/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.16 by edhill, Thu Jan 29 03:02:33 2004 UTC revision 1.35 by molod, Thu Apr 20 22:09:08 2006 UTC
# Line 17  you are ready to try implementing the co Line 17  you are ready to try implementing the co
17    
18  \section{Where to find information}  \section{Where to find information}
19  \label{sect:whereToFindInfo}  \label{sect:whereToFindInfo}
20    \begin{rawhtml}
21    <!-- CMIREDIR:whereToFindInfo: -->
22    \end{rawhtml}
23    
24  A web site is maintained for release 2 (``Pelican'') of MITgcm:  A web site is maintained for release 2 (``Pelican'') of MITgcm:
25  \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}
# Line 50  http://mitgcm.org/htdig/ Line 53  http://mitgcm.org/htdig/
53    
54  \section{Obtaining the code}  \section{Obtaining the code}
55  \label{sect:obtainingCode}  \label{sect:obtainingCode}
56    \begin{rawhtml}
57    <!-- CMIREDIR:obtainingCode: -->
58    \end{rawhtml}
59    
60  MITgcm can be downloaded from our system by following  MITgcm can be downloaded from our system by following
61  the instructions below. As a courtesy we ask that you send e-mail to us at  the instructions below. As a courtesy we ask that you send e-mail to us at
# Line 79  provide easy support for maintenance upd Line 85  provide easy support for maintenance upd
85    
86  \end{enumerate}  \end{enumerate}
87    
88    \subsection{Method 1 - Checkout from CVS}
89    \label{sect:cvs_checkout}
90    
91  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
92  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
93  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
# Line 89  be set within your shell.  For a csh or Line 98  be set within your shell.  For a csh or
98  \begin{verbatim}  \begin{verbatim}
99  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
100  \end{verbatim}  \end{verbatim}
101  in your .cshrc or .tcshrc file.  For bash or sh shells, put:  in your \texttt{.cshrc} or \texttt{.tcshrc} file.  For bash or sh
102    shells, put:
103  \begin{verbatim}  \begin{verbatim}
104  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
105  \end{verbatim}  \end{verbatim}
106  in your .profile or .bashrc file.  in your \texttt{.profile} or \texttt{.bashrc} file.
107    
108    
109  To get MITgcm through CVS, first register with the MITgcm CVS server  To get MITgcm through CVS, first register with the MITgcm CVS server
# Line 115  The MITgcm web site contains further dir Line 125  The MITgcm web site contains further dir
125  code and CVS.  It also contains a web interface to our CVS archive so  code and CVS.  It also contains a web interface to our CVS archive so
126  that one may easily view the state of files, revisions, and other  that one may easily view the state of files, revisions, and other
127  development milestones:  development milestones:
128  \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href="http://mitgcm.org/download" target="idontexist"> \end{rawhtml}
129  \begin{verbatim}  \begin{verbatim}
130  http://mitgcm.org/source\_code.html  http://mitgcm.org/source_code.html
131  \end{verbatim}  \end{verbatim}
132  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
133    
134    As a convenience, the MITgcm CVS server contains aliases which are
135    named subsets of the codebase.  These aliases can be especially
136    helpful when used over slow internet connections or on machines with
137    restricted storage space.  Table \ref{tab:cvsModules} contains a list
138    of CVS aliases
139    \begin{table}[htb]
140      \centering
141      \begin{tabular}[htb]{|lp{3.25in}|}\hline
142        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
143        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
144        \texttt{MITgcm\_verif\_basic}
145        &  Source code plus a small set of the verification examples
146        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
147        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
148        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
149        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
150        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
151        verification examples. \\\hline
152      \end{tabular}
153      \caption{MITgcm CVS Modules}
154      \label{tab:cvsModules}
155    \end{table}
156    
157  The checkout process creates a directory called \textit{MITgcm}. If  The checkout process creates a directory called \texttt{MITgcm}. If
158  the directory \textit{MITgcm} exists this command updates your code  the directory \texttt{MITgcm} exists this command updates your code
159  based on the repository. Each directory in the source tree contains a  based on the repository. Each directory in the source tree contains a
160  directory \textit{CVS}. This information is required by CVS to keep  directory \texttt{CVS}. This information is required by CVS to keep
161  track of your file versions with respect to the repository. Don't edit  track of your file versions with respect to the repository. Don't edit
162  the files in \textit{CVS}!  You can also use CVS to download code  the files in \texttt{CVS}!  You can also use CVS to download code
163  updates.  More extensive information on using CVS for maintaining  updates.  More extensive information on using CVS for maintaining
164  MITgcm code can be found  MITgcm code can be found
165  \begin{rawhtml} <A href=http://mitgcm.org/usingcvstoget.html target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href="http://mitgcm.org/usingcvstoget.html" target="idontexist"> \end{rawhtml}
166  here  here
167  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
168  .  .
169    It is important to note that the CVS aliases in Table
170    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
171    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
172    they create can be changed to a different name following the check-out:
173    \begin{verbatim}
174       %  cvs co MITgcm_verif_basic
175       %  mv MITgcm MITgcm_verif_basic
176    \end{verbatim}
177    
178    
179  \paragraph*{Conventional download method}  \subsection{Method 2 - Tar file download}
180  \label{sect:conventionalDownload}  \label{sect:conventionalDownload}
181    
182  If you do not have CVS on your system, you can download the model as a  If you do not have CVS on your system, you can download the model as a
# Line 150  The tar file still contains CVS informat Line 190  The tar file still contains CVS informat
190  delete; even if you do not use CVS yourself the information can help  delete; even if you do not use CVS yourself the information can help
191  us if you should need to send us your copy of the code.  If a recent  us if you should need to send us your copy of the code.  If a recent
192  tar file does not exist, then please contact the developers through  tar file does not exist, then please contact the developers through
193  the MITgcm-support list.  the
194    \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
195    MITgcm-support@mitgcm.org
196    \begin{rawhtml} </A> \end{rawhtml}
197    mailing list.
198    
199  \paragraph*{Upgrading from an earlier version}  \subsubsection{Upgrading from an earlier version}
200    
201  If you already have an earlier version of the code you can ``upgrade''  If you already have an earlier version of the code you can ``upgrade''
202  your copy instead of downloading the entire repository again. First,  your copy instead of downloading the entire repository again. First,
# Line 178  If the list of conflicts scrolled off th Line 222  If the list of conflicts scrolled off th
222  cvs update command and it will report the conflicts. Conflicts are  cvs update command and it will report the conflicts. Conflicts are
223  indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and  indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
224  ``$>>>>>>>$''. For example,  ``$>>>>>>>$''. For example,
225    {\small
226  \begin{verbatim}  \begin{verbatim}
227  <<<<<<< ini_parms.F  <<<<<<< ini_parms.F
228       & bottomDragLinear,myOwnBottomDragCoefficient,       & bottomDragLinear,myOwnBottomDragCoefficient,
# Line 185  indicated in the code by the delimites ` Line 230  indicated in the code by the delimites `
230       & bottomDragLinear,bottomDragQuadratic,       & bottomDragLinear,bottomDragQuadratic,
231  >>>>>>> 1.18  >>>>>>> 1.18
232  \end{verbatim}  \end{verbatim}
233    }
234  means that you added ``myOwnBottomDragCoefficient'' to a namelist at  means that you added ``myOwnBottomDragCoefficient'' to a namelist at
235  the same time and place that we added ``bottomDragQuadratic''. You  the same time and place that we added ``bottomDragQuadratic''. You
236  need to resolve this conflict and in this case the line should be  need to resolve this conflict and in this case the line should be
237  changed to:  changed to:
238    {\small
239  \begin{verbatim}  \begin{verbatim}
240       & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,       & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
241  \end{verbatim}  \end{verbatim}
242    }
243  and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.  and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
244  Unless you are making modifications which exactly parallel  Unless you are making modifications which exactly parallel
245  developments we make, these types of conflicts should be rare.  developments we make, these types of conflicts should be rare.
# Line 215  also means we can't tell what version of Line 263  also means we can't tell what version of
263  with. So please be sure you understand what you're doing.  with. So please be sure you understand what you're doing.
264    
265  \section{Model and directory structure}  \section{Model and directory structure}
266    \begin{rawhtml}
267    <!-- CMIREDIR:directory_structure: -->
268    \end{rawhtml}
269    
270  The ``numerical'' model is contained within a execution environment  The ``numerical'' model is contained within a execution environment
271  support wrapper. This wrapper is designed to provide a general  support wrapper. This wrapper is designed to provide a general
# Line 222  framework for grid-point models. MITgcmU Line 273  framework for grid-point models. MITgcmU
273  model that uses the framework. Under this structure the model is split  model that uses the framework. Under this structure the model is split
274  into execution environment support code and conventional numerical  into execution environment support code and conventional numerical
275  model code. The execution environment support code is held under the  model code. The execution environment support code is held under the
276  \textit{eesupp} directory. The grid point model code is held under the  \texttt{eesupp} directory. The grid point model code is held under the
277  \textit{model} directory. Code execution actually starts in the  \texttt{model} directory. Code execution actually starts in the
278  \textit{eesupp} routines and not in the \textit{model} routines. For  \texttt{eesupp} routines and not in the \texttt{model} routines. For
279  this reason the top-level  this reason the top-level \texttt{MAIN.F} is in the
280  \textit{MAIN.F} is in the \textit{eesupp/src} directory. In general,  \texttt{eesupp/src} directory. In general, end-users should not need
281  end-users should not need to worry about this level. The top-level routine  to worry about this level. The top-level routine for the numerical
282  for the numerical part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F%  part of the code is in \texttt{model/src/THE\_MODEL\_MAIN.F}. Here is
283  }. Here is a brief description of the directory structure of the model under  a brief description of the directory structure of the model under the
284  the root tree (a detailed description is given in section 3: Code structure).  root tree (a detailed description is given in section 3: Code
285    structure).
286    
287  \begin{itemize}  \begin{itemize}
 \item \textit{bin}: this directory is initially empty. It is the default  
 directory in which to compile the code.  
288    
289  \item \textit{diags}: contains the code relative to time-averaged  \item \texttt{bin}: this directory is initially empty. It is the
290  diagnostics. It is subdivided into two subdirectories \textit{inc} and    default directory in which to compile the code.
291  \textit{src} that contain include files (*.\textit{h} files) and Fortran    
292  subroutines (*.\textit{F} files), respectively.  \item \texttt{diags}: contains the code relative to time-averaged
293      diagnostics. It is subdivided into two subdirectories \texttt{inc}
294  \item \textit{doc}: contains brief documentation notes.    and \texttt{src} that contain include files (\texttt{*.h} files) and
295      Fortran subroutines (\texttt{*.F} files), respectively.
296  \item \textit{eesupp}: contains the execution environment source code. Also  
297  subdivided into two subdirectories \textit{inc} and \textit{src}.  \item \texttt{doc}: contains brief documentation notes.
298      
299  \item \textit{exe}: this directory is initially empty. It is the default  \item \texttt{eesupp}: contains the execution environment source code.
300  directory in which to execute the code.    Also subdivided into two subdirectories \texttt{inc} and
301      \texttt{src}.
302  \item \textit{model}: this directory contains the main source code. Also    
303  subdivided into two subdirectories \textit{inc} and \textit{src}.  \item \texttt{exe}: this directory is initially empty. It is the
304      default directory in which to execute the code.
305  \item \textit{pkg}: contains the source code for the packages. Each package    
306  corresponds to a subdirectory. For example, \textit{gmredi} contains the  \item \texttt{model}: this directory contains the main source code.
307  code related to the Gent-McWilliams/Redi scheme, \textit{aim} the code    Also subdivided into two subdirectories \texttt{inc} and
308  relative to the atmospheric intermediate physics. The packages are described    \texttt{src}.
309  in detail in section 3.    
310    \item \texttt{pkg}: contains the source code for the packages. Each
311  \item \textit{tools}: this directory contains various useful tools. For    package corresponds to a subdirectory. For example, \texttt{gmredi}
312  example, \textit{genmake2} is a script written in csh (C-shell) that should    contains the code related to the Gent-McWilliams/Redi scheme,
313  be used to generate your makefile. The directory \textit{adjoint} contains    \texttt{aim} the code relative to the atmospheric intermediate
314  the makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that    physics. The packages are described in detail in section 3.
