/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by edhill, Thu Jan 29 15:11:39 2004 UTC revision 1.26 by cnh, Wed Oct 13 05:06:25 2004 UTC
# Line 79  provide easy support for maintenance upd Line 79  provide easy support for maintenance upd
79    
80  \end{enumerate}  \end{enumerate}
81    
82    \subsubsection{Checkout from CVS}
83    \label{sect:cvs_checkout}
84    
85  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
86  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
87  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
# Line 93  in your .cshrc or .tcshrc file.  For bas Line 96  in your .cshrc or .tcshrc file.  For bas
96  \begin{verbatim}  \begin{verbatim}
97  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
98  \end{verbatim}  \end{verbatim}
99  in your .profile or .bashrc file.  in your \texttt{.profile} or \texttt{.bashrc} file.
100    
101    
102  To get MITgcm through CVS, first register with the MITgcm CVS server  To get MITgcm through CVS, first register with the MITgcm CVS server
# Line 121  http://mitgcm.org/source_code.html Line 124  http://mitgcm.org/source_code.html
124  \end{verbatim}  \end{verbatim}
125  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
126    
127    As a convenience, the MITgcm CVS server contains aliases which are
128    named subsets of the codebase.  These aliases can be especially
129    helpful when used over slow internet connections or on machines with
130    restricted storage space.  Table \ref{tab:cvsModules} contains a list
131    of CVS aliases
132    \begin{table}[htb]
133      \centering
134      \begin{tabular}[htb]{|lp{3.25in}|}\hline
135        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
136        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
137        \texttt{MITgcm\_verif\_basic}
138        &  Source code plus a small set of the verification examples
139        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
140        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
141        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
142        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
143        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
144        verification examples. \\\hline
145      \end{tabular}
146      \caption{MITgcm CVS Modules}
147      \label{tab:cvsModules}
148    \end{table}
149    
150  The checkout process creates a directory called \textit{MITgcm}. If  The checkout process creates a directory called \textit{MITgcm}. If
151  the directory \textit{MITgcm} exists this command updates your code  the directory \textit{MITgcm} exists this command updates your code
# Line 134  MITgcm code can be found Line 159  MITgcm code can be found
159  here  here
160  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
161  .  .
162    It is important to note that the CVS aliases in Table
163    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
164    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
165    they create can be changed to a different name following the check-out:
166    \begin{verbatim}
167       %  cvs co MITgcm_verif_basic
168       %  mv MITgcm MITgcm_verif_basic
169    \end{verbatim}
170    
171    
172  \paragraph*{Conventional download method}  \subsubsection{Conventional download method}
173  \label{sect:conventionalDownload}  \label{sect:conventionalDownload}
174    
175  If you do not have CVS on your system, you can download the model as a  If you do not have CVS on your system, you can download the model as a
# Line 156  MITgcm-support@mitgcm.org Line 189  MITgcm-support@mitgcm.org
189  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
190  mailing list.  mailing list.
191    
192  \paragraph*{Upgrading from an earlier version}  \subsubsection{Upgrading from an earlier version}
193    
194  If you already have an earlier version of the code you can ``upgrade''  If you already have an earlier version of the code you can ``upgrade''
195  your copy instead of downloading the entire repository again. First,  your copy instead of downloading the entire repository again. First,
# Line 291  structure). Line 324  structure).
324    
325  \end{itemize}  \end{itemize}
326    
327  \section{Example experiments}  \section[MITgcm Example Experiments]{Example experiments}
328  \label{sect:modelExamples}  \label{sect:modelExamples}
329    
330  %% a set of twenty-four pre-configured numerical experiments  %% a set of twenty-four pre-configured numerical experiments
# Line 451  Each example directory has the following Line 484  Each example directory has the following
484  Once you have chosen the example you want to run, you are ready to  Once you have chosen the example you want to run, you are ready to
485  compile the code.  compile the code.
486    
487  \section{Building the code}  \section[Building MITgcm]{Building the code}
488  \label{sect:buildingCode}  \label{sect:buildingCode}
489    
490  To compile the code, we use the {\em make} program. This uses a file  To compile the code, we use the {\em make} program. This uses a file
# Line 633  the one experiment: Line 666  the one experiment:
666  \end{verbatim}  \end{verbatim}
667    
668    
669    \subsection{Using \texttt{genmake2}}
 \subsection{Using \textit{genmake2}}  
670  \label{sect:genmake}  \label{sect:genmake}
671    
672  To compile the code, first use the program \texttt{genmake2} (located  To compile the code, first use the program \texttt{genmake2} (located
673  in the \textit{tools} directory) to generate a Makefile.  in the \texttt{tools} directory) to generate a Makefile.
674  \texttt{genmake2} is a shell script written to work with all  \texttt{genmake2} is a shell script written to work with all
675  ``sh''--compatible shells including bash v1, bash v2, and Bourne.  ``sh''--compatible shells including bash v1, bash v2, and Bourne.
676  Internally, \texttt{genmake2} determines the locations of needed  Internally, \texttt{genmake2} determines the locations of needed
677  files, the compiler, compiler options, libraries, and Unix tools.  It  files, the compiler, compiler options, libraries, and Unix tools.  It
678  relies upon a number of ``optfiles'' located in the {\em  relies upon a number of ``optfiles'' located in the
679    tools/build\_options} directory.  \texttt{tools/build\_options} directory.
680    
681  The purpose of the optfiles is to provide all the compilation options  The purpose of the optfiles is to provide all the compilation options
682  for particular ``platforms'' (where ``platform'' roughly means the  for particular ``platforms'' (where ``platform'' roughly means the
# Line 739  The most important command-line options Line 771  The most important command-line options
771    the user's path.  When these three items have been identified,    the user's path.  When these three items have been identified,
772    genmake2 will try to find an optfile that has a matching name.    genmake2 will try to find an optfile that has a matching name.
