |
|
|
to use in $X$ and $Y$ under multithreaded execution. |
|
|
\end{itemize} |
|
|
|
|
|
In addition, you will also find in this directory the forcing and topography |
|
|
files as well as the files describing the initial state of the experiment. |
|
|
This varies from experiment to experiment. See section 2 for more details. |
|
|
|
|
|
\item \textit{results}: this directory contains the output file \textit{% |
|
|
output.txt} produced by the simulation example. This file is useful for |
|
|
comparison with your own output when you run the experiment. |
|
|
\end{itemize} |
|
|
|
|
|
Once you have chosen the example you want to run, you are ready to compile |
|
|
the code. |
|
453 |
|
|
454 |
\section{Building the code} |
\section{Building the code} |
455 |
\label{sect:buildingCode} |
\label{sect:buildingCode} |
457 |
To compile the code, we use the {\em make} program. This uses a file |
To compile the code, we use the {\em make} program. This uses a file |
458 |
({\em Makefile}) that allows us to pre-process source files, specify |
({\em Makefile}) that allows us to pre-process source files, specify |
459 |
compiler and optimization options and also figures out any file |
compiler and optimization options and also figures out any file |
460 |
dependencies. We supply a script ({\em genmake}), described in section |
dependencies. We supply a script ({\em genmake2}), described in |
461 |
\ref{sect:genmake}, that automatically creates the {\em Makefile} for |
section \ref{sect:genmake}, that automatically creates the {\em |
462 |
you. You then need to build the dependencies and compile the code. |
Makefile} for you. You then need to build the dependencies and |
463 |
|
compile the code. |
464 |
|
|
465 |
As an example, let's assume that you want to build and run experiment |
As an example, let's assume that you want to build and run experiment |
466 |
\textit{verification/exp2}. The are multiple ways and places to actually |
\textit{verification/exp2}. The are multiple ways and places to |
467 |
do this but here let's build the code in |
actually do this but here let's build the code in |
468 |
\textit{verification/exp2/input}: |
\textit{verification/exp2/input}: |
469 |
\begin{verbatim} |
\begin{verbatim} |
470 |
% cd verification/exp2/input |
% cd verification/exp2/input |
471 |
\end{verbatim} |
\end{verbatim} |
472 |
First, build the {\em Makefile}: |
First, build the {\em Makefile}: |
473 |
\begin{verbatim} |
\begin{verbatim} |
474 |
% ../../../tools/genmake -mods=../code |
% ../../../tools/genmake2 -mods=../code |
475 |
\end{verbatim} |
\end{verbatim} |
476 |
The command line option tells {\em genmake} to override model source |
The command line option tells {\em genmake} to override model source |
477 |
code with any files in the directory {\em ./code/}. |
code with any files in the directory {\em ./code/}. |
478 |
|
|
479 |
If there is no \textit{.genmakerc} in the \textit{input} directory, you have |
On many systems, the {\em genmake2} program will be able to |
480 |
to use the following options when invoking \textit{genmake}: |
automatically recognize the hardware, find compilers and other tools |
481 |
|
within the user's path (``echo \$PATH''), and then choose an |
482 |
|
appropriate set of options from the files contained in the {\em |
483 |
|
tools/build\_options} directory. Under some circumstances, a user |
484 |
|
may have to create a new ``optfile'' in order to specify the exact |
485 |
|
combination of compiler, compiler flags, libraries, and other options |
486 |
|
necessary to build a particular configuration of MITgcm. In such |
487 |
|
cases, it is generally helpful to read the existing ``optfiles'' and |
488 |
|
mimic their syntax. |
489 |
|
|
490 |
|
Through the MITgcm-support list, the MITgcm developers are willing to |
491 |
|
provide help writing or modifing ``optfiles''. And we encourage users |
492 |
|
to post new ``optfiles'' (particularly ones for new machines or |
493 |
|
architectures) to the |
494 |
|
\begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml} |
495 |
|
MITgcm-support@mitgcm.org |
496 |
|
\begin{rawhtml} </A> \end{rawhtml} |
497 |
|
list. |
498 |
|
|
499 |
|
To specify an optfile to {\em genmake2}, the syntax is: |
500 |
\begin{verbatim} |
\begin{verbatim} |
501 |
% ../../../tools/genmake -mods=../code |
% ../../../tools/genmake2 -mods=../code -of /path/to/optfile |
502 |
\end{verbatim} |
\end{verbatim} |
503 |
|
|
504 |
Next, create the dependencies: |
Once a {\em Makefile} has been generated, we create the dependencies: |
505 |
\begin{verbatim} |
\begin{verbatim} |
506 |
% make depend |
% make depend |
507 |
\end{verbatim} |
\end{verbatim} |
508 |
This modifies {\em Makefile} by attaching a [long] list of files on |
This modifies the {\em Makefile} by attaching a [long] list of files |
509 |
which other files depend. The purpose of this is to reduce |
upon which other files depend. The purpose of this is to reduce |
510 |
re-compilation if and when you start to modify the code. {\tt make |
re-compilation if and when you start to modify the code. The {\tt make |
511 |
depend} also created links from the model source to this directory. |
depend} command also creates links from the model source to this |
512 |
|
directory. |
513 |
|
|
514 |
Now compile the code: |
Next compile the code: |
515 |
\begin{verbatim} |
\begin{verbatim} |
516 |
% make |
% make |
517 |
\end{verbatim} |
\end{verbatim} |
518 |
The {\tt make} command creates an executable called \textit{mitgcmuv}. |
The {\tt make} command creates an executable called \textit{mitgcmuv}. |
519 |
|
Additional make ``targets'' are defined within the makefile to aid in |
520 |
|
the production of adjoint and other versions of MITgcm. |
521 |
|
|
522 |
Now you are ready to run the model. General instructions for doing so are |
Now you are ready to run the model. General instructions for doing so are |
523 |
given in section \ref{sect:runModel}. Here, we can run the model with: |
given in section \ref{sect:runModel}. Here, we can run the model with: |
535 |
convenience. You can also configure and compile the code in other |
convenience. You can also configure and compile the code in other |
536 |
locations, for example on a scratch disk with out having to copy the |
locations, for example on a scratch disk with out having to copy the |
537 |
entire source tree. The only requirement to do so is you have {\tt |
entire source tree. The only requirement to do so is you have {\tt |
538 |
genmake} in your path or you know the absolute path to {\tt genmake}. |
genmake2} in your path or you know the absolute path to {\tt |
539 |
|
genmake2}. |
540 |
|
|
541 |
The following sections outline some possible methods of organizing you |
The following sections outline some possible methods of organizing |
542 |
source and data. |
your source and data. |
543 |
|
|
544 |
\subsubsection{Building from the {\em ../code directory}} |
\subsubsection{Building from the {\em ../code directory}} |
545 |
|
|
546 |
This is just as simple as building in the {\em input/} directory: |
This is just as simple as building in the {\em input/} directory: |
547 |
\begin{verbatim} |
\begin{verbatim} |
548 |
% cd verification/exp2/code |
% cd verification/exp2/code |
549 |
% ../../../tools/genmake |
% ../../../tools/genmake2 |
550 |
% make depend |
% make depend |
551 |
% make |
% make |
552 |
\end{verbatim} |
\end{verbatim} |
575 |
% cd verification/exp2 |
% cd verification/exp2 |
576 |
% mkdir build |
% mkdir build |
577 |
% cd build |
% cd build |
578 |
% ../../../tools/genmake -mods=../code |
% ../../../tools/genmake2 -mods=../code |
579 |
% make depend |
% make depend |
580 |
% make |
% make |
581 |
\end{verbatim} |
\end{verbatim} |
597 |
% ./mitgcmuv > output.txt |
% ./mitgcmuv > output.txt |
598 |
\end{verbatim} |
\end{verbatim} |
599 |
|
|
600 |
\subsubsection{Building from on a scratch disk} |
\subsubsection{Building on a scratch disk} |
601 |
|
|
602 |
Model object files and output data can use up large amounts of disk |
Model object files and output data can use up large amounts of disk |
603 |
space so it is often the case that you will be operating on a large |
space so it is often the case that you will be operating on a large |
605 |
following commands will build the model in {\em /scratch/exp2-run1}: |
following commands will build the model in {\em /scratch/exp2-run1}: |
606 |
\begin{verbatim} |
\begin{verbatim} |
607 |
% cd /scratch/exp2-run1 |