315  generates the adjoint code. The latter is described in details in part V.    
316    \item \texttt{tools}: this directory contains various useful tools.
317  \item \textit{utils}: this directory contains various utilities. The    For example, \texttt{genmake2} is a script written in csh (C-shell)
318  subdirectory \textit{knudsen2} contains code and a makefile that    that should be used to generate your makefile. The directory
319  compute coefficients of the polynomial approximation to the knudsen    \texttt{adjoint} contains the makefile specific to the Tangent
320  formula for an ocean nonlinear equation of state. The \textit{matlab}    linear and Adjoint Compiler (TAMC) that generates the adjoint code.
321  subdirectory contains matlab scripts for reading model output directly    The latter is described in details in part V.
322  into matlab. \textit{scripts} contains C-shell post-processing    
323  scripts for joining processor-based and tiled-based model output.  \item \texttt{utils}: this directory contains various utilities. The
324      subdirectory \texttt{knudsen2} contains code and a makefile that
325      compute coefficients of the polynomial approximation to the knudsen
326      formula for an ocean nonlinear equation of state. The
327      \texttt{matlab} subdirectory contains matlab scripts for reading
328      model output directly into matlab. \texttt{scripts} contains C-shell
329      post-processing scripts for joining processor-based and tiled-based
330      model output.
331      
332    \item \texttt{verification}: this directory contains the model
333      examples. See section \ref{sect:modelExamples}.
334    
 \item \textit{verification}: this directory contains the model examples. See  
 section \ref{sect:modelExamples}.  
335  \end{itemize}  \end{itemize}
336    
337  \section{Example experiments}  \section[MITgcm Example Experiments]{Example experiments}
338  \label{sect:modelExamples}  \label{sect:modelExamples}
339    \begin{rawhtml}
340    <!-- CMIREDIR:modelExamples: -->
341    \end{rawhtml}
342    
343  %% a set of twenty-four pre-configured numerical experiments  %% a set of twenty-four pre-configured numerical experiments
344    
345  The MITgcm distribution comes with more than a dozen pre-configured  The full MITgcm distribution comes with more than a dozen
346  numerical experiments. Some of these example experiments are tests of  pre-configured numerical experiments. Some of these example
347  individual parts of the model code, but many are fully fledged  experiments are tests of individual parts of the model code, but many
348  numerical simulations. A few of the examples are used for tutorial  are fully fledged numerical simulations. A few of the examples are
349  documentation in sections \ref{sect:eg-baro} - \ref{sect:eg-global}.  used for tutorial documentation in sections \ref{sect:eg-baro} -
350  The other examples follow the same general structure as the tutorial  \ref{sect:eg-global}.  The other examples follow the same general
351  examples. However, they only include brief instructions in a text file  structure as the tutorial examples. However, they only include brief
352  called {\it README}.  The examples are located in subdirectories under  instructions in a text file called {\it README}.  The examples are
353  the directory \textit{verification}. Each example is briefly described  located in subdirectories under the directory \texttt{verification}.
354  below.  Each example is briefly described below.
355    
356  \subsection{Full list of model examples}  \subsection{Full list of model examples}
357    
358  \begin{enumerate}  \begin{enumerate}
359  \item \textit{exp0} - single layer, ocean double gyre (barotropic with    
360    \item \texttt{exp0} - single layer, ocean double gyre (barotropic with
361    free-surface). This experiment is described in detail in section    free-surface). This experiment is described in detail in section
362    \ref{sect:eg-baro}.    \ref{sect:eg-baro}.
363    
364  \item \textit{exp1} - Four layer, ocean double gyre. This experiment  \item \texttt{exp1} - Four layer, ocean double gyre. This experiment
365    is described in detail in section \ref{sect:eg-baroc}.    is described in detail in section \ref{sect:eg-baroc}.
366        
367  \item \textit{exp2} - 4x4 degree global ocean simulation with steady  \item \texttt{exp2} - 4x4 degree global ocean simulation with steady
368    climatological forcing. This experiment is described in detail in    climatological forcing. This experiment is described in detail in
369    section \ref{sect:eg-global}.    section \ref{sect:eg-global}.
370        
371  \item \textit{exp4} - Flow over a Gaussian bump in open-water or  \item \texttt{exp4} - Flow over a Gaussian bump in open-water or
372    channel with open boundaries.    channel with open boundaries.
373        
374  \item \textit{exp5} - Inhomogenously forced ocean convection in a  \item \texttt{exp5} - Inhomogenously forced ocean convection in a
375    doubly periodic box.    doubly periodic box.
376    
377  \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for  \item \texttt{front\_relax} - Relaxation of an ocean thermal front (test for
378  Gent/McWilliams scheme). 2D (Y-Z).  Gent/McWilliams scheme). 2D (Y-Z).
379    
380  \item \textit{internal wave} - Ocean internal wave forced by open  \item \texttt{internal wave} - Ocean internal wave forced by open
381    boundary conditions.    boundary conditions.
382        
383  \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP  \item \texttt{natl\_box} - Eastern subtropical North Atlantic with KPP
384    scheme; 1 month integration    scheme; 1 month integration
385        
386  \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and  \item \texttt{hs94.1x64x5} - Zonal averaged atmosphere using Held and
387    Suarez '94 forcing.    Suarez '94 forcing.
388        
389  \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and  \item \texttt{hs94.128x64x5} - 3D atmosphere dynamics using Held and
390    Suarez '94 forcing.    Suarez '94 forcing.
391        
392  \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  \item \texttt{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and
393    Suarez '94 forcing on the cubed sphere.    Suarez '94 forcing on the cubed sphere.
394        
395  \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics.  \item \texttt{aim.5l\_zon-ave} - Intermediate Atmospheric physics.
396    Global Zonal Mean configuration, 1x64x5 resolution.    Global Zonal Mean configuration, 1x64x5 resolution.
397        
398  \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate  \item \texttt{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate
399    Atmospheric physics, equatorial Slice configuration.  2D (X-Z).    Atmospheric physics, equatorial Slice configuration.  2D (X-Z).
400        
401  \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  \item \texttt{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric
402    physics. 3D Equatorial Channel configuration.    physics. 3D Equatorial Channel configuration.
403        
404  \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.  \item \texttt{aim.5l\_LatLon} - Intermediate Atmospheric physics.
405    Global configuration, on latitude longitude grid with 128x64x5 grid    Global configuration, on latitude longitude grid with 128x64x5 grid
406    points ($2.8^\circ{\rm degree}$ resolution).    points ($2.8^\circ$ resolution).
407        
408  \item \textit{adjustment.128x64x1} Barotropic adjustment problem on  \item \texttt{adjustment.128x64x1} Barotropic adjustment problem on
409    latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm    latitude longitude grid with 128x64 grid points ($2.8^\circ$ resolution).
     degree}$ resolution).  
410        
411  \item \textit{adjustment.cs-32x32x1} Barotropic adjustment problem on  \item \texttt{adjustment.cs-32x32x1} Barotropic adjustment problem on
412    cube sphere grid with 32x32 points per face ( roughly $2.8^\circ{\rm    cube sphere grid with 32x32 points per face (roughly $2.8^\circ$
413      degree}$ resolution).    resolution).
414        
415  \item \textit{advect\_cs} Two-dimensional passive advection test on  \item \texttt{advect\_cs} Two-dimensional passive advection test on
416    cube sphere grid.    cube sphere grid.
417        
418  \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive  \item \texttt{advect\_xy} Two-dimensional (horizontal plane) passive
419    advection test on Cartesian grid.    advection test on Cartesian grid.
420        
421  \item \textit{advect\_yz} Two-dimensional (vertical plane) passive  \item \texttt{advect\_yz} Two-dimensional (vertical plane) passive
422    advection test on Cartesian grid.    advection test on Cartesian grid.
423        
424  \item \textit{carbon} Simple passive tracer experiment. Includes  \item \texttt{carbon} Simple passive tracer experiment. Includes
425    derivative calculation. Described in detail in section    derivative calculation. Described in detail in section
426    \ref{sect:eg-carbon-ad}.    \ref{sect:eg-carbon-ad}.
427    
428  \item \textit{flt\_example} Example of using float package.  \item \texttt{flt\_example} Example of using float package.
429        
430  \item \textit{global\_ocean.90x40x15} Global circulation with GM, flux  \item \texttt{global\_ocean.90x40x15} Global circulation with GM, flux
431    boundary conditions and poles.    boundary conditions and poles.
432    
433  \item \textit{global\_ocean\_pressure} Global circulation in pressure  \item \texttt{global\_ocean\_pressure} Global circulation in pressure
434    coordinate (non-Boussinesq ocean model). Described in detail in    coordinate (non-Boussinesq ocean model). Described in detail in
435    section \ref{sect:eg-globalpressure}.    section \ref{sect:eg-globalpressure}.
436        
437  \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube  \item \texttt{solid-body.cs-32x32x1} Solid body rotation test for cube
438    sphere grid.    sphere grid.
439    
440  \end{enumerate}  \end{enumerate}
# Line 383  Gent/McWilliams scheme). 2D (Y-Z). Line 444  Gent/McWilliams scheme). 2D (Y-Z).
444  Each example directory has the following subdirectories:  Each example directory has the following subdirectories:
445    
446  \begin{itemize}  \begin{itemize}
447  \item \textit{code}: contains the code particular to the example. At a  \item \texttt{code}: contains the code particular to the example. At a
448    minimum, this directory includes the following files:    minimum, this directory includes the following files:
449    
450    \begin{itemize}    \begin{itemize}
451    \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to    \item \texttt{code/packages.conf}: declares the list of packages or
452        package groups to be used.  If not included, the default version
453        is located in \texttt{pkg/pkg\_default}.  Package groups are
454        simply convenient collections of commonly used packages which are
455        defined in \texttt{pkg/pkg\_default}.  Some packages may require
456        other packages or may require their absence (that is, they are
457        incompatible) and these package dependencies are listed in
458        \texttt{pkg/pkg\_depend}.
459    
460      \item \texttt{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
461      the ``execution environment'' part of the code. The default      the ``execution environment'' part of the code. The default
462      version is located in \textit{eesupp/inc}.      version is located in \texttt{eesupp/inc}.
463        
464    \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to    \item \texttt{code/CPP\_OPTIONS.h}: declares CPP keys relative to
465      the ``numerical model'' part of the code. The default version is      the ``numerical model'' part of the code. The default version is
466      located in \textit{model/inc}.      located in \texttt{model/inc}.
467        
468    \item \textit{code/SIZE.h}: declares size of underlying    \item \texttt{code/SIZE.h}: declares size of underlying
469      computational grid.  The default version is located in      computational grid.  The default version is located in
470      \textit{model/inc}.      \texttt{model/inc}.
471    \end{itemize}    \end{itemize}
472        
473    In addition, other include files and subroutines might be present in    In addition, other include files and subroutines might be present in
474    \textit{code} depending on the particular experiment. See Section 2    \texttt{code} depending on the particular experiment. See Section 2
475    for more details.    for more details.
476        
477  \item \textit{input}: contains the input data files required to run  \item \texttt{input}: contains the input data files required to run
478    the example. At a minimum, the \textit{input} directory contains the    the example. At a minimum, the \texttt{input} directory contains the
479    following files:    following files:
480    
481    \begin{itemize}    \begin{itemize}
482    \item \textit{input/data}: this file, written as a namelist,    \item \texttt{input/data}: this file, written as a namelist,
483      specifies the main parameters for the experiment.      specifies the main parameters for the experiment.
484        
485    \item \textit{input/data.pkg}: contains parameters relative to the    \item \texttt{input/data.pkg}: contains parameters relative to the
486      packages used in the experiment.      packages used in the experiment.
487        
488    \item \textit{input/eedata}: this file contains ``execution    \item \texttt{input/eedata}: this file contains ``execution
489      environment'' data. At present, this consists of a specification      environment'' data. At present, this consists of a specification
490      of the number of threads to use in $X$ and $Y$ under multithreaded      of the number of threads to use in $X$ and $Y$ under multithreaded
491      execution.      execution.
492    \end{itemize}    \end{itemize}
493      
494      In addition, you will also find in this directory the forcing and
495      topography files as well as the files describing the initial state
496      of the experiment.  This varies from experiment to experiment. See
497      section 2 for more details.
498    
499  In addition, you will also find in this directory the forcing and  \item \texttt{results}: this directory contains the output file
500  topography files as well as the files describing the initial state of    \texttt{output.txt} produced by the simulation example. This file is
 the experiment.  This varies from experiment to experiment. See  
 section 2 for more details.  
   
