/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.16 by edhill, Thu Jan 29 03:02:33 2004 UTC revision 1.28 by cnh, Thu Oct 14 14:54:24 2004 UTC
# Line 79  provide easy support for maintenance upd Line 79  provide easy support for maintenance upd
79    
80  \end{enumerate}  \end{enumerate}
81    
82    \subsection{Method 1 - Checkout from CVS}
83    \label{sect:cvs_checkout}
84    
85  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
86  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
87  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
# Line 93  in your .cshrc or .tcshrc file.  For bas Line 96  in your .cshrc or .tcshrc file.  For bas
96  \begin{verbatim}  \begin{verbatim}
97  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
98  \end{verbatim}  \end{verbatim}
99  in your .profile or .bashrc file.  in your \texttt{.profile} or \texttt{.bashrc} file.
100    
101    
102  To get MITgcm through CVS, first register with the MITgcm CVS server  To get MITgcm through CVS, first register with the MITgcm CVS server
# Line 115  The MITgcm web site contains further dir Line 118  The MITgcm web site contains further dir
118  code and CVS.  It also contains a web interface to our CVS archive so  code and CVS.  It also contains a web interface to our CVS archive so
119  that one may easily view the state of files, revisions, and other  that one may easily view the state of files, revisions, and other
120  development milestones:  development milestones:
121  \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml}
122  \begin{verbatim}  \begin{verbatim}
123  http://mitgcm.org/source\_code.html  http://mitgcm.org/source_code.html
124  \end{verbatim}  \end{verbatim}
125  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
126    
127    As a convenience, the MITgcm CVS server contains aliases which are
128    named subsets of the codebase.  These aliases can be especially
129    helpful when used over slow internet connections or on machines with
130    restricted storage space.  Table \ref{tab:cvsModules} contains a list
131    of CVS aliases
132    \begin{table}[htb]
133      \centering
134      \begin{tabular}[htb]{|lp{3.25in}|}\hline
135        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
136        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
137        \texttt{MITgcm\_verif\_basic}
138        &  Source code plus a small set of the verification examples
139        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
140        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
141        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
142        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
143        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
144        verification examples. \\\hline
145      \end{tabular}
146      \caption{MITgcm CVS Modules}
147      \label{tab:cvsModules}
148    \end{table}
149    
150  The checkout process creates a directory called \textit{MITgcm}. If  The checkout process creates a directory called \textit{MITgcm}. If
151  the directory \textit{MITgcm} exists this command updates your code  the directory \textit{MITgcm} exists this command updates your code
# Line 130  track of your file versions with respect Line 155  track of your file versions with respect
155  the files in \textit{CVS}!  You can also use CVS to download code  the files in \textit{CVS}!  You can also use CVS to download code
156  updates.  More extensive information on using CVS for maintaining  updates.  More extensive information on using CVS for maintaining
157  MITgcm code can be found  MITgcm code can be found
158  \begin{rawhtml} <A href=http://mitgcm.org/usingcvstoget.html target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml}
159  here  here
160  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
161  .  .
162    It is important to note that the CVS aliases in Table
163    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
164    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
165    they create can be changed to a different name following the check-out:
166    \begin{verbatim}
167       %  cvs co MITgcm_verif_basic
168       %  mv MITgcm MITgcm_verif_basic
169    \end{verbatim}
170    
171    
172  \paragraph*{Conventional download method}  \subsection{Method 2 - Tar file download}
173  \label{sect:conventionalDownload}  \label{sect:conventionalDownload}
174    
175  If you do not have CVS on your system, you can download the model as a  If you do not have CVS on your system, you can download the model as a
# Line 150  The tar file still contains CVS informat Line 183  The tar file still contains CVS informat
183  delete; even if you do not use CVS yourself the information can help  delete; even if you do not use CVS yourself the information can help
184  us if you should need to send us your copy of the code.  If a recent  us if you should need to send us your copy of the code.  If a recent
185  tar file does not exist, then please contact the developers through  tar file does not exist, then please contact the developers through
186  the MITgcm-support list.  the
187    \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
188    MITgcm-support@mitgcm.org
189    \begin{rawhtml} </A> \end{rawhtml}
190    mailing list.