% cd /scratch/exp2-run1 |
608 |
% ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code |
% ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \ |
609 |
|
-mods=~/MITgcm/verification/exp2/code |
610 |
% make depend |
% make depend |
611 |
% make |
% make |
612 |
\end{verbatim} |
\end{verbatim} |
622 |
% cd /scratch/exp2 |
% cd /scratch/exp2 |
623 |
% mkdir build |
% mkdir build |
624 |
% cd build |
% cd build |
625 |
% ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code |
% ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \ |
626 |
|
-mods=~/MITgcm/verification/exp2/code |
627 |
% make depend |
% make depend |
628 |
% make |
% make |
629 |
% cd ../ |
% cd ../ |
634 |
|
|
635 |
|
|
636 |
|
|
637 |
\subsection{\textit{genmake}} |
\subsection{Using \textit{genmake2}} |
638 |
\label{sect:genmake} |
\label{sect:genmake} |
639 |
|
|
640 |
To compile the code, use the script \textit{genmake} located in the \textit{% |
To compile the code, first use the program \texttt{genmake2} (located |
641 |
tools} directory. \textit{genmake} is a script that generates the makefile. |
in the \textit{tools} directory) to generate a Makefile. |
642 |
It has been written so that the code can be compiled on a wide diversity of |
\texttt{genmake2} is a shell script written to work with all |
643 |
machines and systems. However, if it doesn't work the first time on your |
``sh''--compatible shells including bash v1, bash v2, and Bourne. |
644 |
platform, you might need to edit certain lines of \textit{genmake} in the |
Internally, \texttt{genmake2} determines the locations of needed |
645 |
section containing the setups for the different machines. The file is |
files, the compiler, compiler options, libraries, and Unix tools. It |
646 |
structured like this: |
relies upon a number of ``optfiles'' located in the {\em |
647 |
\begin{verbatim} |
tools/build\_options} directory. |
648 |
. |
|
649 |
. |
The purpose of the optfiles is to provide all the compilation options |
650 |
. |
for particular ``platforms'' (where ``platform'' roughly means the |
651 |
general instructions (machine independent) |
combination of the hardware and the compiler) and code configurations. |
652 |
. |
Given the combinations of possible compilers and library dependencies |
653 |
. |
({\it eg.} MPI and NetCDF) there may be numerous optfiles available |
654 |
. |
for a single machine. The naming scheme for the majority of the |
655 |
- setup machine 1 |
optfiles shipped with the code is |
656 |
- setup machine 2 |
\begin{center} |
657 |
- setup machine 3 |
{\bf OS\_HARDWARE\_COMPILER } |
658 |
- setup machine 4 |
\end{center} |
659 |
etc |
where |
660 |
. |
\begin{description} |
661 |
. |
\item[OS] is the name of the operating system (generally the |
662 |
. |
lower-case output of the {\tt 'uname'} command) |
663 |
\end{verbatim} |
\item[HARDWARE] is a string that describes the CPU type and |
664 |
|
corresponds to output from the {\tt 'uname -m'} command: |
665 |
For example, the setup corresponding to a DEC alpha machine is reproduced |
\begin{description} |
666 |
here: |
\item[ia32] is for ``x86'' machines such as i386, i486, i586, i686, |
667 |
\begin{verbatim} |
and athlon |
668 |
case OSF1+mpi: |
\item[ia64] is for Intel IA64 systems (eg. Itanium, Itanium2) |
669 |
echo "Configuring for DEC Alpha" |
\item[amd64] is AMD x86\_64 systems |
670 |
set CPP = ( '/usr/bin/cpp -P' ) |
\item[ppc] is for Mac PowerPC systems |
671 |
set DEFINES = ( ${DEFINES} '-DTARGET_DEC -DWORDLENGTH=1' ) |
\end{description} |
672 |
set KPP = ( 'kapf' ) |
\item[COMPILER] is the compiler name (generally, the name of the |
673 |
set KPPFILES = ( 'main.F' ) |
FORTRAN executable) |
674 |
set KFLAGS1 = ( '-scan=132 -noconc -cmp=' ) |
\end{description} |
675 |
set FC = ( 'f77' ) |
|
676 |
set FFLAGS = ( '-convert big_endian -r8 -extend_source -automatic -call_shared -notransform_loops -align dcommons' ) |
In many cases, the default optfiles are sufficient and will result in |
677 |
set FOPTIM = ( '-O5 -fast -tune host -inline all' ) |
usable Makefiles. However, for some machines or code configurations, |
678 |
set NOOPTFLAGS = ( '-O0' ) |
new ``optfiles'' must be written. To create a new optfile, it is |
679 |
set LIBS = ( '-lfmpi -lmpi -lkmp_osfp10 -pthread' ) |
generally best to start with one of the defaults and modify it to suit |
680 |
set NOOPTFILES = ( 'barrier.F different_multiple.F external_fields_load.F') |
your needs. Like \texttt{genmake2}, the optfiles are all written |
681 |
set RMFILES = ( '*.p.out' ) |
using a simple ``sh''--compatible syntax. While nearly all variables |
682 |
breaksw |
used within \texttt{genmake2} may be specified in the optfiles, the |
683 |
\end{verbatim} |
critical ones that should be defined are: |
684 |
|
|
685 |
Typically, these are the lines that you might need to edit to make \textit{% |
\begin{description} |
686 |
genmake} work on your platform if it doesn't work the first time. \textit{% |
\item[FC] the FORTRAN compiler (executable) to use |
687 |
genmake} understands several options that are described here: |
\item[DEFINES] the command-line DEFINE options passed to the compiler |
688 |
|
\item[CPP] the C pre-processor to use |
689 |
\begin{itemize} |
\item[NOOPTFLAGS] options flags for special files that should not be |
690 |
\item -rootdir=dir |
optimized |
691 |
|
\end{description} |
692 |
indicates where the model root directory is relative to the directory where |
|
693 |
you are compiling. This option is not needed if you compile in the \textit{% |
For example, the optfile for a typical Red Hat Linux machine (``ia32'' |
694 |
bin} directory (which is the default compilation directory) or within the |
architecture) using the GCC (g77) compiler is |
695 |
\textit{verification} tree. |
\begin{verbatim} |
696 |
|
FC=g77 |
697 |
\item -mods=dir1,dir2,... |
DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4' |
698 |
|
CPP='cpp -traditional -P' |
699 |
indicates the relative or absolute paths directories where the sources |
NOOPTFLAGS='-O0' |
700 |
should take precedence over the default versions (located in \textit{model}, |
# For IEEE, use the "-ffloat-store" option |
701 |
\textit{eesupp},...). Typically, this option is used when running the |
if test "x$IEEE" = x ; then |
702 |
examples, see below. |
FFLAGS='-Wimplicit -Wunused -Wuninitialized' |
703 |
|
FOPTIM='-O3 -malign-double -funroll-loops' |
704 |
\item -enable=pkg1,pkg2,... |
else |
705 |
|
FFLAGS='-Wimplicit -Wunused -ffloat-store' |
706 |
enables packages source code \textit{pkg1}, \textit{pkg2},... when creating |
FOPTIM='-O0 -malign-double' |
707 |
the makefile. |
fi |
708 |
|
\end{verbatim} |
709 |
\item -disable=pkg1,pkg2,... |
|
710 |
|
If you write an optfile for an unrepresented machine or compiler, you |
711 |
disables packages source code \textit{pkg1}, \textit{pkg2},... when creating |
are strongly encouraged to submit the optfile to the MITgcm project |
712 |
the makefile. |
for inclusion. Please send the file to the |
713 |
|
\begin{rawhtml} <A href="mail-to:MITgcm-support@mitgcm.org"> \end{rawhtml} |
714 |
\item -platform=machine |
\begin{center} |
715 |
|
MITgcm-support@mitgcm.org |
716 |
specifies the platform for which you want the makefile. In general, you |
\end{center} |
717 |
won't need this option. \textit{genmake} will select the right machine for |
\begin{rawhtml} </A> \end{rawhtml} |
718 |
you (the one you're working on!). However, this option is useful if you have |
mailing list. |
|
a choice of several compilers on one machine and you want to use the one |
|
|
that is not the default (ex: \texttt{pgf77} instead of \texttt{f77} under |
|
|
Linux). |
|
|
|
|
|
\item -mpi |
|
|
|
|
|
this is used when you want to run the model in parallel processing mode |
|
|
under mpi (see section on parallel computation for more details). |
|
719 |
|
|
720 |
\item -jam |
In addition to the optfiles, \texttt{genmake2} supports a number of |
721 |
|
helpful command-line options. A complete list of these options can be |
722 |
|
obtained from: |
723 |
|
\begin{verbatim} |
724 |
|
% genmake2 -h |
725 |
|
\end{verbatim} |
726 |
|
|
727 |
|
The most important command-line options are: |
728 |
|
\begin{description} |
729 |
|
|
730 |
|
\item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that |
731 |
|
should be used for a particular build. |
732 |
|
|
733 |
|
If no "optfile" is specified (either through the command line or the |
734 |
|
MITGCM\_OPTFILE environment variable), genmake2 will try to make a |