 \item \textit{results}: this directory contains the output file  
   \textit{output.txt} produced by the simulation example. This file is  
501    useful for comparison with your own output when you run the    useful for comparison with your own output when you run the
502    experiment.    experiment.
503  \end{itemize}  \end{itemize}
504    
505  Once you have chosen the example you want to run, you are ready to compile  Once you have chosen the example you want to run, you are ready to
506  the code.  compile the code.
507    
508  \section{Building the code}  \section[Building MITgcm]{Building the code}
509  \label{sect:buildingCode}  \label{sect:buildingCode}
510    \begin{rawhtml}
511  To compile the code, we use the {\em make} program. This uses a file  <!-- CMIREDIR:buildingCode: -->
512  ({\em Makefile}) that allows us to pre-process source files, specify  \end{rawhtml}
513  compiler and optimization options and also figures out any file  
514  dependencies. We supply a script ({\em genmake2}), described in  To compile the code, we use the \texttt{make} program. This uses a
515  section \ref{sect:genmake}, that automatically creates the {\em  file (\texttt{Makefile}) that allows us to pre-process source files,
516    Makefile} for you. You then need to build the dependencies and  specify compiler and optimization options and also figures out any
517    file dependencies. We supply a script (\texttt{genmake2}), described
518    in section \ref{sect:genmake}, that automatically creates the
519    \texttt{Makefile} for you. You then need to build the dependencies and
520  compile the code.  compile the code.
521    
522  As an example, let's assume that you want to build and run experiment  As an example, assume that you want to build and run experiment
523  \textit{verification/exp2}. The are multiple ways and places to  \texttt{verification/exp2}. The are multiple ways and places to
524  actually do this but here let's build the code in  actually do this but here let's build the code in
525  \textit{verification/exp2/input}:  \texttt{verification/exp2/build}:
526  \begin{verbatim}  \begin{verbatim}
527  % cd verification/exp2/input  % cd verification/exp2/build
528  \end{verbatim}  \end{verbatim}
529  First, build the {\em Makefile}:  First, build the \texttt{Makefile}:
530  \begin{verbatim}  \begin{verbatim}
531  % ../../../tools/genmake2 -mods=../code  % ../../../tools/genmake2 -mods=../code
532  \end{verbatim}  \end{verbatim}
533  The command line option tells {\em genmake} to override model source  The command line option tells \texttt{genmake} to override model source
534  code with any files in the directory {\em ./code/}.  code with any files in the directory \texttt{../code/}.
535    
536  On many systems, the {\em genmake2} program will be able to  On many systems, the \texttt{genmake2} program will be able to
537  automatically recognize the hardware, find compilers and other tools  automatically recognize the hardware, find compilers and other tools
538  within the user's path (``echo \$PATH''), and then choose an  within the user's path (``\texttt{echo \$PATH}''), and then choose an
539  appropriate set of options from the files contained in the {\em  appropriate set of options from the files (``optfiles'') contained in
540    tools/build\_options} directory.  Under some circumstances, a user  the \texttt{tools/build\_options} directory.  Under some
541  may have to create a new ``optfile'' in order to specify the exact  circumstances, a user may have to create a new ``optfile'' in order to
542  combination of compiler, compiler flags, libraries, and other options  specify the exact combination of compiler, compiler flags, libraries,
543  necessary to build a particular configuration of MITgcm.  In such  and other options necessary to build a particular configuration of
544  cases, it is generally helpful to read the existing ``optfiles'' and  MITgcm.  In such cases, it is generally helpful to read the existing
545  mimic their syntax.  ``optfiles'' and mimic their syntax.
546    
547  Through the MITgcm-support list, the MITgcm developers are willing to  Through the MITgcm-support list, the MITgcm developers are willing to
548  provide help writing or modifing ``optfiles''.  And we encourage users  provide help writing or modifing ``optfiles''.  And we encourage users
549  to post new ``optfiles'' (particularly ones for new machines or  to post new ``optfiles'' (particularly ones for new machines or
550  architectures) to the MITgcm-support list.  architectures) to the
551    \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
552    MITgcm-support@mitgcm.org
553    \begin{rawhtml} </A> \end{rawhtml}
554    list.
555    
556  To specify an optfile to {\em genmake2}, the syntax is:  To specify an optfile to \texttt{genmake2}, the syntax is:
557  \begin{verbatim}  \begin{verbatim}
558  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
559  \end{verbatim}  \end{verbatim}
560    
561  Once a {\em Makefile} has been generated, we create the dependencies:  Once a \texttt{Makefile} has been generated, we create the
562    dependencies with the command:
563  \begin{verbatim}  \begin{verbatim}
564  % make depend  % make depend
565  \end{verbatim}  \end{verbatim}
566  This modifies the {\em Makefile} by attaching a [long] list of files  This modifies the \texttt{Makefile} by attaching a (usually, long)
567  upon which other files depend. The purpose of this is to reduce  list of files upon which other files depend. The purpose of this is to
568  re-compilation if and when you start to modify the code. The {\tt make  reduce re-compilation if and when you start to modify the code. The
569    depend} command also creates links from the model source to this  {\tt make depend} command also creates links from the model source to
570  directory.  this directory.  It is important to note that the {\tt make depend}
571    stage will occasionally produce warnings or errors since the
572    dependency parsing tool is unable to find all of the necessary header
573    files (\textit{eg.}  \texttt{netcdf.inc}).  In these circumstances, it
574    is usually OK to ignore the warnings/errors and proceed to the next
575    step.
576    
577  Next compile the code:  Next one can compile the code using:
578  \begin{verbatim}  \begin{verbatim}
579  % make  % make
580  \end{verbatim}  \end{verbatim}
581  The {\tt make} command creates an executable called \textit{mitgcmuv}.  The {\tt make} command creates an executable called \texttt{mitgcmuv}.
582  Additional make ``targets'' are defined within the makefile to aid in  Additional make ``targets'' are defined within the makefile to aid in
583  the production of adjoint and other versions of MITgcm.  the production of adjoint and other versions of MITgcm.  On SMP
584    (shared multi-processor) systems, the build process can often be sped
585    up appreciably using the command:
586    \begin{verbatim}
587    % make -j 2
588    \end{verbatim}
589    where the ``2'' can be replaced with a number that corresponds to the
590    number of CPUs available.
591    
592  Now you are ready to run the model. General instructions for doing so are  Now you are ready to run the model. General instructions for doing so are
593  given in section \ref{sect:runModel}. Here, we can run the model with:  given in section \ref{sect:runModel}. Here, we can run the model by
594    first creating links to all the input files:
595    \begin{verbatim}
596    ln -s ../input/* .
597    \end{verbatim}
598    and then calling the executable with:
599  \begin{verbatim}  \begin{verbatim}
600  ./mitgcmuv > output.txt  ./mitgcmuv > output.txt
601  \end{verbatim}  \end{verbatim}
602  where we are re-directing the stream of text output to the file {\em  where we are re-directing the stream of text output to the file
603  output.txt}.  \texttt{output.txt}.
   