773        
774    \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default
775      set of packages to be used.  The normal order of precedence for
776      packages is as follows:
777      \begin{enumerate}
778      \item If available, the command line (\texttt{--pdefault}) settings
779        over-rule any others.
780    
781      \item Next, \texttt{genmake2} will look for a file named
782        ``\texttt{packages.conf}'' in the local directory or in any of the
783        directories specified with the \texttt{--mods} option.
784        
785      \item Finally, if neither of the above are available,
786        \texttt{genmake2} will use the \texttt{/pkg/pkg\_default} file.
787      \end{enumerate}
788      
789  \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file  \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
790    used for packages.    used for packages.
791        
# Line 751  The most important command-line options Line 798  The most important command-line options
798    assumed that the two packages are compatible and will function    assumed that the two packages are compatible and will function
799    either with or without each other.    either with or without each other.
800        
 \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default  
   set of packages to be used.  
     
   If not set, the default package list will be read from {\em  
     pkg/pkg\_default}  
     
801  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
802    automatic differentiation options file to be used.  The file is    automatic differentiation options file to be used.  The file is
803    analogous to the ``optfile'' defined above but it specifies    analogous to the ``optfile'' defined above but it specifies
# Line 786  The most important command-line options Line 827  The most important command-line options
827      ``-standarddirs'' option)      ``-standarddirs'' option)
828    \end{itemize}    \end{itemize}
829        
830    \item[\texttt{--mpi}] This option enables certain MPI features (using
831      CPP \texttt{\#define}s) within the code and is necessary for MPI
832      builds (see Section \ref{sect:mpi-build}).
833      
834  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
835    soft-links and other bugs common with the \texttt{make} versions    soft-links and other bugs common with the \texttt{make} versions
836    provided by commercial Unix vendors, GNU \texttt{make} (sometimes    provided by commercial Unix vendors, GNU \texttt{make} (sometimes
837    called \texttt{gmake}) should be preferred.  This option provides a    called \texttt{gmake}) should be preferred.  This option provides a
838    means for specifying the make executable to be used.    means for specifying the make executable to be used.
839      
840    \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
841      machines, the ``bash'' shell is unavailable.  To run on these
842      systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
843      a Bourne, POSIX, or compatible) shell.  The syntax in these
844      circumstances is:
845      \begin{center}
846        \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
847      \end{center}
848      where \texttt{/bin/sh} can be replaced with the full path and name
849      of the desired shell.
850    
851  \end{description}  \end{description}
852    
853    
854    \subsection{Building with MPI}
855    \label{sect:mpi-build}
856    
857    Building MITgcm to use MPI libraries can be complicated due to the
858    variety of different MPI implementations available, their dependencies
859    or interactions with different compilers, and their often ad-hoc
860    locations within file systems.  For these reasons, its generally a
861    good idea to start by finding and reading the documentation for your
862    machine(s) and, if necessary, seeking help from your local systems
863    administrator.
864    
865  \section{Running the model}  The steps for building MITgcm with MPI support are:
866    \begin{enumerate}
867      
868    \item Determine the locations of your MPI-enabled compiler and/or MPI
869      libraries and put them into an options file as described in Section
870      \ref{sect:genmake}.  One can start with one of the examples in:
871      \begin{rawhtml} <A
872        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm/tools/build_options/">
873      \end{rawhtml}
874      \begin{center}
875        \texttt{MITgcm/tools/build\_options/}
876      \end{center}
877      \begin{rawhtml} </A> \end{rawhtml}
878      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
879      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
880      hand.  You may need help from your user guide or local systems
881      administrator to determine the exact location of the MPI libraries.
882      If libraries are not installed, MPI implementations and related
883      tools are available including:
884      \begin{itemize}
885      \item \begin{rawhtml} <A
886          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
887        \end{rawhtml}
888        MPICH
889        \begin{rawhtml} </A> \end{rawhtml}
890    
891      \item \begin{rawhtml} <A
892          href="http://www.lam-mpi.org/">
893        \end{rawhtml}
894        LAM/MPI
895        \begin{rawhtml} </A> \end{rawhtml}
896    
897      \item \begin{rawhtml} <A
898          href="http://www.osc.edu/~pw/mpiexec/">
899        \end{rawhtml}
900        MPIexec
901        \begin{rawhtml} </A> \end{rawhtml}
902      \end{itemize}
903      
904    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
905      (see Section \ref{sect:genmake}) using commands such as:
906    {\footnotesize \begin{verbatim}
907      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
908      %  make depend
909      %  make
910    \end{verbatim} }
911      
912    \item Run the code with the appropriate MPI ``run'' or ``exec''
913      program provided with your particular implementation of MPI.
914      Typical MPI packages such as MPICH will use something like:
915    \begin{verbatim}
916      %  mpirun -np 4 -machinefile mf ./mitgcmuv
917    \end{verbatim}
918      Sightly more complicated scripts may be needed for many machines
919      since execution of the code may be controlled by both the MPI
920      library and a job scheduling and queueing system such as PBS,
921      LoadLeveller, Condor, or any of a number of similar tools.  A few
922      example scripts (those used for our \begin{rawhtml} <A
923        href="http://mitgcm.org/testing.html"> \end{rawhtml}regular
924      verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
925      at:
926      \begin{rawhtml} <A
927        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/test_scripts/">
928      \end{rawhtml}
929      {\footnotesize \tt
930        http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm\_contrib/test\_scripts/ }
931      \begin{rawhtml} </A> \end{rawhtml}
932    
933    \end{enumerate}
934    
935    An example of the above process on the MITgcm cluster (``cg01'') using
936    the GNU g77 compiler and the mpich MPI library is:
937    
938    {\footnotesize \begin{verbatim}
939      %  cd MITgcm/verification/exp5
940      %  mkdir build
941      %  cd build
942      %  ../../../tools/genmake2 -mpi -mods=../code \
943           -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
944      %  make depend
945      %  make
946      %  cd ../input
947      %  /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
948           -machinefile mf --gm-kill 5 -v -np 2  ../build/mitgcmuv
949    \end{verbatim} }
950    
951    
952    
953    \section[Running MITgcm]{Running the model in prognostic mode}
954  \label{sect:runModel}  \label{sect:runModel}
955    
956  If compilation finished succesfuully (section \ref{sect:buildModel})  If compilation finished succesfuully (section \ref{sect:buildingCode})
957  then an executable called {\em mitgcmuv} will now exist in the local  then an executable called \texttt{mitgcmuv} will now exist in the
958  directory.  local directory.