735 |
|
reasonable guess from the list provided in {\em |
736 |
|
tools/build\_options}. The method used for making this guess is |
737 |
|
to first determine the combination of operating system and hardware |
738 |
|
(eg. "linux\_ia32") and then find a working FORTRAN compiler within |
739 |
|
the user's path. When these three items have been identified, |
740 |
|
genmake2 will try to find an optfile that has a matching name. |
741 |
|
|
742 |
|
\item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file |
743 |
|
used for packages. |
744 |
|
|
745 |
|
If not specified, the default dependency file {\em pkg/pkg\_depend} |
746 |
|
is used. The syntax for this file is parsed on a line-by-line basis |
747 |
|
where each line containes either a comment ("\#") or a simple |
748 |
|
"PKGNAME1 (+|-)PKGNAME2" pairwise rule where the "+" or "-" symbol |
749 |
|
specifies a "must be used with" or a "must not be used with" |
750 |
|
relationship, respectively. If no rule is specified, then it is |
751 |
|
assumed that the two packages are compatible and will function |
752 |
|
either with or without each other. |
753 |
|
|
754 |
|
\item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default |
755 |
|
set of packages to be used. |
756 |
|
|
757 |
|
If not set, the default package list will be read from {\em |
758 |
|
pkg/pkg\_default} |
759 |
|
|
760 |
|
\item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or |
761 |
|
automatic differentiation options file to be used. The file is |
762 |
|
analogous to the ``optfile'' defined above but it specifies |
763 |
|
information for the AD build process. |
764 |
|
|
765 |
|
The default file is located in {\em |
766 |
|
tools/adjoint\_options/adjoint\_default} and it defines the "TAF" |
767 |
|
and "TAMC" compilers. An alternate version is also available at |
768 |
|
{\em tools/adjoint\_options/adjoint\_staf} that selects the newer |
769 |
|
"STAF" compiler. As with any compilers, it is helpful to have their |
770 |
|
directories listed in your {\tt \$PATH} environment variable. |
771 |
|
|
772 |
|
\item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of |
773 |
|
directories containing ``modifications''. These directories contain |
774 |
|
files with names that may (or may not) exist in the main MITgcm |
775 |
|
source tree but will be overridden by any identically-named sources |
776 |
|
within the ``MODS'' directories. |
777 |
|
|
778 |
|
The order of precedence for this "name-hiding" is as follows: |
779 |
|
\begin{itemize} |
780 |
|
\item ``MODS'' directories (in the order given) |
781 |
|
\item Packages either explicitly specified or provided by default |
782 |
|
(in the order given) |
783 |
|
\item Packages included due to package dependencies (in the order |
784 |
|
that that package dependencies are parsed) |
785 |
|
\item The "standard dirs" (which may have been specified by the |
786 |
|
``-standarddirs'' option) |
787 |
|
\end{itemize} |
788 |
|
|
789 |
|
\item[\texttt{--make=/path/to/gmake}] Due to the poor handling of |
790 |
|
soft-links and other bugs common with the \texttt{make} versions |
791 |
|
provided by commercial Unix vendors, GNU \texttt{make} (sometimes |
792 |
|
called \texttt{gmake}) should be preferred. This option provides a |
793 |
|
means for specifying the make executable to be used. |
794 |
|
|
795 |
this is used when you want to run the model in parallel processing mode |
\end{description} |
|
under jam (see section on parallel computation for more details). |
|
|
\end{itemize} |
|
796 |
|
|
|
For some of the examples, there is a file called \textit{.genmakerc} in the |
|
|
\textit{input} directory that has the relevant \textit{genmake} options for |
|
|
that particular example. In this way you don't need to type the options when |
|
|
invoking \textit{genmake}. |
|
797 |
|
|
798 |
|
|
799 |
\section{Running the model} |
\section{Running the model} |
819 |
% ./mitgcmuv > output.txt |
% ./mitgcmuv > output.txt |
820 |
\end{verbatim} |
\end{verbatim} |
821 |
|
|
822 |
For the example experiments in {\em vericication}, an example of the |
For the example experiments in {\em verification}, an example of the |
823 |
output is kept in {\em results/output.txt} for comparison. You can compare |
output is kept in {\em results/output.txt} for comparison. You can compare |
824 |
your {\em output.txt} with this one to check that the set-up works. |
your {\em output.txt} with this one to check that the set-up works. |
825 |
|
|
908 |
\section{Doing it yourself: customizing the code} |
\section{Doing it yourself: customizing the code} |
909 |
|
|
910 |
When you are ready to run the model in the configuration you want, the |
When you are ready to run the model in the configuration you want, the |
911 |
easiest thing is to use and adapt the setup of the case studies experiment |
easiest thing is to use and adapt the setup of the case studies |
912 |
(described previously) that is the closest to your configuration. Then, the |
experiment (described previously) that is the closest to your |
913 |
amount of setup will be minimized. In this section, we focus on the setup |
configuration. Then, the amount of setup will be minimized. In this |
914 |
relative to the ''numerical model'' part of the code (the setup relative to |
section, we focus on the setup relative to the ``numerical model'' |
915 |
the ''execution environment'' part is covered in the parallel implementation |
part of the code (the setup relative to the ``execution environment'' |
916 |
section) and on the variables and parameters that you are likely to change. |
part is covered in the parallel implementation section) and on the |
917 |
|
variables and parameters that you are likely to change. |
918 |
|
|
919 |
\subsection{Configuration and setup} |
\subsection{Configuration and setup} |
920 |
|
|
921 |
The CPP keys relative to the ''numerical model'' part of the code are all |
The CPP keys relative to the ``numerical model'' part of the code are |
922 |
defined and set in the file \textit{CPP\_OPTIONS.h }in the directory \textit{% |
all defined and set in the file \textit{CPP\_OPTIONS.h }in the |
923 |
model/inc }or in one of the \textit{code }directories of the case study |
directory \textit{ model/inc }or in one of the \textit{code |
924 |
experiments under \textit{verification.} The model parameters are defined |
}directories of the case study experiments under |
925 |
and declared in the file \textit{model/inc/PARAMS.h }and their default |
\textit{verification.} The model parameters are defined and declared |
926 |
values are set in the routine \textit{model/src/set\_defaults.F. }The |
in the file \textit{model/inc/PARAMS.h }and their default values are |
927 |
default values can be modified in the namelist file \textit{data }which |
set in the routine \textit{model/src/set\_defaults.F. }The default |
928 |
needs to be located in the directory where you will run the model. The |
values can be modified in the namelist file \textit{data }which needs |
929 |
parameters are initialized in the routine \textit{model/src/ini\_parms.F}. |
to be located in the directory where you will run the model. The |
930 |
Look at this routine to see in what part of the namelist the parameters are |
parameters are initialized in the routine |
931 |
located. |
\textit{model/src/ini\_parms.F}. Look at this routine to see in what |
932 |
|
part of the namelist the parameters are located. |
933 |
In what follows the parameters are grouped into categories related to the |
|
934 |
computational domain, the equations solved in the model, and the simulation |
In what follows the parameters are grouped into categories related to |
935 |
controls. |
the computational domain, the equations solved in the model, and the |
936 |
|
simulation controls. |
937 |
|
|
938 |
\subsection{Computational domain, geometry and time-discretization} |
\subsection{Computational domain, geometry and time-discretization} |
939 |
|
|
940 |
\begin{itemize} |
\begin{description} |
941 |
\item dimensions |
\item[dimensions] \ |
942 |
\end{itemize} |
|
943 |
|
The number of points in the x, y, and r directions are represented |
944 |
The number of points in the x, y,\textit{\ }and r\textit{\ }directions are |
by the variables \textbf{sNx}, \textbf{sNy} and \textbf{Nr} |
945 |
represented by the variables \textbf{sNx}\textit{, }\textbf{sNy}\textit{, }% |
respectively which are declared and set in the file |
946 |