604    
605  \subsection{Building/compiling the code elsewhere}  \subsection{Building/compiling the code elsewhere}
606    
# Line 613  the one experiment: Line 707  the one experiment:
707  \end{verbatim}  \end{verbatim}
708    
709    
710    \subsection{Using \texttt{genmake2}}
 \subsection{Using \textit{genmake2}}  
711  \label{sect:genmake}  \label{sect:genmake}
712    
713  To compile the code, first use the program \texttt{genmake2} (located  To compile the code, first use the program \texttt{genmake2} (located
714  in the \textit{tools} directory) to generate a Makefile.  in the \texttt{tools} directory) to generate a Makefile.
715  \texttt{genmake2} is a shell script written to work with all  \texttt{genmake2} is a shell script written to work with all
716  ``sh''--compatible shells including bash v1, bash v2, and Bourne.  ``sh''--compatible shells including bash v1, bash v2, and Bourne.
717  Internally, \texttt{genmake2} determines the locations of needed  Internally, \texttt{genmake2} determines the locations of needed
718  files, the compiler, compiler options, libraries, and Unix tools.  It  files, the compiler, compiler options, libraries, and Unix tools.  It
719  relies upon a number of ``optfiles'' located in the {\em  relies upon a number of ``optfiles'' located in the
720    tools/build\_options} directory.  \texttt{tools/build\_options} directory.
721    
722  The purpose of the optfiles is to provide all the compilation options  The purpose of the optfiles is to provide all the compilation options
723  for particular ``platforms'' (where ``platform'' roughly means the  for particular ``platforms'' (where ``platform'' roughly means the
# Line 707  obtained from: Line 800  obtained from:
800  The most important command-line options are:  The most important command-line options are:
801  \begin{description}  \begin{description}
802        
803  \item[--optfile=/PATH/FILENAME] specifies the optfile that should be  \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that
804    used for a particular build.    should be used for a particular build.
805        
806    If no "optfile" is specified (either through the command line or the    If no "optfile" is specified (either through the command line or the
807    MITGCM\_OPTFILE environment variable), genmake2 will try to make a    MITGCM\_OPTFILE environment variable), genmake2 will try to make a
# Line 719  The most important command-line options Line 812  The most important command-line options
812    the user's path.  When these three items have been identified,    the user's path.  When these three items have been identified,
813    genmake2 will try to find an optfile that has a matching name.    genmake2 will try to find an optfile that has a matching name.
814        
815  \item[--pdepend=/PATH/FILENAME] specifies the dependency file used for  \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default
816    packages.    set of packages to be used.  The normal order of precedence for
817      packages is as follows:
818      \begin{enumerate}
819      \item If available, the command line (\texttt{--pdefault}) settings
820        over-rule any others.
821    
822      \item Next, \texttt{genmake2} will look for a file named
823        ``\texttt{packages.conf}'' in the local directory or in any of the
824        directories specified with the \texttt{--mods} option.
825        
826      \item Finally, if neither of the above are available,
827        \texttt{genmake2} will use the \texttt{/pkg/pkg\_default} file.
828      \end{enumerate}
829      
830    \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
831      used for packages.
832        
833    If not specified, the default dependency file {\em pkg/pkg\_depend}    If not specified, the default dependency file {\em pkg/pkg\_depend}
834    is used.  The syntax for this file is parsed on a line-by-line basis    is used.  The syntax for this file is parsed on a line-by-line basis
# Line 731  The most important command-line options Line 839  The most important command-line options
839    assumed that the two packages are compatible and will function    assumed that the two packages are compatible and will function
840    either with or without each other.    either with or without each other.
841        
842  \item[--pdefault='PKG1 PKG2 PKG3 ...'] specifies the default set of  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
843    packages to be used.    automatic differentiation options file to be used.  The file is
844        analogous to the ``optfile'' defined above but it specifies
845    If not set, the default package list will be read from {\em    information for the AD build process.
     pkg/pkg\_default}  
     