959    
960  To run the model as a single process (ie. not in parallel) simply  To run the model as a single process (ie. not in parallel) simply
961  type:  type:
# Line 905  Some examples of reading and visualizing Line 1059  Some examples of reading and visualizing
1059  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
1060  \end{verbatim}  \end{verbatim}
1061    
1062  \section{Doing it yourself: customizing the code}  \section[Customizing MITgcm]{Doing it yourself: customizing the code}
1063    
1064  When you are ready to run the model in the configuration you want, the  When you are ready to run the model in the configuration you want, the
1065  easiest thing is to use and adapt the setup of the case studies  easiest thing is to use and adapt the setup of the case studies
# Line 940  simulation controls. Line 1094  simulation controls.
1094  \begin{description}  \begin{description}
1095  \item[dimensions] \  \item[dimensions] \
1096        
1097    The number of points in the x, y,\textit{\ }and r\textit{\    The number of points in the x, y, and r directions are represented
1098    }directions are represented by the variables \textbf{sNx}\textit{,    by the variables \textbf{sNx}, \textbf{sNy} and \textbf{Nr}
1099    }\textbf{sNy}\textit{, } and \textbf{Nr}\textit{\ }respectively    respectively which are declared and set in the file
1100    which are declared and set in the file \textit{model/inc/SIZE.h.    \textit{model/inc/SIZE.h}.  (Again, this assumes a mono-processor
1101    }(Again, this assumes a mono-processor calculation. For    calculation. For multiprocessor calculations see the section on
1102    multiprocessor calculations see section on parallel implementation.)    parallel implementation.)
1103    
1104  \item[grid] \  \item[grid] \
1105        
1106    Three different grids are available: cartesian, spherical polar, and    Three different grids are available: cartesian, spherical polar, and
1107    curvilinear (including the cubed sphere). The grid is set through    curvilinear (which includes the cubed sphere). The grid is set
1108    the logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{    through the logical variables \textbf{usingCartesianGrid},
1109      usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{    \textbf{usingSphericalPolarGrid}, and \textbf{usingCurvilinearGrid}.
1110      usingCurvilinearGrid}\textit{. }In the case of spherical and    In the case of spherical and curvilinear grids, the southern
1111    curvilinear grids, the southern boundary is defined through the    boundary is defined through the variable \textbf{phiMin} which
1112    variable \textbf{phiMin} \textit{\ }which corresponds to the    corresponds to the latitude of the southern most cell face (in
1113    latitude of the southern most cell face (in degrees). The resolution    degrees). The resolution along the x and y directions is controlled
1114    along the x and y directions is controlled by the 1D arrays    by the 1D arrays \textbf{delx} and \textbf{dely} (in meters in the
1115    \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters in    case of a cartesian grid, in degrees otherwise).  The vertical grid
1116    the case of a cartesian grid, in degrees otherwise). The vertical    spacing is set through the 1D array \textbf{delz} for the ocean (in
1117    grid spacing is set through the 1D array \textbf{delz }for the ocean    meters) or \textbf{delp} for the atmosphere (in Pa).  The variable
1118    (in meters) or \textbf{delp}\textit{\ }for the atmosphere (in Pa).    \textbf{Ro\_SeaLevel} represents the standard position of Sea-Level
1119    The variable \textbf{ Ro\_SeaLevel} represents the standard position    in ``R'' coordinate. This is typically set to 0m for the ocean
1120    of Sea-Level in ''R'' coordinate. This is typically set to 0m for    (default value) and 10$^{5}$Pa for the atmosphere. For the
1121    the ocean (default value) and 10$ ^{5}$Pa for the atmosphere. For    atmosphere, also set the logical variable \textbf{groundAtK1} to
1122    the atmosphere, also set the logical variable \textbf{groundAtK1} to    \texttt{'.TRUE.'} which puts the first level (k=1) at the lower
   '.\texttt{TRUE}.'. which put the first level (k=1) at the lower  
1123    boundary (ground).    boundary (ground).
1124        
1125    For the cartesian grid case, the Coriolis parameter $f$ is set    For the cartesian grid case, the Coriolis parameter $f$ is set
1126    through the variables \textbf{f0}\textit{\ }and    through the variables \textbf{f0} and \textbf{beta} which correspond
1127    \textbf{beta}\textit{\ }which correspond to the reference Coriolis    to the reference Coriolis parameter (in s$^{-1}$) and
1128    parameter (in s$^{-1}$) and $\frac{\partial f}{ \partial y}$(in    $\frac{\partial f}{ \partial y}$(in m$^{-1}$s$^{-1}$) respectively.
1129    m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ } is set    If \textbf{beta } is set to a nonzero value, \textbf{f0} is the
1130    to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the    value of $f$ at the southern edge of the domain.
   southern edge of the domain.  