and \textbf{Nr}\textit{\ }respectively which are declared and set in the |
\textit{model/inc/SIZE.h}. (Again, this assumes a mono-processor |
947 |
file \textit{model/inc/SIZE.h. }(Again, this assumes a mono-processor |
calculation. For multiprocessor calculations see the section on |
948 |
calculation. For multiprocessor calculations see section on parallel |
parallel implementation.) |
949 |
implementation.) |
|
950 |
|
\item[grid] \ |
951 |
\begin{itemize} |
|
952 |
\item grid |
Three different grids are available: cartesian, spherical polar, and |
953 |
\end{itemize} |
curvilinear (which includes the cubed sphere). The grid is set |
954 |
|
through the logical variables \textbf{usingCartesianGrid}, |
955 |
Three different grids are available: cartesian, spherical polar, and |
\textbf{usingSphericalPolarGrid}, and \textbf{usingCurvilinearGrid}. |
956 |
curvilinear (including the cubed sphere). The grid is set through the |
In the case of spherical and curvilinear grids, the southern |
957 |
logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{% |
boundary is defined through the variable \textbf{phiMin} which |
958 |
usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{% |
corresponds to the latitude of the southern most cell face (in |
959 |
usingCurvilinearGrid}\textit{. }In the case of spherical and curvilinear |
degrees). The resolution along the x and y directions is controlled |
960 |
grids, the southern boundary is defined through the variable \textbf{phiMin}% |
by the 1D arrays \textbf{delx} and \textbf{dely} (in meters in the |
961 |
\textit{\ }which corresponds to the latitude of the southern most cell face |
case of a cartesian grid, in degrees otherwise). The vertical grid |
962 |
(in degrees). The resolution along the x and y directions is controlled by |
spacing is set through the 1D array \textbf{delz} for the ocean (in |
963 |
the 1D arrays \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters |
meters) or \textbf{delp} for the atmosphere (in Pa). The variable |
964 |
in the case of a cartesian grid, in degrees otherwise). The vertical grid |
\textbf{Ro\_SeaLevel} represents the standard position of Sea-Level |
965 |
spacing is set through the 1D array \textbf{delz }for the ocean (in meters) |
in ``R'' coordinate. This is typically set to 0m for the ocean |
966 |
or \textbf{delp}\textit{\ }for the atmosphere (in Pa). The variable \textbf{% |
(default value) and 10$^{5}$Pa for the atmosphere. For the |
967 |
Ro\_SeaLevel} represents the standard position of Sea-Level in ''R'' |
atmosphere, also set the logical variable \textbf{groundAtK1} to |
968 |
coordinate. This is typically set to 0m for the ocean (default value) and 10$% |
\texttt{'.TRUE.'} which puts the first level (k=1) at the lower |
969 |
^{5}$Pa for the atmosphere. For the atmosphere, also set the logical |
boundary (ground). |
970 |
variable \textbf{groundAtK1} to '.\texttt{TRUE}.'. which put the first level |
|
971 |
(k=1) at the lower boundary (ground). |
For the cartesian grid case, the Coriolis parameter $f$ is set |
972 |
|
through the variables \textbf{f0} and \textbf{beta} which correspond |
973 |
For the cartesian grid case, the Coriolis parameter $f$ is set through the |
to the reference Coriolis parameter (in s$^{-1}$) and |
974 |
variables \textbf{f0}\textit{\ }and \textbf{beta}\textit{\ }which correspond |
$\frac{\partial f}{ \partial y}$(in m$^{-1}$s$^{-1}$) respectively. |
975 |
to the reference Coriolis parameter (in s$^{-1}$) and $\frac{\partial f}{% |
If \textbf{beta } is set to a nonzero value, \textbf{f0} is the |
976 |
\partial y}$(in m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ }% |
value of $f$ at the southern edge of the domain. |
977 |
is set to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the |
|
978 |
southern edge of the domain. |
\item[topography - full and partial cells] \ |
979 |
|
|
980 |
\begin{itemize} |
The domain bathymetry is read from a file that contains a 2D (x,y) |
981 |
\item topography - full and partial cells |
map of depths (in m) for the ocean or pressures (in Pa) for the |
982 |
\end{itemize} |
atmosphere. The file name is represented by the variable |
983 |
|
\textbf{bathyFile}. The file is assumed to contain binary numbers |
984 |
The domain bathymetry is read from a file that contains a 2D (x,y) map of |
giving the depth (pressure) of the model at each grid cell, ordered |
985 |
depths (in m) for the ocean or pressures (in Pa) for the atmosphere. The |
with the x coordinate varying fastest. The points are ordered from |
986 |
file name is represented by the variable \textbf{bathyFile}\textit{. }The |
low coordinate to high coordinate for both axes. The model code |
987 |
file is assumed to contain binary numbers giving the depth (pressure) of the |
applies without modification to enclosed, periodic, and double |
988 |
model at each grid cell, ordered with the x coordinate varying fastest. The |
periodic domains. Periodicity is assumed by default and is |
989 |
points are ordered from low coordinate to high coordinate for both axes. The |
suppressed by setting the depths to 0m for the cells at the limits |
990 |
model code applies without modification to enclosed, periodic, and double |
of the computational domain (note: not sure this is the case for the |
991 |
periodic domains. Periodicity is assumed by default and is suppressed by |
atmosphere). The precision with which to read the binary data is |
992 |
setting the depths to 0m for the cells at the limits of the computational |
controlled by the integer variable \textbf{readBinaryPrec} which can |
993 |
domain (note: not sure this is the case for the atmosphere). The precision |
take the value \texttt{32} (single precision) or \texttt{64} (double |
994 |
with which to read the binary data is controlled by the integer variable |
precision). See the matlab program \textit{gendata.m} in the |
995 |
\textbf{readBinaryPrec }which can take the value \texttt{32} (single |
\textit{input} directories under \textit{verification} to see how |
996 |
precision) or \texttt{64} (double precision). See the matlab program \textit{% |
the bathymetry files are generated for the case study experiments. |
997 |
gendata.m }in the \textit{input }directories under \textit{verification }to |
|
998 |
see how the bathymetry files are generated for the case study experiments. |
To use the partial cell capability, the variable \textbf{hFacMin} |
999 |
|
needs to be set to a value between 0 and 1 (it is set to 1 by |
1000 |
To use the partial cell capability, the variable \textbf{hFacMin}\textit{\ }% |
default) corresponding to the minimum fractional size of the cell. |
1001 |
needs to be set to a value between 0 and 1 (it is set to 1 by default) |
For example if the bottom cell is 500m thick and \textbf{hFacMin} is |
1002 |
corresponding to the minimum fractional size of the cell. For example if the |
set to 0.1, the actual thickness of the cell (i.e. used in the code) |
1003 |
bottom cell is 500m thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the |
can cover a range of discrete values 50m apart from 50m to 500m |
1004 |
actual thickness of the cell (i.e. used in the code) can cover a range of |
depending on the value of the bottom depth (in \textbf{bathyFile}) |
1005 |
discrete values 50m apart from 50m to 500m depending on the value of the |
at this point. |
1006 |
bottom depth (in \textbf{bathyFile}) at this point. |
|
1007 |
|
Note that the bottom depths (or pressures) need not coincide with |
1008 |
Note that the bottom depths (or pressures) need not coincide with the models |
the models levels as deduced from \textbf{delz} or \textbf{delp}. |
1009 |
levels as deduced from \textbf{delz}\textit{\ }or\textit{\ }\textbf{delp}% |
The model will interpolate the numbers in \textbf{bathyFile} so that |
1010 |
\textit{. }The model will interpolate the numbers in \textbf{bathyFile}% |
they match the levels obtained from \textbf{delz} or \textbf{delp} |
1011 |
\textit{\ }so that they match the levels obtained from \textbf{delz}\textit{% |
and \textbf{hFacMin}. |
1012 |
\ }or\textit{\ }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. } |
|
1013 |
|
(Note: the atmospheric case is a bit more complicated than what is |
1014 |
(Note: the atmospheric case is a bit more complicated than what is written |
written here I think. To come soon...) |
1015 |
here I think. To come soon...) |
|
1016 |
|
\item[time-discretization] \ |
1017 |
|
|
1018 |
|