 \item[--adof=/path/to/file] specifies the "adjoint" or automatic  
   differentiation options file to be used.  The file is analogous to  
   the ``optfile'' defined above but it specifies information for the  
   AD build process.  
846        
847    The default file is located in {\em    The default file is located in {\em
848      tools/adjoint\_options/adjoint\_default} and it defines the "TAF"      tools/adjoint\_options/adjoint\_default} and it defines the "TAF"
# Line 749  The most important command-line options Line 851  The most important command-line options
851    "STAF" compiler.  As with any compilers, it is helpful to have their    "STAF" compiler.  As with any compilers, it is helpful to have their
852    directories listed in your {\tt \$PATH} environment variable.    directories listed in your {\tt \$PATH} environment variable.
853        
854  \item[--mods='DIR1 DIR2 DIR3 ...'] specifies a list of directories  \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
855    containing ``modifications''.  These directories contain files with    directories containing ``modifications''.  These directories contain
856    names that may (or may not) exist in the main MITgcm source tree but    files with names that may (or may not) exist in the main MITgcm
857    will be overridden by any identically-named sources within the    source tree but will be overridden by any identically-named sources
858    ``MODS'' directories.    within the ``MODS'' directories.
859        
860    The order of precedence for this "name-hiding" is as follows:    The order of precedence for this "name-hiding" is as follows:
861    \begin{itemize}    \begin{itemize}
# Line 766  The most important command-line options Line 868  The most important command-line options
868      ``-standarddirs'' option)      ``-standarddirs'' option)
869    \end{itemize}    \end{itemize}
870        
871  \item[--make=/path/to/gmake] Due to the poor handling of soft-links and  \item[\texttt{--mpi}] This option enables certain MPI features (using
872    other bugs common with the \texttt{make} versions provided by    CPP \texttt{\#define}s) within the code and is necessary for MPI
873    commercial Unix vendors, GNU \texttt{make} (sometimes called    builds (see Section \ref{sect:mpi-build}).
874    \texttt{gmake}) should be preferred.  This option provides a means    
875    for specifying the make executable to be used.  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
876      soft-links and other bugs common with the \texttt{make} versions
877      provided by commercial Unix vendors, GNU \texttt{make} (sometimes
878      called \texttt{gmake}) should be preferred.  This option provides a
879      means for specifying the make executable to be used.
880      
881    \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
882      machines, the ``bash'' shell is unavailable.  To run on these
883      systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
884      a Bourne, POSIX, or compatible) shell.  The syntax in these
885      circumstances is:
886      \begin{center}
887        \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
888      \end{center}
889      where \texttt{/bin/sh} can be replaced with the full path and name
890      of the desired shell.
891    
892  \end{description}  \end{description}
893    
894    
895    \subsection{Building with MPI}
896    \label{sect:mpi-build}
897    
898  \section{Running the model}  Building MITgcm to use MPI libraries can be complicated due to the
899  \label{sect:runModel}  variety of different MPI implementations available, their dependencies
900    or interactions with different compilers, and their often ad-hoc
901    locations within file systems.  For these reasons, its generally a
902    good idea to start by finding and reading the documentation for your
903    machine(s) and, if necessary, seeking help from your local systems
904    administrator.
905    
906  If compilation finished succesfuully (section \ref{sect:buildModel})  The steps for building MITgcm with MPI support are:
907  then an executable called {\em mitgcmuv} will now exist in the local  \begin{enumerate}
908  directory.    
909    \item Determine the locations of your MPI-enabled compiler and/or MPI
910      libraries and put them into an options file as described in Section
911      \ref{sect:genmake}.  One can start with one of the examples in:
912      \begin{rawhtml} <A
913        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm/tools/build_options/">
914      \end{rawhtml}
915      \begin{center}
916        \texttt{MITgcm/tools/build\_options/}
917      \end{center}
918      \begin{rawhtml} </A> \end{rawhtml}
919      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
920      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
921      hand.  You may need help from your user guide or local systems
922      administrator to determine the exact location of the MPI libraries.
923      If libraries are not installed, MPI implementations and related
924      tools are available including:
925      \begin{itemize}
926      \item \begin{rawhtml} <A
927          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
928        \end{rawhtml}
929        MPICH
930        \begin{rawhtml} </A> \end{rawhtml}
931    
932      \item \begin{rawhtml} <A
933          href="http://www.lam-mpi.org/">
934        \end{rawhtml}
935        LAM/MPI
936        \begin{rawhtml} </A> \end{rawhtml}
937    
938      \item \begin{rawhtml} <A
939          href="http://www.osc.edu/~pw/mpiexec/">
940        \end{rawhtml}
941        MPIexec
942        \begin{rawhtml} </A> \end{rawhtml}
943      \end{itemize}
944      
945    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
946      (see Section \ref{sect:genmake}) using commands such as:
947    {\footnotesize \begin{verbatim}
948      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
949      %  make depend
950      %  make
951    \end{verbatim} }
952      
953    \item Run the code with the appropriate MPI ``run'' or ``exec''
954      program provided with your particular implementation of MPI.
955      Typical MPI packages such as MPICH will use something like:
956    \begin{verbatim}
957      %  mpirun -np 4 -machinefile mf ./mitgcmuv
958    \end{verbatim}
959      Sightly more complicated scripts may be needed for many machines
960      since execution of the code may be controlled by both the MPI
961      library and a job scheduling and queueing system such as PBS,
962      LoadLeveller, Condor, or any of a number of similar tools.  A few
963      example scripts (those used for our \begin{rawhtml} <A
964        href="http://mitgcm.org/testing.html"> \end{rawhtml}regular
965      verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
966      at:
967      \begin{rawhtml} <A
968        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/test_scripts/">
969      \end{rawhtml}
970      {\footnotesize \tt
971        http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm\_contrib/test\_scripts/ }
972      \begin{rawhtml} </A> \end{rawhtml}
973    
974    \end{enumerate}
975    
976    An example of the above process on the MITgcm cluster (``cg01'') using
977    the GNU g77 compiler and the mpich MPI library is:
978    
979  To run the model as a single process (ie. not in parallel) simply  {\footnotesize \begin{verbatim}
980  type:    %  cd MITgcm/verification/exp5
981      %  mkdir build
982      %  cd build
983      %  ../../../tools/genmake2 -mpi -mods=../code \
984           -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
985      %  make depend
986      %  make
987      %  cd ../input
988      %  /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
989           -machinefile mf --gm-kill 5 -v -np 2  ../build/mitgcmuv
990    \end{verbatim} }
991    
992    \section[Running MITgcm]{Running the model in prognostic mode}
993    \label{sect:runModel}
994    \begin{rawhtml}
995    <!-- CMIREDIR:runModel: -->
996    \end{rawhtml}
997    
998    If compilation finished succesfully (section \ref{sect:buildingCode})
999    then an executable called \texttt{mitgcmuv} will now exist in the
1000    local directory.
1001    
1002    To run the model as a single process (\textit{ie.} not in parallel)
1003    simply type:
1004  \begin{verbatim}  \begin{verbatim}
1005  % ./mitgcmuv  % ./mitgcmuv
1006  \end{verbatim}  \end{verbatim}
# Line 794  do!). The above command will spew out ma Line 1010  do!). The above command will spew out ma
1010  your screen.  This output contains details such as parameter values as  your screen.  This output contains details such as parameter values as
1011  well as diagnostics such as mean Kinetic energy, largest CFL number,  well as diagnostics such as mean Kinetic energy, largest CFL number,
1012  etc. It is worth keeping this text output with the binary output so we  etc. It is worth keeping this text output with the binary output so we
1013  normally re-direct the {\em stdout} stream as follows:  normally re-direct the \texttt{stdout} stream as follows:
1014  \begin{verbatim}  \begin{verbatim}
1015  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
1016  \end{verbatim}  \end{verbatim}
1017    In the event that the model encounters an error and stops, it is very
1018  For the example experiments in {\em vericication}, an example of the  helpful to include the last few line of this \texttt{output.txt} file
1019  output is kept in {\em results/output.txt} for comparison. You can compare  along with the (\texttt{stderr}) error message within any bug reports.
1020  your {\em output.txt} with this one to check that the set-up works.  