1131    
1132  \item[topography - full and partial cells] \  \item[topography - full and partial cells] \
1133        
1134    The domain bathymetry is read from a file that contains a 2D (x,y)    The domain bathymetry is read from a file that contains a 2D (x,y)
1135    map of depths (in m) for the ocean or pressures (in Pa) for the    map of depths (in m) for the ocean or pressures (in Pa) for the
1136    atmosphere. The file name is represented by the variable    atmosphere. The file name is represented by the variable
1137    \textbf{bathyFile}\textit{. }The file is assumed to contain binary    \textbf{bathyFile}. The file is assumed to contain binary numbers
1138    numbers giving the depth (pressure) of the model at each grid cell,    giving the depth (pressure) of the model at each grid cell, ordered
1139    ordered with the x coordinate varying fastest. The points are    with the x coordinate varying fastest. The points are ordered from
1140    ordered from low coordinate to high coordinate for both axes. The    low coordinate to high coordinate for both axes. The model code
1141    model code applies without modification to enclosed, periodic, and    applies without modification to enclosed, periodic, and double
1142    double periodic domains. Periodicity is assumed by default and is    periodic domains. Periodicity is assumed by default and is
1143    suppressed by setting the depths to 0m for the cells at the limits    suppressed by setting the depths to 0m for the cells at the limits
1144    of the computational domain (note: not sure this is the case for the    of the computational domain (note: not sure this is the case for the
1145    atmosphere). The precision with which to read the binary data is    atmosphere). The precision with which to read the binary data is
1146    controlled by the integer variable \textbf{readBinaryPrec }which can    controlled by the integer variable \textbf{readBinaryPrec} which can
1147    take the value \texttt{32} (single precision) or \texttt{64} (double    take the value \texttt{32} (single precision) or \texttt{64} (double
1148    precision). See the matlab program \textit{ gendata.m }in the    precision). See the matlab program \textit{gendata.m} in the
1149    \textit{input }directories under \textit{verification }to see how    \textit{input} directories under \textit{verification} to see how
1150    the bathymetry files are generated for the case study experiments.    the bathymetry files are generated for the case study experiments.
1151        
1152    To use the partial cell capability, the variable    To use the partial cell capability, the variable \textbf{hFacMin}
1153    \textbf{hFacMin}\textit{\ } needs to be set to a value between 0 and    needs to be set to a value between 0 and 1 (it is set to 1 by
1154    1 (it is set to 1 by default) corresponding to the minimum    default) corresponding to the minimum fractional size of the cell.
1155    fractional size of the cell. For example if the bottom cell is 500m    For example if the bottom cell is 500m thick and \textbf{hFacMin} is
1156    thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the actual    set to 0.1, the actual thickness of the cell (i.e. used in the code)
1157    thickness of the cell (i.e. used in the code) can cover a range of    can cover a range of discrete values 50m apart from 50m to 500m
1158    discrete values 50m apart from 50m to 500m depending on the value of    depending on the value of the bottom depth (in \textbf{bathyFile})
1159    the bottom depth (in \textbf{bathyFile}) at this point.    at this point.
1160        
1161    Note that the bottom depths (or pressures) need not coincide with    Note that the bottom depths (or pressures) need not coincide with
1162    the models levels as deduced from \textbf{delz}\textit{\    the models levels as deduced from \textbf{delz} or \textbf{delp}.
1163    }or\textit{\ }\textbf{delp} \textit{. }The model will interpolate    The model will interpolate the numbers in \textbf{bathyFile} so that
1164    the numbers in \textbf{bathyFile} \textit{\ }so that they match the    they match the levels obtained from \textbf{delz} or \textbf{delp}
1165    levels obtained from \textbf{delz}\textit{ \ }or\textit{\    and \textbf{hFacMin}.
   }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
1166        
1167    (Note: the atmospheric case is a bit more complicated than what is    (Note: the atmospheric case is a bit more complicated than what is
1168    written here I think. To come soon...)    written here I think. To come soon...)
# Line 1026  simulation controls. Line 1177  simulation controls.
1177    \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set    \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set
1178    through the variable \textbf{abEps} (dimensionless). The stagger    through the variable \textbf{abEps} (dimensionless). The stagger
1179    baroclinic time stepping can be activated by setting the logical    baroclinic time stepping can be activated by setting the logical
1180    variable \textbf{staggerTimeStep} to '.\texttt{TRUE}.'.    variable \textbf{staggerTimeStep} to \texttt{'.TRUE.'}.
1181    
1182  \end{description}  \end{description}
1183    
# Line 1044  humidity profile (in g/kg) for the atmos Line 1195  humidity profile (in g/kg) for the atmos
1195    
1196  The form of the equation of state is controlled by the character  The form of the equation of state is controlled by the character
1197  variables \textbf{buoyancyRelation} and \textbf{eosType}.  variables \textbf{buoyancyRelation} and \textbf{eosType}.
1198  \textbf{buoyancyRelation} is set to '\texttt{OCEANIC}' by default and  \textbf{buoyancyRelation} is set to \texttt{'OCEANIC'} by default and
1199  needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations.  needs to be set to \texttt{'ATMOSPHERIC'} for atmosphere simulations.
1200  In this case, \textbf{eosType} must be set to '\texttt{IDEALGAS}'.  In this case, \textbf{eosType} must be set to \texttt{'IDEALGAS'}.
1201  For the ocean, two forms of the equation of state are available:  For the ocean, two forms of the equation of state are available:
1202  linear (set \textbf{eosType} to '\texttt{LINEAR}') and a polynomial  linear (set \textbf{eosType} to \texttt{'LINEAR'}) and a polynomial
1203  approximation to the full nonlinear equation ( set  approximation to the full nonlinear equation ( set \textbf{eosType} to
1204  \textbf{eosType}\textit{\ }to '\texttt{POLYNOMIAL}'). In the linear  \texttt{'POLYNOMIAL'}). In the linear case, you need to specify the
1205  case, you need to specify the thermal and haline expansion  thermal and haline expansion coefficients represented by the variables
1206  coefficients represented by the variables \textbf{tAlpha}\textit{\  \textbf{tAlpha} (in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For
1207    }(in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For the nonlinear  the nonlinear case, you need to generate a file of polynomial
1208  case, you need to generate a file of polynomial coefficients called  coefficients called \textit{POLY3.COEFFS}. To do this, use the program
 \textit{POLY3.COEFFS}. To do this, use the program  
1209  \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is  \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is
1210  available in the same directory and you will need to edit the number  available in the same directory and you will need to edit the number
1211  and the values of the vertical levels in \textit{knudsen2.f} so that  and the values of the vertical levels in \textit{knudsen2.f} so that