The time steps are set through the real variables \textbf{deltaTMom} |
1019 |
|
and \textbf{deltaTtracer} (in s) which represent the time step for |
1020 |
|
the momentum and tracer equations, respectively. For synchronous |
1021 |
|
integrations, simply set the two variables to the same value (or you |
1022 |
|
can prescribe one time step only through the variable |
1023 |
|
\textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set |
1024 |
|
through the variable \textbf{abEps} (dimensionless). The stagger |
1025 |
|
baroclinic time stepping can be activated by setting the logical |
1026 |
|
variable \textbf{staggerTimeStep} to \texttt{'.TRUE.'}. |
1027 |
|
|
1028 |
\begin{itemize} |
\end{description} |
|
\item time-discretization |
|
|
\end{itemize} |
|
1029 |
|
|
|
The time steps are set through the real variables \textbf{deltaTMom }and |
|
|
\textbf{deltaTtracer }(in s) which represent the time step for the momentum |
|
|
and tracer equations, respectively. For synchronous integrations, simply set |
|
|
the two variables to the same value (or you can prescribe one time step only |
|
|
through the variable \textbf{deltaT}). The Adams-Bashforth stabilizing |
|
|
parameter is set through the variable \textbf{abEps }(dimensionless). The |
|
|
stagger baroclinic time stepping can be activated by setting the logical |
|
|
variable \textbf{staggerTimeStep }to '.\texttt{TRUE}.'. |
|
1030 |
|
|
1031 |
\subsection{Equation of state} |
\subsection{Equation of state} |
1032 |
|
|
1033 |
First, because the model equations are written in terms of perturbations, a |
First, because the model equations are written in terms of |
1034 |
reference thermodynamic state needs to be specified. This is done through |
perturbations, a reference thermodynamic state needs to be specified. |
1035 |
the 1D arrays \textbf{tRef}\textit{\ }and \textbf{sRef}. \textbf{tRef }% |
This is done through the 1D arrays \textbf{tRef} and \textbf{sRef}. |
1036 |
specifies the reference potential temperature profile (in $^{o}$C for |
\textbf{tRef} specifies the reference potential temperature profile |
1037 |
the ocean and $^{o}$K for the atmosphere) starting from the level |
(in $^{o}$C for the ocean and $^{o}$K for the atmosphere) starting |
1038 |
k=1. Similarly, \textbf{sRef}\textit{\ }specifies the reference salinity |
from the level k=1. Similarly, \textbf{sRef} specifies the reference |
1039 |
profile (in ppt) for the ocean or the reference specific humidity profile |
salinity profile (in ppt) for the ocean or the reference specific |
1040 |
(in g/kg) for the atmosphere. |
humidity profile (in g/kg) for the atmosphere. |
1041 |
|
|
1042 |
The form of the equation of state is controlled by the character variables |
The form of the equation of state is controlled by the character |
1043 |
\textbf{buoyancyRelation}\textit{\ }and \textbf{eosType}\textit{. }\textbf{% |
variables \textbf{buoyancyRelation} and \textbf{eosType}. |
1044 |
buoyancyRelation}\textit{\ }is set to '\texttt{OCEANIC}' by default and |
\textbf{buoyancyRelation} is set to \texttt{'OCEANIC'} by default and |
1045 |
needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations. In |
needs to be set to \texttt{'ATMOSPHERIC'} for atmosphere simulations. |
1046 |
this case, \textbf{eosType}\textit{\ }must be set to '\texttt{IDEALGAS}'. |
In this case, \textbf{eosType} must be set to \texttt{'IDEALGAS'}. |
1047 |
For the ocean, two forms of the equation of state are available: linear (set |
For the ocean, two forms of the equation of state are available: |
1048 |
\textbf{eosType}\textit{\ }to '\texttt{LINEAR}') and a polynomial |
linear (set \textbf{eosType} to \texttt{'LINEAR'}) and a polynomial |
1049 |
approximation to the full nonlinear equation ( set \textbf{eosType}\textit{\ |
approximation to the full nonlinear equation ( set \textbf{eosType} to |
1050 |
}to '\texttt{POLYNOMIAL}'). In the linear case, you need to specify the |
\texttt{'POLYNOMIAL'}). In the linear case, you need to specify the |
1051 |
thermal and haline expansion coefficients represented by the variables |
thermal and haline expansion coefficients represented by the variables |
1052 |
\textbf{tAlpha}\textit{\ }(in K$^{-1}$) and \textbf{sBeta}\textit{\ }(in ppt$% |
\textbf{tAlpha} (in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For |
1053 |
^{-1}$). For the nonlinear case, you need to generate a file of polynomial |
the nonlinear case, you need to generate a file of polynomial |
1054 |
coefficients called \textit{POLY3.COEFFS. }To do this, use the program |
coefficients called \textit{POLY3.COEFFS}. To do this, use the program |
1055 |
\textit{utils/knudsen2/knudsen2.f }under the model tree (a Makefile is |
\textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is |
1056 |
available in the same directory and you will need to edit the number and the |
available in the same directory and you will need to edit the number |
1057 |
values of the vertical levels in \textit{knudsen2.f }so that they match |
and the values of the vertical levels in \textit{knudsen2.f} so that |
1058 |
those of your configuration). \textit{\ } |
they match those of your configuration). |
1059 |
|
|
1060 |
|
There there are also higher polynomials for the equation of state: |
1061 |
|
\begin{description} |
1062 |
|
\item[\texttt{'UNESCO'}:] The UNESCO equation of state formula of |
1063 |
|
Fofonoff and Millard \cite{fofonoff83}. This equation of state |
1064 |
|
assumes in-situ temperature, which is not a model variable; {\em its |
1065 |
|
use is therefore discouraged, and it is only listed for |
1066 |
|
completeness}. |
1067 |
|
\item[\texttt{'JMD95Z'}:] A modified UNESCO formula by Jackett and |
1068 |
|
McDougall \cite{jackett95}, which uses the model variable potential |
1069 |
|
temperature as input. The \texttt{'Z'} indicates that this equation |
1070 |
|
of state uses a horizontally and temporally constant pressure |
1071 |
|
$p_{0}=-g\rho_{0}z$. |
1072 |
|
\item[\texttt{'JMD95P'}:] A modified UNESCO formula by Jackett and |
1073 |
|
McDougall \cite{jackett95}, which uses the model variable potential |
1074 |
|
temperature as input. The \texttt{'P'} indicates that this equation |
1075 |
|
of state uses the actual hydrostatic pressure of the last time |
1076 |
|
step. Lagging the pressure in this way requires an additional pickup |
1077 |
|
file for restarts. |
1078 |
|
\item[\texttt{'MDJWF'}:] The new, more accurate and less expensive |
1079 |
|
equation of state by McDougall et~al. \cite{mcdougall03}. It also |
1080 |
|
requires lagging the pressure and therefore an additional pickup |
1081 |
|
file for restarts. |
1082 |
|
\end{description} |
1083 |
|
For none of these options an reference profile of temperature or |
1084 |
|
salinity is required. |
1085 |
|
|
1086 |
\subsection{Momentum equations} |
\subsection{Momentum equations} |
1087 |
|
|
1088 |
In this section, we only focus for now on the parameters that you are likely |
In this section, we only focus for now on the parameters that you are |
1089 |
to change, i.e. the ones relative to forcing and dissipation for example. |
likely to change, i.e. the ones relative to forcing and dissipation |
1090 |
The details relevant to the vector-invariant form of the equations and the |
for example. The details relevant to the vector-invariant form of the |
1091 |
various advection schemes are not covered for the moment. We assume that you |
equations and the various advection schemes are not covered for the |
1092 |
use the standard form of the momentum equations (i.e. the flux-form) with |
moment. We assume that you use the standard form of the momentum |
1093 |
the default advection scheme. Also, there are a few logical variables that |
equations (i.e. the flux-form) with the default advection scheme. |
1094 |
allow you to turn on/off various terms in the momentum equation. These |
Also, there are a few logical variables that allow you to turn on/off |
1095 |
variables are called \textbf{momViscosity, momAdvection, momForcing, |
various terms in the momentum equation. These variables are called |
1096 |
useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }% |
\textbf{momViscosity, momAdvection, momForcing, useCoriolis, |
1097 |
\textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here. |
momPressureForcing, momStepping} and \textbf{metricTerms }and are |
1098 |
Look at the file \textit{model/inc/PARAMS.h }for a precise definition of |
assumed to be set to \texttt{'.TRUE.'} here. Look at the file |