1021    For the example experiments in \texttt{verification}, an example of the
1022    output is kept in \texttt{results/output.txt} for comparison. You can
1023    compare your \texttt{output.txt} with the corresponding one for that
1024    experiment to check that the set-up works.
1025    
1026    
1027    
1028  \subsection{Output files}  \subsection{Output files}
1029    
1030  The model produces various output files. At a minimum, the instantaneous  The model produces various output files and, when using \texttt{mnc},
1031  ``state'' of the model is written out, which is made of the following files:  sometimes even directories.  Depending upon the I/O package(s)
1032    selected at compile time (either \texttt{mdsio} or \texttt{mnc} or
1033    both as determined by \texttt{code/packages.conf}) and the run-time
1034    flags set (in \texttt{input/data.pkg}), the following output may
1035    appear.
1036    
1037    
1038    \subsubsection{MDSIO output files}
1039    
1040    The ``traditional'' output files are generated by the \texttt{mdsio}
1041    package.  At a minimum, the instantaneous ``state'' of the model is
1042    written out, which is made of the following files:
1043    
1044  \begin{itemize}  \begin{itemize}
1045  \item \textit{U.00000nIter} - zonal component of velocity field (m/s and $>  \item \texttt{U.00000nIter} - zonal component of velocity field (m/s
1046  0 $ eastward).    and positive eastward).
1047    
1048  \item \textit{V.00000nIter} - meridional component of velocity field (m/s  \item \texttt{V.00000nIter} - meridional component of velocity field
1049  and $> 0$ northward).    (m/s and positive northward).
1050    
1051  \item \textit{W.00000nIter} - vertical component of velocity field (ocean:  \item \texttt{W.00000nIter} - vertical component of velocity field
1052  m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure    (ocean: m/s and positive upward, atmosphere: Pa/s and positive
1053  i.e. downward).    towards increasing pressure i.e. downward).
1054    
1055  \item \textit{T.00000nIter} - potential temperature (ocean: $^{0}$C,  \item \texttt{T.00000nIter} - potential temperature (ocean:
1056  atmosphere: $^{0}$K).    $^{\circ}\mathrm{C}$, atmosphere: $^{\circ}\mathrm{K}$).
1057    
1058  \item \textit{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor  \item \texttt{S.00000nIter} - ocean: salinity (psu), atmosphere: water
1059  (g/kg).    vapor (g/kg).
1060    
1061  \item \textit{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:  \item \texttt{Eta.00000nIter} - ocean: surface elevation (m),
1062  surface pressure anomaly (Pa).    atmosphere: surface pressure anomaly (Pa).
1063  \end{itemize}  \end{itemize}
1064    
1065  The chain \textit{00000nIter} consists of ten figures that specify the  The chain \texttt{00000nIter} consists of ten figures that specify the
1066  iteration number at which the output is written out. For example, \textit{%  iteration number at which the output is written out. For example,
1067  U.0000000300} is the zonal velocity at iteration 300.  \texttt{U.0000000300} is the zonal velocity at iteration 300.
1068    
1069  In addition, a ``pickup'' or ``checkpoint'' file called:  In addition, a ``pickup'' or ``checkpoint'' file called:
1070    
1071  \begin{itemize}  \begin{itemize}
1072  \item \textit{pickup.00000nIter}  \item \texttt{pickup.00000nIter}
1073  \end{itemize}  \end{itemize}
1074    
1075  is written out. This file represents the state of the model in a condensed  is written out. This file represents the state of the model in a condensed
# Line 846  form and is used for restarting the inte Line 1077  form and is used for restarting the inte
1077  there is an additional ``pickup'' file:  there is an additional ``pickup'' file:
1078    
1079  \begin{itemize}  \begin{itemize}
1080  \item \textit{pickup\_cd.00000nIter}  \item \texttt{pickup\_cd.00000nIter}
1081  \end{itemize}  \end{itemize}
1082    
1083  containing the D-grid velocity data and that has to be written out as well  containing the D-grid velocity data and that has to be written out as well
1084  in order to restart the integration. Rolling checkpoint files are the same  in order to restart the integration. Rolling checkpoint files are the same
1085  as the pickup files but are named differently. Their name contain the chain  as the pickup files but are named differently. Their name contain the chain
1086  \textit{ckptA} or \textit{ckptB} instead of \textit{00000nIter}. They can be  \texttt{ckptA} or \texttt{ckptB} instead of \texttt{00000nIter}. They can be
1087  used to restart the model but are overwritten every other time they are  used to restart the model but are overwritten every other time they are
1088  output to save disk space during long integrations.  output to save disk space during long integrations.
1089    
1090    
1091    
1092    \subsubsection{MNC output files}
1093    
1094    Unlike the \texttt{mdsio} output, the \texttt{mnc}--generated output
1095    is usually (though not necessarily) placed within a subdirectory with
1096    a name such as \texttt{mnc\_test\_\${DATE}\_\${SEQ}}.  The files
1097    within this subdirectory are all in the ``self-describing'' netCDF
1098    format and can thus be browsed and/or plotted using tools such as:
1099    \begin{itemize}
1100    \item \texttt{ncdump} is a utility which is typically included
1101      with every netCDF install:
1102      \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
1103    \begin{verbatim}
1104    http://www.unidata.ucar.edu/packages/netcdf/
1105    \end{verbatim}
1106      \begin{rawhtml} </A> \end{rawhtml} and it converts the netCDF
1107      binaries into formatted ASCII text files.
1108    
1109    \item \texttt{ncview} utility is a very convenient and quick way
1110      to plot netCDF data and it runs on most OSes:
1111      \begin{rawhtml} <A href="http://meteora.ucsd.edu/~pierce/ncview_home_page.html"> \end{rawhtml}
1112    \begin{verbatim}
1113    http://meteora.ucsd.edu/~pierce/ncview_home_page.html
1114    \end{verbatim}
1115      \begin{rawhtml} </A> \end{rawhtml}
1116      
1117    \item MatLAB(c) and other common post-processing environments provide
1118      various netCDF interfaces including:
1119      \begin{rawhtml} <A href="http://mexcdf.sourceforge.net/"> \end{rawhtml}
1120    \begin{verbatim}
1121    http://mexcdf.sourceforge.net/
1122    \end{verbatim}
1123      \begin{rawhtml} </A> \end{rawhtml}
1124      \begin{rawhtml} <A href="http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html"> \end{rawhtml}
1125    \begin{verbatim}
1126    http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html
1127    \end{verbatim}
1128      \begin{rawhtml} </A> \end{rawhtml}
1129    \end{itemize}
1130    
1131    
1132  \subsection{Looking at the output}  \subsection{Looking at the output}
1133    
1134  All the model data are written according to a ``meta/data'' file format.  The ``traditional'' or mdsio model data are written according to a
1135  Each variable is associated with two files with suffix names \textit{.data}  ``meta/data'' file format.  Each variable is associated with two files
1136  and \textit{.meta}. The \textit{.data} file contains the data written in  with suffix names \texttt{.data} and \texttt{.meta}. The
1137  binary form (big\_endian by default). The \textit{.meta} file is a  \texttt{.data} file contains the data written in binary form
1138  ``header'' file that contains information about the size and the structure  (big\_endian by default). The \texttt{.meta} file is a ``header'' file
1139  of the \textit{.data} file. This way of organizing the output is  that contains information about the size and the structure of the
1140  particularly useful when running multi-processors calculations. The base  \texttt{.data} file. This way of organizing the output is particularly
1141  version of the model includes a few matlab utilities to read output files  useful when running multi-processors calculations. The base version of
1142  written in this format. The matlab scripts are located in the directory  the model includes a few matlab utilities to read output files written
1143  \textit{utils/matlab} under the root tree. The script \textit{rdmds.m} reads  in this format. The matlab scripts are located in the directory
1144  the data. Look at the comments inside the script to see how to use it.  \texttt{utils/matlab} under the root tree. The script \texttt{rdmds.m}
1145    reads the data. Look at the comments inside the script to see how to
1146    use it.
1147    
1148  Some examples of reading and visualizing some output in {\em Matlab}:  Some examples of reading and visualizing some output in {\em Matlab}:
1149  \begin{verbatim}  \begin{verbatim}
# Line 885  Some examples of reading and visualizing Line 1160  Some examples of reading and visualizing
1160  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
1161  \end{verbatim}  \end{verbatim}
1162    
1163  \section{Doing it yourself: customizing the code}  Similar scripts for netCDF output (\texttt{rdmnc.m}) are available and
1164    they are described in Section \ref{sec:pkg:mnc}.
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies experiment  
 (described previously) that is the closest to your configuration. Then, the  
 amount of setup will be minimized. In this section, we focus on the setup  
 relative to the ''numerical model'' part of the code (the setup relative to  
 the ''execution environment'' part is covered in the parallel implementation  
 section) and on the variables and parameters that you are likely to change.  
   