# Line 1063  they match those of your configuration). Line 1213  they match those of your configuration).
1213    
1214  There there are also higher polynomials for the equation of state:  There there are also higher polynomials for the equation of state:
1215  \begin{description}  \begin{description}
1216  \item['\texttt{UNESCO}':] The UNESCO equation of state formula of  \item[\texttt{'UNESCO'}:] The UNESCO equation of state formula of
1217    Fofonoff and Millard \cite{fofonoff83}. This equation of state    Fofonoff and Millard \cite{fofonoff83}. This equation of state
1218    assumes in-situ temperature, which is not a model variable; \emph{its use    assumes in-situ temperature, which is not a model variable; {\em its
1219    is therefore discouraged, and it is only listed for completeness}.      use is therefore discouraged, and it is only listed for
1220  \item['\texttt{JMD95Z}':] A modified UNESCO formula by Jackett and      completeness}.
1221    \item[\texttt{'JMD95Z'}:] A modified UNESCO formula by Jackett and
1222    McDougall \cite{jackett95}, which uses the model variable potential    McDougall \cite{jackett95}, which uses the model variable potential
1223    temperature as input. The '\texttt{Z}' indicates that this equation    temperature as input. The \texttt{'Z'} indicates that this equation
1224    of state uses a horizontally and temporally constant pressure    of state uses a horizontally and temporally constant pressure
1225    $p_{0}=-g\rho_{0}z$.    $p_{0}=-g\rho_{0}z$.
1226  \item['\texttt{JMD95P}':] A modified UNESCO formula by Jackett and  \item[\texttt{'JMD95P'}:] A modified UNESCO formula by Jackett and
1227    McDougall \cite{jackett95}, which uses the model variable potential    McDougall \cite{jackett95}, which uses the model variable potential
1228    temperature as input. The '\texttt{P}' indicates that this equation    temperature as input. The \texttt{'P'} indicates that this equation
1229    of state uses the actual hydrostatic pressure of the last time    of state uses the actual hydrostatic pressure of the last time
1230    step. Lagging the pressure in this way requires an additional pickup    step. Lagging the pressure in this way requires an additional pickup
1231    file for restarts.    file for restarts.
1232  \item['\texttt{MDJWF}':] The new, more accurate and less expensive  \item[\texttt{'MDJWF'}:] The new, more accurate and less expensive
1233    equation of state by McDougall et~al. \cite{mcdougall03}. It also    equation of state by McDougall et~al. \cite{mcdougall03}. It also
1234    requires lagging the pressure and therefore an additional pickup    requires lagging the pressure and therefore an additional pickup
1235    file for restarts.    file for restarts.
# Line 1088  salinity is required. Line 1239  salinity is required.
1239    
1240  \subsection{Momentum equations}  \subsection{Momentum equations}
1241    
1242  In this section, we only focus for now on the parameters that you are likely  In this section, we only focus for now on the parameters that you are
1243  to change, i.e. the ones relative to forcing and dissipation for example.  likely to change, i.e. the ones relative to forcing and dissipation
1244  The details relevant to the vector-invariant form of the equations and the  for example.  The details relevant to the vector-invariant form of the
1245  various advection schemes are not covered for the moment. We assume that you  equations and the various advection schemes are not covered for the
1246  use the standard form of the momentum equations (i.e. the flux-form) with  moment. We assume that you use the standard form of the momentum
1247  the default advection scheme. Also, there are a few logical variables that  equations (i.e. the flux-form) with the default advection scheme.
1248  allow you to turn on/off various terms in the momentum equation. These  Also, there are a few logical variables that allow you to turn on/off
1249  variables are called \textbf{momViscosity, momAdvection, momForcing,  various terms in the momentum equation. These variables are called
1250  useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  \textbf{momViscosity, momAdvection, momForcing, useCoriolis,
1251  \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.    momPressureForcing, momStepping} and \textbf{metricTerms }and are
1252  Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  assumed to be set to \texttt{'.TRUE.'} here.  Look at the file
1253  these variables.  \textit{model/inc/PARAMS.h }for a precise definition of these
1254    variables.
1255    
1256  \begin{description}  \begin{description}
1257  \item[initialization] \  \item[initialization] \
# Line 1111  these variables. Line 1263  these variables.
1263  \item[forcing] \  \item[forcing] \
1264        
1265    This section only applies to the ocean. You need to generate    This section only applies to the ocean. You need to generate
1266    wind-stress data into two files \textbf{zonalWindFile}\textit{\ }and    wind-stress data into two files \textbf{zonalWindFile} and
1267    \textbf{ meridWindFile }corresponding to the zonal and meridional    \textbf{meridWindFile} corresponding to the zonal and meridional
1268    components of the wind stress, respectively (if you want the stress    components of the wind stress, respectively (if you want the stress
1269    to be along the direction of only one of the model horizontal axes,    to be along the direction of only one of the model horizontal axes,
1270    you only need to generate one file). The format of the files is    you only need to generate one file). The format of the files is
1271    similar to the bathymetry file. The zonal (meridional) stress data    similar to the bathymetry file. The zonal (meridional) stress data
1272    are assumed to be in Pa and located at U-points (V-points). As for    are assumed to be in Pa and located at U-points (V-points). As for
1273    the bathymetry, the precision with which to read the binary data is    the bathymetry, the precision with which to read the binary data is
1274    controlled by the variable \textbf{readBinaryPrec}.\textbf{\ } See    controlled by the variable \textbf{readBinaryPrec}.  See the matlab
1275    the matlab program \textit{gendata.m }in the \textit{input    program \textit{gendata.m} in the \textit{input} directories under
1276    }directories under \textit{verification }to see how simple    \textit{verification} to see how simple analytical wind forcing data
1277    analytical wind forcing data are generated for the case study    are generated for the case study experiments.
   experiments.  