1099 |
these variables. |
\textit{model/inc/PARAMS.h }for a precise definition of these |
1100 |
|
variables. |
1101 |
|
|
1102 |
|
\begin{description} |
1103 |
|
\item[initialization] \ |
1104 |
|
|
1105 |
|
The velocity components are initialized to 0 unless the simulation |
1106 |
|
is starting from a pickup file (see section on simulation control |
1107 |
|
parameters). |
1108 |
|
|
1109 |
|
\item[forcing] \ |
1110 |
|
|
1111 |
|
This section only applies to the ocean. You need to generate |
1112 |
|
wind-stress data into two files \textbf{zonalWindFile} and |
1113 |
|
\textbf{meridWindFile} corresponding to the zonal and meridional |
1114 |
|
components of the wind stress, respectively (if you want the stress |
1115 |
|
to be along the direction of only one of the model horizontal axes, |
1116 |
|
you only need to generate one file). The format of the files is |
1117 |
|
similar to the bathymetry file. The zonal (meridional) stress data |
1118 |
|
are assumed to be in Pa and located at U-points (V-points). As for |
1119 |
|
the bathymetry, the precision with which to read the binary data is |
1120 |
|
controlled by the variable \textbf{readBinaryPrec}. See the matlab |
1121 |
|
program \textit{gendata.m} in the \textit{input} directories under |
1122 |
|
\textit{verification} to see how simple analytical wind forcing data |
1123 |
|
are generated for the case study experiments. |
1124 |
|
|
1125 |
|
There is also the possibility of prescribing time-dependent periodic |
1126 |
|
forcing. To do this, concatenate the successive time records into a |
1127 |
|
single file (for each stress component) ordered in a (x,y,t) fashion |
1128 |
|
and set the following variables: \textbf{periodicExternalForcing }to |
1129 |
|
\texttt{'.TRUE.'}, \textbf{externForcingPeriod }to the period (in s) |
1130 |
|
of which the forcing varies (typically 1 month), and |
1131 |
|
\textbf{externForcingCycle} to the repeat time (in s) of the forcing |
1132 |
|
(typically 1 year -- note: \textbf{ externForcingCycle} must be a |
1133 |
|
multiple of \textbf{externForcingPeriod}). With these variables set |
1134 |
|
up, the model will interpolate the forcing linearly at each |
1135 |
|
iteration. |
1136 |
|
|
1137 |
|
\item[dissipation] \ |
1138 |
|
|
1139 |
|
The lateral eddy viscosity coefficient is specified through the |
1140 |
|
variable \textbf{viscAh} (in m$^{2}$s$^{-1}$). The vertical eddy |
1141 |
|
viscosity coefficient is specified through the variable |
1142 |
|
\textbf{viscAz} (in m$^{2}$s$^{-1}$) for the ocean and |
1143 |
|
\textbf{viscAp} (in Pa$^{2}$s$^{-1}$) for the atmosphere. The |
1144 |
|
vertical diffusive fluxes can be computed implicitly by setting the |
1145 |
|
logical variable \textbf{implicitViscosity }to \texttt{'.TRUE.'}. |
1146 |
|
In addition, biharmonic mixing can be added as well through the |
1147 |
|
variable \textbf{viscA4} (in m$^{4}$s$^{-1}$). On a spherical polar |
1148 |
|
grid, you might also need to set the variable \textbf{cosPower} |
1149 |
|
which is set to 0 by default and which represents the power of |
1150 |
|
cosine of latitude to multiply viscosity. Slip or no-slip conditions |
1151 |
|
at lateral and bottom boundaries are specified through the logical |
1152 |
|
variables \textbf{no\_slip\_sides} and \textbf{no\_slip\_bottom}. If |
1153 |
|
set to \texttt{'.FALSE.'}, free-slip boundary conditions are |
1154 |
|
applied. If no-slip boundary conditions are applied at the bottom, a |
1155 |
|
bottom drag can be applied as well. Two forms are available: linear |
1156 |
|
(set the variable \textbf{bottomDragLinear} in s$ ^{-1}$) and |
1157 |
|
quadratic (set the variable \textbf{bottomDragQuadratic} in |
1158 |
|
m$^{-1}$). |
1159 |
|
|
1160 |
|
The Fourier and Shapiro filters are described elsewhere. |
1161 |
|
|
1162 |
|
\item[C-D scheme] \ |
1163 |
|
|
1164 |
|
If you run at a sufficiently coarse resolution, you will need the |
1165 |
|
C-D scheme for the computation of the Coriolis terms. The |
1166 |
|
variable\textbf{\ tauCD}, which represents the C-D scheme coupling |
1167 |
|
timescale (in s) needs to be set. |
1168 |
|
|
1169 |
|
\item[calculation of pressure/geopotential] \ |
1170 |
|
|
1171 |
|
First, to run a non-hydrostatic ocean simulation, set the logical |
1172 |
|
variable \textbf{nonHydrostatic} to \texttt{'.TRUE.'}. The pressure |
1173 |
|
field is then inverted through a 3D elliptic equation. (Note: this |
1174 |
|
capability is not available for the atmosphere yet.) By default, a |
1175 |
|
hydrostatic simulation is assumed and a 2D elliptic equation is used |
1176 |
|
to invert the pressure field. The parameters controlling the |
1177 |
|
behaviour of the elliptic solvers are the variables |
1178 |
|
\textbf{cg2dMaxIters} and \textbf{cg2dTargetResidual } for |
1179 |
|
the 2D case and \textbf{cg3dMaxIters} and |
1180 |
|
\textbf{cg3dTargetResidual} for the 3D case. You probably won't need to |
1181 |
|
alter the default values (are we sure of this?). |
1182 |
|
|
1183 |
|
For the calculation of the surface pressure (for the ocean) or |
1184 |
|
surface geopotential (for the atmosphere) you need to set the |
1185 |
|
logical variables \textbf{rigidLid} and \textbf{implicitFreeSurface} |
1186 |
|
(set one to \texttt{'.TRUE.'} and the other to \texttt{'.FALSE.'} |
1187 |
|
depending on how you want to deal with the ocean upper or atmosphere |
1188 |
|
lower boundary). |
1189 |
|
|
1190 |
\begin{itemize} |
\end{description} |
|
\item initialization |
|
|
\end{itemize} |
|
|
|
|
|
The velocity components are initialized to 0 unless the simulation is |
|
|
starting from a pickup file (see section on simulation control parameters). |
|
|
|
|
|
\begin{itemize} |
|
|
\item forcing |
|
|
\end{itemize} |
|
|
|
|
|
This section only applies to the ocean. You need to generate wind-stress |
|
|
data into two files \textbf{zonalWindFile}\textit{\ }and \textbf{% |
|
|
meridWindFile }corresponding to the zonal and meridional components of the |
|
|
wind stress, respectively (if you want the stress to be along the direction |
|
|
of only one of the model horizontal axes, you only need to generate one |
|
|
file). The format of the files is similar to the bathymetry file. The zonal |
|
|
(meridional) stress data are assumed to be in Pa and located at U-points |
|
|
(V-points). As for the bathymetry, the precision with which to read the |
|
|
binary data is controlled by the variable \textbf{readBinaryPrec}.\textbf{\ } |
|
|
See the matlab program \textit{gendata.m }in the \textit{input }directories |
|
|
under \textit{verification }to see how simple analytical wind forcing data |
|
|
are generated for the case study experiments. |
|
|
|
|
|
There is also the possibility of prescribing time-dependent periodic |
|
|
forcing. To do this, concatenate the successive time records into a single |
|
|
file (for each stress component) ordered in a (x, y, t) fashion and set the |
|
|
following variables: \textbf{periodicExternalForcing }to '.\texttt{TRUE}.', |
|
|
\textbf{externForcingPeriod }to the period (in s) of which the forcing |
|
|
varies (typically 1 month), and \textbf{externForcingCycle }to the repeat |
|
|
time (in s) of the forcing (typically 1 year -- note: \textbf{% |
|
|
externForcingCycle }must be a multiple of \textbf{externForcingPeriod}). |
|
|
With these variables set up, the model will interpolate the forcing linearly |
|
|
at each iteration. |
|
|
|
|
|
\begin{itemize} |
|
|
\item dissipation |
|
|
\end{itemize} |
|
|
|
|
|
The lateral eddy viscosity coefficient is specified through the variable |
|
|
\textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The vertical eddy viscosity |
|
|
coefficient is specified through the variable \textbf{viscAz }(in m$^{2}$s$% |
|
|
^{-1}$) for the ocean and \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$) |
|
|
for the atmosphere. The vertical diffusive fluxes can be computed implicitly |
|
|
by setting the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}% |
|
|
.'. In addition, biharmonic mixing can be added as well through the variable |
|
|
\textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a spherical polar grid, |
|
|
you might also need to set the variable \textbf{cosPower} which is set to 0 |
|
|
by default and which represents the power of cosine of latitude to multiply |
|
|
viscosity. Slip or no-slip conditions at lateral and bottom boundaries are |
|
|