 \subsection{Configuration and setup}  
   
 The CPP keys relative to the ''numerical model'' part of the code are all  
 defined and set in the file \textit{CPP\_OPTIONS.h }in the directory \textit{%  
 model/inc }or in one of the \textit{code }directories of the case study  
 experiments under \textit{verification.} The model parameters are defined  
 and declared in the file \textit{model/inc/PARAMS.h }and their default  
 values are set in the routine \textit{model/src/set\_defaults.F. }The  
 default values can be modified in the namelist file \textit{data }which  
 needs to be located in the directory where you will run the model. The  
 parameters are initialized in the routine \textit{model/src/ini\_parms.F}.  
 Look at this routine to see in what part of the namelist the parameters are  
 located.  
   
 In what follows the parameters are grouped into categories related to the  
 computational domain, the equations solved in the model, and the simulation  
 controls.  
   
 \subsection{Computational domain, geometry and time-discretization}  
   
 \begin{itemize}  
 \item dimensions  
 \end{itemize}  
   
 The number of points in the x, y,\textit{\ }and r\textit{\ }directions are  
 represented by the variables \textbf{sNx}\textit{, }\textbf{sNy}\textit{, }%  
 and \textbf{Nr}\textit{\ }respectively which are declared and set in the  
 file \textit{model/inc/SIZE.h. }(Again, this assumes a mono-processor  
 calculation. For multiprocessor calculations see section on parallel  
 implementation.)  
   
 \begin{itemize}  
 \item grid  
 \end{itemize}  
   
 Three different grids are available: cartesian, spherical polar, and  
 curvilinear (including the cubed sphere). The grid is set through the  
 logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{%  
 usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{%  
 usingCurvilinearGrid}\textit{. }In the case of spherical and curvilinear  
 grids, the southern boundary is defined through the variable \textbf{phiMin}%  
 \textit{\ }which corresponds to the latitude of the southern most cell face  
 (in degrees). The resolution along the x and y directions is controlled by  
 the 1D arrays \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters  
 in the case of a cartesian grid, in degrees otherwise). The vertical grid  
 spacing is set through the 1D array \textbf{delz }for the ocean (in meters)  
 or \textbf{delp}\textit{\ }for the atmosphere (in Pa). The variable \textbf{%  
 Ro\_SeaLevel} represents the standard position of Sea-Level in ''R''  
 coordinate. This is typically set to 0m for the ocean (default value) and 10$%  
 ^{5}$Pa for the atmosphere. For the atmosphere, also set the logical  
 variable \textbf{groundAtK1} to '.\texttt{TRUE}.'. which put the first level  
 (k=1) at the lower boundary (ground).  
   
 For the cartesian grid case, the Coriolis parameter $f$ is set through the  
 variables \textbf{f0}\textit{\ }and \textbf{beta}\textit{\ }which correspond  
 to the reference Coriolis parameter (in s$^{-1}$) and $\frac{\partial f}{%  
 \partial y}$(in m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ }%  
 is set to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the  
 southern edge of the domain.  
   
 \begin{itemize}  
 \item topography - full and partial cells  
 \end{itemize}  
   
 The domain bathymetry is read from a file that contains a 2D (x,y) map of  
 depths (in m) for the ocean or pressures (in Pa) for the atmosphere. The  
 file name is represented by the variable \textbf{bathyFile}\textit{. }The  
 file is assumed to contain binary numbers giving the depth (pressure) of the  
 model at each grid cell, ordered with the x coordinate varying fastest. The  
 points are ordered from low coordinate to high coordinate for both axes. The  
 model code applies without modification to enclosed, periodic, and double  
 periodic domains. Periodicity is assumed by default and is suppressed by  
 setting the depths to 0m for the cells at the limits of the computational  
 domain (note: not sure this is the case for the atmosphere). The precision  
 with which to read the binary data is controlled by the integer variable  
 \textbf{readBinaryPrec }which can take the value \texttt{32} (single  
 precision) or \texttt{64} (double precision). See the matlab program \textit{%  
 gendata.m }in the \textit{input }directories under \textit{verification }to  
 see how the bathymetry files are generated for the case study experiments.  
   
 To use the partial cell capability, the variable \textbf{hFacMin}\textit{\ }%  
 needs to be set to a value between 0 and 1 (it is set to 1 by default)  
 corresponding to the minimum fractional size of the cell. For example if the  
 bottom cell is 500m thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the  
 actual thickness of the cell (i.e. used in the code) can cover a range of  
 discrete values 50m apart from 50m to 500m depending on the value of the  
 bottom depth (in \textbf{bathyFile}) at this point.  
   
 Note that the bottom depths (or pressures) need not coincide with the models  
 levels as deduced from \textbf{delz}\textit{\ }or\textit{\ }\textbf{delp}%  
 \textit{. }The model will interpolate the numbers in \textbf{bathyFile}%  
 \textit{\ }so that they match the levels obtained from \textbf{delz}\textit{%  
 \ }or\textit{\ }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
   
 (Note: the atmospheric case is a bit more complicated than what is written  
 here I think. To come soon...)  
   
 \begin{itemize}  
 \item time-discretization  
 \end{itemize}  
   
 The time steps are set through the real variables \textbf{deltaTMom}  
 and \textbf{deltaTtracer} (in s) which represent the time step for the  
 momentum and tracer equations, respectively. For synchronous  
 integrations, simply set the two variables to the same value (or you  
 can prescribe one time step only through the variable  
 \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set  
 through the variable \textbf{abEps} (dimensionless). The stagger  
 baroclinic time stepping can be activated by setting the logical  
 variable \textbf{staggerTimeStep} to '.\texttt{TRUE}.'.  
   
 \subsection{Equation of state}  
   
 First, because the model equations are written in terms of  
 perturbations, a reference thermodynamic state needs to be specified.  
 This is done through the 1D arrays \textbf{tRef} and \textbf{sRef}.  
 \textbf{tRef} specifies the reference potential temperature profile  
 (in $^{o}$C for the ocean and $^{o}$K for the atmosphere) starting  
 from the level k=1. Similarly, \textbf{sRef} specifies the reference  
 salinity profile (in ppt) for the ocean or the reference specific  
 humidity profile (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character  
 variables \textbf{buoyancyRelation} and \textbf{eosType}.  
 \textbf{buoyancyRelation} is set to '\texttt{OCEANIC}' by default and  
 needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations.  
 In this case, \textbf{eosType} must be set to '\texttt{IDEALGAS}'.  
 For the ocean, two forms of the equation of state are available:  
 linear (set \textbf{eosType} to '\texttt{LINEAR}') and a polynomial  
 approximation to the full nonlinear equation ( set  
 \textbf{eosType}\textit{\ }to '\texttt{POLYNOMIAL}'). In the linear  
 case, you need to specify the thermal and haline expansion  
 coefficients represented by the variables \textbf{tAlpha}\textit{\  
   }(in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For the nonlinear  
 case, you need to generate a file of polynomial coefficients called  
 \textit{POLY3.COEFFS}. To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number  
 and the values of the vertical levels in \textit{knudsen2.f} so that  
 they match those of your configuration).  
   
 There there are also higher polynomials for the equation of state:  
 \begin{description}  
 \item['\texttt{UNESCO}':] The UNESCO equation of state formula of  
   Fofonoff and Millard \cite{fofonoff83}. This equation of state  
   assumes in-situ temperature, which is not a model variable; \emph{its use  
   is therefore discouraged, and it is only listed for completeness}.  
 \item['\texttt{JMD95Z}':] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The '\texttt{Z}' indicates that this equation  
   of state uses a horizontally and temporally constant pressure  
   $p_{0}=-g\rho_{0}z$.  
 \item['\texttt{JMD95P}':] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The '\texttt{P}' indicates that this equation  
   of state uses the actual hydrostatic pressure of the last time  
   step. Lagging the pressure in this way requires an additional pickup  
   file for restarts.  
 \item['\texttt{MDJWF}':] The new, more accurate and less expensive  
   equation of state by McDougall et~al. \cite{mcdougall03}. It also  
   requires lagging the pressure and therefore an additional pickup  
   file for restarts.  
 \end{description}  
 For none of these options an reference profile of temperature or  
 salinity is required.  
   
 \subsection{Momentum equations}  
   
 In this section, we only focus for now on the parameters that you are likely  
 to change, i.e. the ones relative to forcing and dissipation for example.  
 The details relevant to the vector-invariant form of the equations and the  
 various advection schemes are not covered for the moment. We assume that you  
 use the standard form of the momentum equations (i.e. the flux-form) with  
 the default advection scheme. Also, there are a few logical variables that  
 allow you to turn on/off various terms in the momentum equation. These  
 variables are called \textbf{momViscosity, momAdvection, momForcing,  
 useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  
 \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.  
 Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  
 these variables.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The velocity components are initialized to 0 unless the simulation is  
 starting from a pickup file (see section on simulation control parameters).  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This section only applies to the ocean. You need to generate wind-stress  
 data into two files \textbf{zonalWindFile}\textit{\ }and \textbf{%  
 meridWindFile }corresponding to the zonal and meridional components of the  
 wind stress, respectively (if you want the stress to be along the direction  
 of only one of the model horizontal axes, you only need to generate one  
 file). The format of the files is similar to the bathymetry file. The zonal  
 (meridional) stress data are assumed to be in Pa and located at U-points  
 (V-points). As for the bathymetry, the precision with which to read the  
 binary data is controlled by the variable \textbf{readBinaryPrec}.\textbf{\ }  
 See the matlab program \textit{gendata.m }in the \textit{input }directories  
 under \textit{verification }to see how simple analytical wind forcing data  
 are generated for the case study experiments.  
   