1278        
1279    There is also the possibility of prescribing time-dependent periodic    There is also the possibility of prescribing time-dependent periodic
1280    forcing. To do this, concatenate the successive time records into a    forcing. To do this, concatenate the successive time records into a
1281    single file (for each stress component) ordered in a (x, y, t)    single file (for each stress component) ordered in a (x,y,t) fashion
1282    fashion and set the following variables:    and set the following variables: \textbf{periodicExternalForcing }to
1283    \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',    \texttt{'.TRUE.'}, \textbf{externForcingPeriod }to the period (in s)
1284    \textbf{externForcingPeriod }to the period (in s) of which the    of which the forcing varies (typically 1 month), and
1285    forcing varies (typically 1 month), and \textbf{externForcingCycle    \textbf{externForcingCycle} to the repeat time (in s) of the forcing
1286    }to the repeat time (in s) of the forcing (typically 1 year -- note:    (typically 1 year -- note: \textbf{ externForcingCycle} must be a
1287    \textbf{ externForcingCycle }must be a multiple of    multiple of \textbf{externForcingPeriod}).  With these variables set
1288    \textbf{externForcingPeriod}).  With these variables set up, the    up, the model will interpolate the forcing linearly at each
1289    model will interpolate the forcing linearly at each iteration.    iteration.
1290    
1291  \item[dissipation] \  \item[dissipation] \
1292        
1293    The lateral eddy viscosity coefficient is specified through the    The lateral eddy viscosity coefficient is specified through the
1294    variable \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The    variable \textbf{viscAh} (in m$^{2}$s$^{-1}$). The vertical eddy
1295    vertical eddy viscosity coefficient is specified through the    viscosity coefficient is specified through the variable
1296    variable \textbf{viscAz }(in m$^{2}$s$ ^{-1}$) for the ocean and    \textbf{viscAz} (in m$^{2}$s$^{-1}$) for the ocean and
1297    \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$) for the atmosphere.    \textbf{viscAp} (in Pa$^{2}$s$^{-1}$) for the atmosphere.  The
1298    The vertical diffusive fluxes can be computed implicitly by setting    vertical diffusive fluxes can be computed implicitly by setting the
1299    the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}    logical variable \textbf{implicitViscosity }to \texttt{'.TRUE.'}.
1300    .'. In addition, biharmonic mixing can be added as well through the    In addition, biharmonic mixing can be added as well through the
1301    variable \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a    variable \textbf{viscA4} (in m$^{4}$s$^{-1}$). On a spherical polar
1302    spherical polar grid, you might also need to set the variable    grid, you might also need to set the variable \textbf{cosPower}
1303    \textbf{cosPower} which is set to 0 by default and which represents    which is set to 0 by default and which represents the power of
1304    the power of cosine of latitude to multiply viscosity. Slip or    cosine of latitude to multiply viscosity. Slip or no-slip conditions
1305    no-slip conditions at lateral and bottom boundaries are specified    at lateral and bottom boundaries are specified through the logical
1306    through the logical variables \textbf{no\_slip\_sides}\textit{\ }    variables \textbf{no\_slip\_sides} and \textbf{no\_slip\_bottom}. If
1307    and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}',    set to \texttt{'.FALSE.'}, free-slip boundary conditions are
1308    free-slip boundary conditions are applied. If no-slip boundary    applied. If no-slip boundary conditions are applied at the bottom, a
1309    conditions are applied at the bottom, a bottom drag can be applied    bottom drag can be applied as well. Two forms are available: linear
1310    as well. Two forms are available: linear (set the variable    (set the variable \textbf{bottomDragLinear} in s$ ^{-1}$) and
1311    \textbf{bottomDragLinear}\textit{\ }in s$ ^{-1}$) and quadratic (set    quadratic (set the variable \textbf{bottomDragQuadratic} in
1312    the variable \textbf{bottomDragQuadratic}\textit{ \ }in m$^{-1}$).    m$^{-1}$).
1313    
1314    The Fourier and Shapiro filters are described elsewhere.    The Fourier and Shapiro filters are described elsewhere.
1315    
# Line 1172  these variables. Line 1323  these variables.
1323  \item[calculation of pressure/geopotential] \  \item[calculation of pressure/geopotential] \
1324        
1325    First, to run a non-hydrostatic ocean simulation, set the logical    First, to run a non-hydrostatic ocean simulation, set the logical
1326    variable \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure    variable \textbf{nonHydrostatic} to \texttt{'.TRUE.'}. The pressure
1327    field is then inverted through a 3D elliptic equation. (Note: this    field is then inverted through a 3D elliptic equation. (Note: this
1328    capability is not available for the atmosphere yet.) By default, a    capability is not available for the atmosphere yet.) By default, a
1329    hydrostatic simulation is assumed and a 2D elliptic equation is used    hydrostatic simulation is assumed and a 2D elliptic equation is used
1330    to invert the pressure field. The parameters controlling the    to invert the pressure field. The parameters controlling the
1331    behaviour of the elliptic solvers are the variables    behaviour of the elliptic solvers are the variables
1332    \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual } for    \textbf{cg2dMaxIters} and \textbf{cg2dTargetResidual } for
1333    the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{    the 2D case and \textbf{cg3dMaxIters} and
1334      cg3dTargetResidual }for the 3D case. You probably won't need to    \textbf{cg3dTargetResidual} for the 3D case. You probably won't need to
1335    alter the default values (are we sure of this?).    alter the default values (are we sure of this?).
1336        
1337    For the calculation of the surface pressure (for the ocean) or    For the calculation of the surface pressure (for the ocean) or
1338    surface geopotential (for the atmosphere) you need to set the    surface geopotential (for the atmosphere) you need to set the
1339    logical variables \textbf{rigidLid} and    logical variables \textbf{rigidLid} and \textbf{implicitFreeSurface}
1340    \textbf{implicitFreeSurface}\textit{\ }(set one to '.    (set one to \texttt{'.TRUE.'} and the other to \texttt{'.FALSE.'}
1341    \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how    depending on how you want to deal with the ocean upper or atmosphere
1342    you want to deal with the ocean upper or atmosphere lower boundary).    lower boundary).