specified through the logical variables \textbf{no\_slip\_sides}\textit{\ }% |
|
|
and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}', free-slip |
|
|
boundary conditions are applied. If no-slip boundary conditions are applied |
|
|
at the bottom, a bottom drag can be applied as well. Two forms are |
|
|
available: linear (set the variable \textbf{bottomDragLinear}\textit{\ }in s$% |
|
|
^{-1}$) and quadratic (set the variable \textbf{bottomDragQuadratic}\textit{% |
|
|
\ }in m$^{-1}$). |
|
|
|
|
|
The Fourier and Shapiro filters are described elsewhere. |
|
|
|
|
|
\begin{itemize} |
|
|
\item C-D scheme |
|
|
\end{itemize} |
|
|
|
|
|
If you run at a sufficiently coarse resolution, you will need the C-D scheme |
|
|
for the computation of the Coriolis terms. The variable\textbf{\ tauCD}, |
|
|
which represents the C-D scheme coupling timescale (in s) needs to be set. |
|
|
|
|
|
\begin{itemize} |
|
|
\item calculation of pressure/geopotential |
|
|
\end{itemize} |
|
|
|
|
|
First, to run a non-hydrostatic ocean simulation, set the logical variable |
|
|
\textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure field is then |
|
|
inverted through a 3D elliptic equation. (Note: this capability is not |
|
|
available for the atmosphere yet.) By default, a hydrostatic simulation is |
|
|
assumed and a 2D elliptic equation is used to invert the pressure field. The |
|
|
parameters controlling the behaviour of the elliptic solvers are the |
|
|
variables \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual }% |
|
|
for the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{% |
|
|
cg3dTargetResidual }for the 3D case. You probably won't need to alter the |
|
|
default values (are we sure of this?). |
|
|
|
|
|
For the calculation of the surface pressure (for the ocean) or surface |
|
|
geopotential (for the atmosphere) you need to set the logical variables |
|
|
\textbf{rigidLid} and \textbf{implicitFreeSurface}\textit{\ }(set one to '.% |
|
|
\texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how you |
|
|
want to deal with the ocean upper or atmosphere lower boundary). |
|
1191 |
|
|
1192 |
\subsection{Tracer equations} |
\subsection{Tracer equations} |
1193 |
|
|
1194 |
This section covers the tracer equations i.e. the potential temperature |
This section covers the tracer equations i.e. the potential |
1195 |
equation and the salinity (for the ocean) or specific humidity (for the |
temperature equation and the salinity (for the ocean) or specific |
1196 |
atmosphere) equation. As for the momentum equations, we only describe for |
humidity (for the atmosphere) equation. As for the momentum equations, |
1197 |
now the parameters that you are likely to change. The logical variables |
we only describe for now the parameters that you are likely to change. |
1198 |
\textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{% |
The logical variables \textbf{tempDiffusion} \textbf{tempAdvection} |
1199 |
tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off |
\textbf{tempForcing}, and \textbf{tempStepping} allow you to turn |
1200 |
terms in the temperature equation (same thing for salinity or specific |
on/off terms in the temperature equation (same thing for salinity or |
1201 |
humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{% |
specific humidity with variables \textbf{saltDiffusion}, |
1202 |
saltAdvection}\textit{\ }etc). These variables are all assumed here to be |
\textbf{saltAdvection} etc.). These variables are all assumed here to |
1203 |
set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a |
be set to \texttt{'.TRUE.'}. Look at file \textit{model/inc/PARAMS.h} |
1204 |
precise definition. |
for a precise definition. |
1205 |
|
|
1206 |
|
\begin{description} |
1207 |
|
\item[initialization] \ |
1208 |
|
|
1209 |
|
The initial tracer data can be contained in the binary files |
1210 |
|
\textbf{hydrogThetaFile} and \textbf{hydrogSaltFile}. These files |
1211 |
|
should contain 3D data ordered in an (x,y,r) fashion with k=1 as the |
1212 |
|
first vertical level. If no file names are provided, the tracers |
1213 |
|
are then initialized with the values of \textbf{tRef} and |
1214 |
|
\textbf{sRef} mentioned above (in the equation of state section). In |
1215 |
|
this case, the initial tracer data are uniform in x and y for each |
1216 |
|
depth level. |
1217 |
|
|
1218 |
|
\item[forcing] \ |
1219 |
|
|
1220 |
|
This part is more relevant for the ocean, the procedure for the |
1221 |
|
atmosphere not being completely stabilized at the moment. |
1222 |
|
|
1223 |
|
A combination of fluxes data and relaxation terms can be used for |
1224 |
|
driving the tracer equations. For potential temperature, heat flux |
1225 |
|
data (in W/m$ ^{2}$) can be stored in the 2D binary file |
1226 |
|
\textbf{surfQfile}. Alternatively or in addition, the forcing can |
1227 |
|
be specified through a relaxation term. The SST data to which the |
1228 |
|
model surface temperatures are restored to are supposed to be stored |
1229 |
|
in the 2D binary file \textbf{thetaClimFile}. The corresponding |
1230 |
|
relaxation time scale coefficient is set through the variable |
1231 |
|
\textbf{tauThetaClimRelax} (in s). The same procedure applies for |
1232 |
|
salinity with the variable names \textbf{EmPmRfile}, |
1233 |
|
\textbf{saltClimFile}, and \textbf{tauSaltClimRelax} for freshwater |
1234 |
|
flux (in m/s) and surface salinity (in ppt) data files and |
1235 |
|
relaxation time scale coefficient (in s), respectively. Also for |
1236 |
|
salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, |
1237 |
|
natural boundary conditions are applied i.e. when computing the |
1238 |
|
surface salinity tendency, the freshwater flux is multiplied by the |
1239 |
|
model surface salinity instead of a constant salinity value. |
1240 |
|
|
1241 |
|
As for the other input files, the precision with which to read the |
1242 |
|
data is controlled by the variable \textbf{readBinaryPrec}. |
1243 |
|
Time-dependent, periodic forcing can be applied as well following |
1244 |
|
the same procedure used for the wind forcing data (see above). |
1245 |
|
|
1246 |
|
\item[dissipation] \ |
1247 |
|
|
1248 |
|
Lateral eddy diffusivities for temperature and salinity/specific |
1249 |
|
humidity are specified through the variables \textbf{diffKhT} and |
1250 |
|
\textbf{diffKhS} (in m$^{2}$/s). Vertical eddy diffusivities are |
1251 |
|
specified through the variables \textbf{diffKzT} and |
1252 |
|
\textbf{diffKzS} (in m$^{2}$/s) for the ocean and \textbf{diffKpT |
1253 |
|
}and \textbf{diffKpS} (in Pa$^{2}$/s) for the atmosphere. The |
1254 |
|
vertical diffusive fluxes can be computed implicitly by setting the |
1255 |
|
logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}. |
1256 |
|
In addition, biharmonic diffusivities can be specified as well |
1257 |
|
through the coefficients \textbf{diffK4T} and \textbf{diffK4S} (in |
1258 |
|
m$^{4}$/s). Note that the cosine power scaling (specified through |
1259 |
|
\textbf{cosPower}---see the momentum equations section) is applied to |
1260 |
|
the tracer diffusivities (Laplacian and biharmonic) as well. The |
1261 |
|
Gent and McWilliams parameterization for oceanic tracers is |
1262 |
|
described in the package section. Finally, note that tracers can be |
1263 |
|
also subject to Fourier and Shapiro filtering (see the corresponding |
1264 |
|
section on these filters). |
1265 |
|
|
1266 |
|
\item[ocean convection] \ |
1267 |
|
|
1268 |
|
Two options are available to parameterize ocean convection: one is |
1269 |
|
to use the convective adjustment scheme. In this case, you need to |
1270 |
|
set the variable \textbf{cadjFreq}, which represents the frequency |
1271 |
|
(in s) with which the adjustment algorithm is called, to a non-zero |
1272 |
|
value (if set to a negative value by the user, the model will set it |
1273 |
|
to the tracer time step). The other option is to parameterize |
1274 |
|
convection with implicit vertical diffusion. To do this, set the |
1275 |
|
logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'} |
1276 |
|
and the real variable \textbf{ivdc\_kappa} to a value (in m$^{2}$/s) |
1277 |
|
you wish the tracer vertical diffusivities to have when mixing |
1278 |
|
tracers vertically due to static instabilities. Note that |
1279 |
|
\textbf{cadjFreq} and \textbf{ivdc\_kappa}can not both have non-zero |
1280 |
|
value. |
1281 |
|
|
1282 |
\begin{itemize} |
\end{description} |
|
\item initialization |