 There is also the possibility of prescribing time-dependent periodic  
 forcing. To do this, concatenate the successive time records into a single  
 file (for each stress component) ordered in a (x, y, t) fashion and set the  
 following variables: \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',  
 \textbf{externForcingPeriod }to the period (in s) of which the forcing  
 varies (typically 1 month), and \textbf{externForcingCycle }to the repeat  
 time (in s) of the forcing (typically 1 year -- note: \textbf{%  
 externForcingCycle }must be a multiple of \textbf{externForcingPeriod}).  
 With these variables set up, the model will interpolate the forcing linearly  
 at each iteration.  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 The lateral eddy viscosity coefficient is specified through the variable  
 \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The vertical eddy viscosity  
 coefficient is specified through the variable \textbf{viscAz }(in m$^{2}$s$%  
 ^{-1}$) for the ocean and \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$)  
 for the atmosphere. The vertical diffusive fluxes can be computed implicitly  
 by setting the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic mixing can be added as well through the variable  
 \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a spherical polar grid,  
 you might also need to set the variable \textbf{cosPower} which is set to 0  
 by default and which represents the power of cosine of latitude to multiply  
 viscosity. Slip or no-slip conditions at lateral and bottom boundaries are  
 specified through the logical variables \textbf{no\_slip\_sides}\textit{\ }%  
 and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}', free-slip  
 boundary conditions are applied. If no-slip boundary conditions are applied  
 at the bottom, a bottom drag can be applied as well. Two forms are  
 available: linear (set the variable \textbf{bottomDragLinear}\textit{\ }in s$%  
 ^{-1}$) and quadratic (set the variable \textbf{bottomDragQuadratic}\textit{%  
 \ }in m$^{-1}$).  
   
 The Fourier and Shapiro filters are described elsewhere.  
   
 \begin{itemize}  
 \item C-D scheme  
 \end{itemize}  
   
 If you run at a sufficiently coarse resolution, you will need the C-D scheme  
 for the computation of the Coriolis terms. The variable\textbf{\ tauCD},  
 which represents the C-D scheme coupling timescale (in s) needs to be set.  
   
 \begin{itemize}  
 \item calculation of pressure/geopotential  
 \end{itemize}  
   
 First, to run a non-hydrostatic ocean simulation, set the logical variable  
 \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure field is then  
 inverted through a 3D elliptic equation. (Note: this capability is not  
 available for the atmosphere yet.) By default, a hydrostatic simulation is  
 assumed and a 2D elliptic equation is used to invert the pressure field. The  
 parameters controlling the behaviour of the elliptic solvers are the  
 variables \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual }%  
 for the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{%  
 cg3dTargetResidual }for the 3D case. You probably won't need to alter the  
 default values (are we sure of this?).  
   
 For the calculation of the surface pressure (for the ocean) or surface  
 geopotential (for the atmosphere) you need to set the logical variables  
 \textbf{rigidLid} and \textbf{implicitFreeSurface}\textit{\ }(set one to '.%  
 \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how you  
 want to deal with the ocean upper or atmosphere lower boundary).  
   
 \subsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential temperature  
 equation and the salinity (for the ocean) or specific humidity (for the  
 atmosphere) equation. As for the momentum equations, we only describe for  
 now the parameters that you are likely to change. The logical variables  
 \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{%  
 tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  
 terms in the temperature equation (same thing for salinity or specific  
 humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{%  
 saltAdvection}\textit{\ }etc). These variables are all assumed here to be  
 set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  
 precise definition.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The initial tracer data can be contained in the binary files \textbf{%  
 hydrogThetaFile }and \textbf{hydrogSaltFile}. These files should contain 3D  
 data ordered in an (x, y, r) fashion with k=1 as the first vertical level.  
 If no file names are provided, the tracers are then initialized with the  
 values of \textbf{tRef }and \textbf{sRef }mentioned above (in the equation  
 of state section). In this case, the initial tracer data are uniform in x  
 and y for each depth level.  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This part is more relevant for the ocean, the procedure for the atmosphere  
 not being completely stabilized at the moment.  
   
 A combination of fluxes data and relaxation terms can be used for driving  
 the tracer equations. \ For potential temperature, heat flux data (in W/m$%  
 ^{2}$) can be stored in the 2D binary file \textbf{surfQfile}\textit{. }%  
 Alternatively or in addition, the forcing can be specified through a  
 relaxation term. The SST data to which the model surface temperatures are  
 restored to are supposed to be stored in the 2D binary file \textbf{%  
 thetaClimFile}\textit{. }The corresponding relaxation time scale coefficient  
 is set through the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The  
 same procedure applies for salinity with the variable names \textbf{EmPmRfile%  
 }\textit{, }\textbf{saltClimFile}\textit{, }and \textbf{tauSaltClimRelax}%  
 \textit{\ }for freshwater flux (in m/s) and surface salinity (in ppt) data  
 files and relaxation time scale coefficient (in s), respectively. Also for  
 salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, natural  
 boundary conditions are applied i.e. when computing the surface salinity  
 tendency, the freshwater flux is multiplied by the model surface salinity  
 instead of a constant salinity value.  
   
 As for the other input files, the precision with which to read the data is  
 controlled by the variable \textbf{readBinaryPrec}. Time-dependent, periodic  
 forcing can be applied as well following the same procedure used for the  
 wind forcing data (see above).  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 Lateral eddy diffusivities for temperature and salinity/specific humidity  
 are specified through the variables \textbf{diffKhT }and \textbf{diffKhS }%  
 (in m$^{2}$/s). Vertical eddy diffusivities are specified through the  
 variables \textbf{diffKzT }and \textbf{diffKzS }(in m$^{2}$/s) for the ocean  
 and \textbf{diffKpT }and \textbf{diffKpS }(in Pa$^{2}$/s) for the  
 atmosphere. The vertical diffusive fluxes can be computed implicitly by  
 setting the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic diffusivities can be specified as well through  
 the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in m$^{4}$/s). Note  
 that the cosine power scaling (specified through \textbf{cosPower }- see the  
 momentum equations section) is applied to the tracer diffusivities  
 (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization  
 for oceanic tracers is described in the package section. Finally, note that  
 tracers can be also subject to Fourier and Shapiro filtering (see the  
 corresponding section on these filters).  
   
 \begin{itemize}  
 \item ocean convection  
 \end{itemize}  
   
 Two options are available to parameterize ocean convection: one is to use  
 the convective adjustment scheme. In this case, you need to set the variable  
 \textbf{cadjFreq}, which represents the frequency (in s) with which the  
 adjustment algorithm is called, to a non-zero value (if set to a negative  
 value by the user, the model will set it to the tracer time step). The other  
 option is to parameterize convection with implicit vertical diffusion. To do  
 this, set the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .' and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s) you  
 wish the tracer vertical diffusivities to have when mixing tracers  
 vertically due to static instabilities. Note that \textbf{cadjFreq }and  
 \textbf{ivdc\_kappa }can not both have non-zero value.  
   
 \subsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  
 which determines the IO frequencies and is used in tagging output.  
 Typically, you will set it to the tracer time step for accelerated runs  
 (otherwise it is simply set to the default time step \textbf{deltaT}).  
 Frequency of checkpointing and dumping of the model state are referenced to  
 this clock (see below).  
   
 \begin{itemize}  
 \item run duration  
 \end{itemize}  
   
 The beginning of a simulation is set by specifying a start time (in s)  
 through the real variable \textbf{startTime }or by specifying an initial  
 iteration number through the integer variable \textbf{nIter0}. If these  
 variables are set to nonzero values, the model will look for a ''pickup''  
 file \textit{pickup.0000nIter0 }to restart the integration\textit{. }The end  
 of a simulation is set through the real variable \textbf{endTime }(in s).  
 Alternatively, you can specify instead the number of time steps to execute  
 through the integer variable \textbf{nTimeSteps}.  
   
 \begin{itemize}  
 \item frequency of output  
 \end{itemize}  
1165    
 Real variables defining frequencies (in s) with which output files are  
 written on disk need to be set up. \textbf{dumpFreq }controls the frequency  
 with which the instantaneous state of the model is saved. \textbf{chkPtFreq }%  
 and \textbf{pchkPtFreq }control the output frequency of rolling and  
 permanent checkpoint files, respectively. See section 1.5.1 Output files for the  
 definition of model state and checkpoint files. In addition, time-averaged  
 fields can be written out by setting the variable \textbf{taveFreq} (in s).  
 The precision with which to write the binary data is controlled by the  
 integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32} or \texttt{%  
 64}).  
   
 %%% Local Variables:  
 %%% mode: latex  
 %%% TeX-master: t  
 %%% End:  

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.35

  ViewVC Help
Powered by ViewVC 1.1.22