1343    
1344  \end{description}  \end{description}
1345    
1346  \subsection{Tracer equations}  \subsection{Tracer equations}
1347    
1348  This section covers the tracer equations i.e. the potential temperature  This section covers the tracer equations i.e. the potential
1349  equation and the salinity (for the ocean) or specific humidity (for the  temperature equation and the salinity (for the ocean) or specific
1350  atmosphere) equation. As for the momentum equations, we only describe for  humidity (for the atmosphere) equation. As for the momentum equations,
1351  now the parameters that you are likely to change. The logical variables  we only describe for now the parameters that you are likely to change.
1352  \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{  The logical variables \textbf{tempDiffusion} \textbf{tempAdvection}
1353  tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  \textbf{tempForcing}, and \textbf{tempStepping} allow you to turn
1354  terms in the temperature equation (same thing for salinity or specific  on/off terms in the temperature equation (same thing for salinity or
1355  humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{  specific humidity with variables \textbf{saltDiffusion},
1356  saltAdvection}\textit{\ }etc). These variables are all assumed here to be  \textbf{saltAdvection} etc.). These variables are all assumed here to
1357  set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  be set to \texttt{'.TRUE.'}. Look at file \textit{model/inc/PARAMS.h}
1358  precise definition.  for a precise definition.
1359    
1360  \begin{description}  \begin{description}
1361  \item[initialization] \  \item[initialization] \
1362        
1363    The initial tracer data can be contained in the binary files    The initial tracer data can be contained in the binary files
1364    \textbf{ hydrogThetaFile }and \textbf{hydrogSaltFile}. These files    \textbf{hydrogThetaFile} and \textbf{hydrogSaltFile}. These files
1365    should contain 3D data ordered in an (x, y, r) fashion with k=1 as    should contain 3D data ordered in an (x,y,r) fashion with k=1 as the
1366    the first vertical level.  If no file names are provided, the    first vertical level.  If no file names are provided, the tracers
1367    tracers are then initialized with the values of \textbf{tRef }and    are then initialized with the values of \textbf{tRef} and
1368    \textbf{sRef }mentioned above (in the equation of state section). In    \textbf{sRef} mentioned above (in the equation of state section). In
1369    this case, the initial tracer data are uniform in x and y for each    this case, the initial tracer data are uniform in x and y for each
1370    depth level.    depth level.
1371    
# Line 1224  precise definition. Line 1375  precise definition.
1375    atmosphere not being completely stabilized at the moment.    atmosphere not being completely stabilized at the moment.
1376        
1377    A combination of fluxes data and relaxation terms can be used for    A combination of fluxes data and relaxation terms can be used for
1378    driving the tracer equations. \ For potential temperature, heat flux    driving the tracer equations.  For potential temperature, heat flux
1379    data (in W/m$ ^{2}$) can be stored in the 2D binary file    data (in W/m$ ^{2}$) can be stored in the 2D binary file
1380    \textbf{surfQfile}\textit{. }  Alternatively or in addition, the    \textbf{surfQfile}.  Alternatively or in addition, the forcing can
1381    forcing can be specified through a relaxation term. The SST data to    be specified through a relaxation term. The SST data to which the
1382    which the model surface temperatures are restored to are supposed to    model surface temperatures are restored to are supposed to be stored
1383    be stored in the 2D binary file \textbf{ thetaClimFile}\textit{.    in the 2D binary file \textbf{thetaClimFile}. The corresponding
1384    }The corresponding relaxation time scale coefficient is set through    relaxation time scale coefficient is set through the variable
1385    the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The same    \textbf{tauThetaClimRelax} (in s). The same procedure applies for
1386    procedure applies for salinity with the variable names    salinity with the variable names \textbf{EmPmRfile},
1387    \textbf{EmPmRfile }\textit{, }\textbf{saltClimFile}\textit{, }and    \textbf{saltClimFile}, and \textbf{tauSaltClimRelax} for freshwater
1388    \textbf{tauSaltClimRelax} \textit{\ }for freshwater flux (in m/s)    flux (in m/s) and surface salinity (in ppt) data files and
1389    and surface salinity (in ppt) data files and relaxation time scale    relaxation time scale coefficient (in s), respectively. Also for
1390    coefficient (in s), respectively. Also for salinity, if the CPP key    salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on,
1391    \textbf{USE\_NATURAL\_BCS} is turned on, natural boundary conditions    natural boundary conditions are applied i.e. when computing the
1392    are applied i.e. when computing the surface salinity tendency, the    surface salinity tendency, the freshwater flux is multiplied by the
1393    freshwater flux is multiplied by the model surface salinity instead    model surface salinity instead of a constant salinity value.
   of a constant salinity value.  
1394        
1395    As for the other input files, the precision with which to read the    As for the other input files, the precision with which to read the
1396    data is controlled by the variable \textbf{readBinaryPrec}.    data is controlled by the variable \textbf{readBinaryPrec}.
# Line 1250  precise definition. Line 1400  precise definition.
1400  \item[dissipation] \  \item[dissipation] \
1401        
1402    Lateral eddy diffusivities for temperature and salinity/specific    Lateral eddy diffusivities for temperature and salinity/specific
1403    humidity are specified through the variables \textbf{diffKhT }and    humidity are specified through the variables \textbf{diffKhT} and
1404    \textbf{diffKhS } (in m$^{2}$/s). Vertical eddy diffusivities are    \textbf{diffKhS} (in m$^{2}$/s). Vertical eddy diffusivities are
1405    specified through the variables \textbf{diffKzT }and \textbf{diffKzS    specified through the variables \textbf{diffKzT} and
1406    }(in m$^{2}$/s) for the ocean and \textbf{diffKpT }and    \textbf{diffKzS} (in m$^{2}$/s) for the ocean and \textbf{diffKpT
1407    \textbf{diffKpS }(in Pa$^{2}$/s) for the atmosphere. The vertical    }and \textbf{diffKpS} (in Pa$^{2}$/s) for the atmosphere. The
1408    diffusive fluxes can be computed implicitly by setting the logical    vertical diffusive fluxes can be computed implicitly by setting the
1409    variable \textbf{implicitDiffusion }to '.\texttt{TRUE} .'. In    logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}.