|
|
\end{itemize} |
|
|
|
|
|
The initial tracer data can be contained in the binary files \textbf{% |
|
|
hydrogThetaFile }and \textbf{hydrogSaltFile}. These files should contain 3D |
|
|
data ordered in an (x, y, r) fashion with k=1 as the first vertical level. |
|
|
If no file names are provided, the tracers are then initialized with the |
|
|
values of \textbf{tRef }and \textbf{sRef }mentioned above (in the equation |
|
|
of state section). In this case, the initial tracer data are uniform in x |
|
|
and y for each depth level. |
|
|
|
|
|
\begin{itemize} |
|
|
\item forcing |
|
|
\end{itemize} |
|
|
|
|
|
This part is more relevant for the ocean, the procedure for the atmosphere |
|
|
not being completely stabilized at the moment. |
|
|
|
|
|
A combination of fluxes data and relaxation terms can be used for driving |
|
|
the tracer equations. \ For potential temperature, heat flux data (in W/m$% |
|
|
^{2}$) can be stored in the 2D binary file \textbf{surfQfile}\textit{. }% |
|
|
Alternatively or in addition, the forcing can be specified through a |
|
|
relaxation term. The SST data to which the model surface temperatures are |
|
|
restored to are supposed to be stored in the 2D binary file \textbf{% |
|
|
thetaClimFile}\textit{. }The corresponding relaxation time scale coefficient |
|
|
is set through the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The |
|
|
same procedure applies for salinity with the variable names \textbf{EmPmRfile% |
|
|
}\textit{, }\textbf{saltClimFile}\textit{, }and \textbf{tauSaltClimRelax}% |
|
|
\textit{\ }for freshwater flux (in m/s) and surface salinity (in ppt) data |
|
|
files and relaxation time scale coefficient (in s), respectively. Also for |
|
|
salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, natural |
|
|
boundary conditions are applied i.e. when computing the surface salinity |
|
|
tendency, the freshwater flux is multiplied by the model surface salinity |
|
|
instead of a constant salinity value. |
|
|
|
|
|
As for the other input files, the precision with which to read the data is |
|
|
controlled by the variable \textbf{readBinaryPrec}. Time-dependent, periodic |
|
|
forcing can be applied as well following the same procedure used for the |
|
|
wind forcing data (see above). |
|
|
|
|
|
\begin{itemize} |
|
|
\item dissipation |
|
|
\end{itemize} |
|
|
|
|
|
Lateral eddy diffusivities for temperature and salinity/specific humidity |
|
|
are specified through the variables \textbf{diffKhT }and \textbf{diffKhS }% |
|
|
(in m$^{2}$/s). Vertical eddy diffusivities are specified through the |
|
|
variables \textbf{diffKzT }and \textbf{diffKzS }(in m$^{2}$/s) for the ocean |
|
|
and \textbf{diffKpT }and \textbf{diffKpS }(in Pa$^{2}$/s) for the |
|
|
atmosphere. The vertical diffusive fluxes can be computed implicitly by |
|
|
setting the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}% |
|
|
.'. In addition, biharmonic diffusivities can be specified as well through |
|
|
the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in m$^{4}$/s). Note |
|
|
that the cosine power scaling (specified through \textbf{cosPower }- see the |
|
|
momentum equations section) is applied to the tracer diffusivities |
|
|
(Laplacian and biharmonic) as well. The Gent and McWilliams parameterization |
|
|
for oceanic tracers is described in the package section. Finally, note that |
|
|
tracers can be also subject to Fourier and Shapiro filtering (see the |
|
|
corresponding section on these filters). |
|
|
|
|
|
\begin{itemize} |
|
|
\item ocean convection |
|
|
\end{itemize} |
|
|
|
|
|
Two options are available to parameterize ocean convection: one is to use |
|
|
the convective adjustment scheme. In this case, you need to set the variable |
|
|
\textbf{cadjFreq}, which represents the frequency (in s) with which the |
|
|
adjustment algorithm is called, to a non-zero value (if set to a negative |
|
|
value by the user, the model will set it to the tracer time step). The other |
|
|
option is to parameterize convection with implicit vertical diffusion. To do |
|
|
this, set the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}% |
|
|
.' and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s) you |
|
|
wish the tracer vertical diffusivities to have when mixing tracers |
|
|
vertically due to static instabilities. Note that \textbf{cadjFreq }and |
|
|
\textbf{ivdc\_kappa }can not both have non-zero value. |
|
1283 |
|
|
1284 |
\subsection{Simulation controls} |
\subsection{Simulation controls} |
1285 |
|
|
1286 |
The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s) |
The model ''clock'' is defined by the variable \textbf{deltaTClock} |
1287 |
which determines the IO frequencies and is used in tagging output. |
(in s) which determines the IO frequencies and is used in tagging |
1288 |
Typically, you will set it to the tracer time step for accelerated runs |
output. Typically, you will set it to the tracer time step for |
1289 |
(otherwise it is simply set to the default time step \textbf{deltaT}). |
accelerated runs (otherwise it is simply set to the default time step |
1290 |
Frequency of checkpointing and dumping of the model state are referenced to |
\textbf{deltaT}). Frequency of checkpointing and dumping of the model |
1291 |
this clock (see below). |
state are referenced to this clock (see below). |
1292 |
|
|
1293 |
\begin{itemize} |
\begin{description} |
1294 |
\item run duration |
\item[run duration] \ |
1295 |
\end{itemize} |
|
1296 |
|
The beginning of a simulation is set by specifying a start time (in |
1297 |
The beginning of a simulation is set by specifying a start time (in s) |
s) through the real variable \textbf{startTime} or by specifying an |
1298 |
through the real variable \textbf{startTime }or by specifying an initial |
initial iteration number through the integer variable |
1299 |
iteration number through the integer variable \textbf{nIter0}. If these |
\textbf{nIter0}. If these variables are set to nonzero values, the |
1300 |
variables are set to nonzero values, the model will look for a ''pickup'' |
model will look for a ''pickup'' file \textit{pickup.0000nIter0} to |
1301 |
file \textit{pickup.0000nIter0 }to restart the integration\textit{. }The end |
restart the integration. The end of a simulation is set through the |
1302 |
of a simulation is set through the real variable \textbf{endTime }(in s). |
real variable \textbf{endTime} (in s). Alternatively, you can |
1303 |
Alternatively, you can specify instead the number of time steps to execute |
specify instead the number of time steps to execute through the |
1304 |
through the integer variable \textbf{nTimeSteps}. |
integer variable \textbf{nTimeSteps}. |
1305 |
|
|
1306 |
\begin{itemize} |
\item[frequency of output] \ |
1307 |
\item frequency of output |
|
1308 |
\end{itemize} |
Real variables defining frequencies (in s) with which output files |
1309 |
|
are written on disk need to be set up. \textbf{dumpFreq} controls |
1310 |
Real variables defining frequencies (in s) with which output files are |
the frequency with which the instantaneous state of the model is |
1311 |
written on disk need to be set up. \textbf{dumpFreq }controls the frequency |
saved. \textbf{chkPtFreq} and \textbf{pchkPtFreq} control the output |
1312 |
with which the instantaneous state of the model is saved. \textbf{chkPtFreq }% |
frequency of rolling and permanent checkpoint files, respectively. |
1313 |
and \textbf{pchkPtFreq }control the output frequency of rolling and |
See section 1.5.1 Output files for the definition of model state and |
1314 |
permanent checkpoint files, respectively. See section 1.5.1 Output files for the |
checkpoint files. In addition, time-averaged fields can be written |
1315 |
definition of model state and checkpoint files. In addition, time-averaged |
out by setting the variable \textbf{taveFreq} (in s). The precision |
1316 |
fields can be written out by setting the variable \textbf{taveFreq} (in s). |
with which to write the binary data is controlled by the integer |
1317 |
The precision with which to write the binary data is controlled by the |
variable w\textbf{riteBinaryPrec} (set it to \texttt{32} or |
1318 |
integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32} or \texttt{% |
\texttt{64}). |
1319 |
64}). |
|
1320 |
|
\end{description} |
1321 |
|
|
1322 |
|
|
1323 |
|
%%% Local Variables: |
1324 |
|
%%% mode: latex |
1325 |
|
%%% TeX-master: t |
1326 |
|
%%% End: |