1410    addition, biharmonic diffusivities can be specified as well through    In addition, biharmonic diffusivities can be specified as well
1411    the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in    through the coefficients \textbf{diffK4T} and \textbf{diffK4S} (in
1412    m$^{4}$/s). Note that the cosine power scaling (specified through    m$^{4}$/s). Note that the cosine power scaling (specified through
1413    \textbf{cosPower }- see the momentum equations section) is applied    \textbf{cosPower}---see the momentum equations section) is applied to
1414    to the tracer diffusivities (Laplacian and biharmonic) as well. The    the tracer diffusivities (Laplacian and biharmonic) as well. The
1415    Gent and McWilliams parameterization for oceanic tracers is    Gent and McWilliams parameterization for oceanic tracers is
1416    described in the package section. Finally, note that tracers can be    described in the package section. Finally, note that tracers can be
1417    also subject to Fourier and Shapiro filtering (see the corresponding    also subject to Fourier and Shapiro filtering (see the corresponding
# Line 1276  precise definition. Line 1426  precise definition.
1426    value (if set to a negative value by the user, the model will set it    value (if set to a negative value by the user, the model will set it
1427    to the tracer time step). The other option is to parameterize    to the tracer time step). The other option is to parameterize
1428    convection with implicit vertical diffusion. To do this, set the    convection with implicit vertical diffusion. To do this, set the
1429    logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE} .'    logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}
1430    and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s)    and the real variable \textbf{ivdc\_kappa} to a value (in m$^{2}$/s)
1431    you wish the tracer vertical diffusivities to have when mixing    you wish the tracer vertical diffusivities to have when mixing
1432    tracers vertically due to static instabilities. Note that    tracers vertically due to static instabilities. Note that
1433    \textbf{cadjFreq }and \textbf{ivdc\_kappa }can not both have    \textbf{cadjFreq} and \textbf{ivdc\_kappa}can not both have non-zero
1434    non-zero value.    value.
1435    
1436  \end{description}  \end{description}
1437    
1438  \subsection{Simulation controls}  \subsection{Simulation controls}
1439    
1440  The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  The model ''clock'' is defined by the variable \textbf{deltaTClock}
1441  which determines the IO frequencies and is used in tagging output.  (in s) which determines the IO frequencies and is used in tagging
1442  Typically, you will set it to the tracer time step for accelerated runs  output.  Typically, you will set it to the tracer time step for
1443  (otherwise it is simply set to the default time step \textbf{deltaT}).  accelerated runs (otherwise it is simply set to the default time step
1444  Frequency of checkpointing and dumping of the model state are referenced to  \textbf{deltaT}).  Frequency of checkpointing and dumping of the model
1445  this clock (see below).  state are referenced to this clock (see below).
1446    
1447  \begin{description}  \begin{description}
1448  \item[run duration] \  \item[run duration] \
1449        
1450    The beginning of a simulation is set by specifying a start time (in    The beginning of a simulation is set by specifying a start time (in
1451    s) through the real variable \textbf{startTime }or by specifying an    s) through the real variable \textbf{startTime} or by specifying an
1452    initial iteration number through the integer variable    initial iteration number through the integer variable
1453    \textbf{nIter0}. If these variables are set to nonzero values, the    \textbf{nIter0}. If these variables are set to nonzero values, the
1454    model will look for a ''pickup'' file \textit{pickup.0000nIter0 }to    model will look for a ''pickup'' file \textit{pickup.0000nIter0} to
1455    restart the integration\textit{. }The end of a simulation is set    restart the integration. The end of a simulation is set through the
1456    through the real variable \textbf{endTime }(in s).  Alternatively,    real variable \textbf{endTime} (in s).  Alternatively, you can
1457    you can specify instead the number of time steps to execute through    specify instead the number of time steps to execute through the
1458    the integer variable \textbf{nTimeSteps}.    integer variable \textbf{nTimeSteps}.
1459    
1460  \item[frequency of output] \  \item[frequency of output] \
1461        
1462    Real variables defining frequencies (in s) with which output files    Real variables defining frequencies (in s) with which output files
1463    are written on disk need to be set up. \textbf{dumpFreq }controls    are written on disk need to be set up. \textbf{dumpFreq} controls
1464    the frequency with which the instantaneous state of the model is    the frequency with which the instantaneous state of the model is
1465    saved. \textbf{chkPtFreq } and \textbf{pchkPtFreq }control the    saved. \textbf{chkPtFreq} and \textbf{pchkPtFreq} control the output
1466    output frequency of rolling and permanent checkpoint files,    frequency of rolling and permanent checkpoint files, respectively.
1467    respectively. See section 1.5.1 Output files for the definition of    See section 1.5.1 Output files for the definition of model state and
1468    model state and checkpoint files. In addition, time-averaged fields    checkpoint files. In addition, time-averaged fields can be written
1469    can be written out by setting the variable \textbf{taveFreq} (in s).    out by setting the variable \textbf{taveFreq} (in s).  The precision
1470    The precision with which to write the binary data is controlled by    with which to write the binary data is controlled by the integer
1471    the integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32}    variable w\textbf{riteBinaryPrec} (set it to \texttt{32} or
1472    or \texttt{ 64}).    \texttt{64}).
1473    
1474  \end{description}  \end{description}
1475    

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.26

  ViewVC Help
Powered by ViewVC 1.1.22