191    
192  \paragraph*{Upgrading from an earlier version}  \subsubsection{Upgrading from an earlier version}
193    
194  If you already have an earlier version of the code you can ``upgrade''  If you already have an earlier version of the code you can ``upgrade''
195  your copy instead of downloading the entire repository again. First,  your copy instead of downloading the entire repository again. First,
# Line 178  If the list of conflicts scrolled off th Line 215  If the list of conflicts scrolled off th
215  cvs update command and it will report the conflicts. Conflicts are  cvs update command and it will report the conflicts. Conflicts are
216  indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and  indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
217  ``$>>>>>>>$''. For example,  ``$>>>>>>>$''. For example,
218    {\small
219  \begin{verbatim}  \begin{verbatim}
220  <<<<<<< ini_parms.F  <<<<<<< ini_parms.F
221       & bottomDragLinear,myOwnBottomDragCoefficient,       & bottomDragLinear,myOwnBottomDragCoefficient,
# Line 185  indicated in the code by the delimites ` Line 223  indicated in the code by the delimites `
223       & bottomDragLinear,bottomDragQuadratic,       & bottomDragLinear,bottomDragQuadratic,
224  >>>>>>> 1.18  >>>>>>> 1.18
225  \end{verbatim}  \end{verbatim}
226    }
227  means that you added ``myOwnBottomDragCoefficient'' to a namelist at  means that you added ``myOwnBottomDragCoefficient'' to a namelist at
228  the same time and place that we added ``bottomDragQuadratic''. You  the same time and place that we added ``bottomDragQuadratic''. You
229  need to resolve this conflict and in this case the line should be  need to resolve this conflict and in this case the line should be
230  changed to:  changed to:
231    {\small
232  \begin{verbatim}  \begin{verbatim}
233       & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,       & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
234  \end{verbatim}  \end{verbatim}
235    }
236  and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.  and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
237  Unless you are making modifications which exactly parallel  Unless you are making modifications which exactly parallel
238  developments we make, these types of conflicts should be rare.  developments we make, these types of conflicts should be rare.
# Line 225  model code. The execution environment su Line 266  model code. The execution environment su
266  \textit{eesupp} directory. The grid point model code is held under the  \textit{eesupp} directory. The grid point model code is held under the
267  \textit{model} directory. Code execution actually starts in the  \textit{model} directory. Code execution actually starts in the
268  \textit{eesupp} routines and not in the \textit{model} routines. For  \textit{eesupp} routines and not in the \textit{model} routines. For
269  this reason the top-level  this reason the top-level \textit{MAIN.F} is in the
270  \textit{MAIN.F} is in the \textit{eesupp/src} directory. In general,  \textit{eesupp/src} directory. In general, end-users should not need
271  end-users should not need to worry about this level. The top-level routine  to worry about this level. The top-level routine for the numerical
272  for the numerical part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F%  part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F}. Here is
273  }. Here is a brief description of the directory structure of the model under  a brief description of the directory structure of the model under the
274  the root tree (a detailed description is given in section 3: Code structure).  root tree (a detailed description is given in section 3: Code
275    structure).
276    
277  \begin{itemize}  \begin{itemize}
 \item \textit{bin}: this directory is initially empty. It is the default  
 directory in which to compile the code.  
278    
279    \item \textit{bin}: this directory is initially empty. It is the
280      default directory in which to compile the code.
281      
282  \item \textit{diags}: contains the code relative to time-averaged  \item \textit{diags}: contains the code relative to time-averaged
283  diagnostics. It is subdivided into two subdirectories \textit{inc} and    diagnostics. It is subdivided into two subdirectories \textit{inc}
284  \textit{src} that contain include files (*.\textit{h} files) and Fortran    and \textit{src} that contain include files (*.\textit{h} files) and
285  subroutines (*.\textit{F} files), respectively.    Fortran subroutines (*.\textit{F} files), respectively.
286    
287  \item \textit{doc}: contains brief documentation notes.  \item \textit{doc}: contains brief documentation notes.
288      
289  \item \textit{eesupp}: contains the execution environment source code. Also  \item \textit{eesupp}: contains the execution environment source code.
290  subdivided into two subdirectories \textit{inc} and \textit{src}.    Also subdivided into two subdirectories \textit{inc} and
291      \textit{src}.
292  \item \textit{exe}: this directory is initially empty. It is the default    
293  directory in which to execute the code.  \item \textit{exe}: this directory is initially empty. It is the
294      default directory in which to execute the code.
295  \item \textit{model}: this directory contains the main source code. Also    
296  subdivided into two subdirectories \textit{inc} and \textit{src}.  \item \textit{model}: this directory contains the main source code.
297      Also subdivided into two subdirectories \textit{inc} and
298  \item \textit{pkg}: contains the source code for the packages. Each package    \textit{src}.
299  corresponds to a subdirectory. For example, \textit{gmredi} contains the    
300  code related to the Gent-McWilliams/Redi scheme, \textit{aim} the code  \item \textit{pkg}: contains the source code for the packages. Each
301  relative to the atmospheric intermediate physics. The packages are described    package corresponds to a subdirectory. For example, \textit{gmredi}
302  in detail in section 3.    contains the code related to the Gent-McWilliams/Redi scheme,
303      \textit{aim} the code relative to the atmospheric intermediate
304  \item \textit{tools}: this directory contains various useful tools. For    physics. The packages are described in detail in section 3.
305  example, \textit{genmake2} is a script written in csh (C-shell) that should    
306  be used to generate your makefile. The directory \textit{adjoint} contains  \item \textit{tools}: this directory contains various useful tools.
307  the makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that    For example, \textit{genmake2} is a script written in csh (C-shell)
308  generates the adjoint code. The latter is described in details in part V.    that should be used to generate your makefile. The directory
309      \textit{adjoint} contains the makefile specific to the Tangent
310      linear and Adjoint Compiler (TAMC) that generates the adjoint code.
311      The latter is described in details in part V.
312      
313  \item \textit{utils}: this directory contains various utilities. The  \item \textit{utils}: this directory contains various utilities. The
314  subdirectory \textit{knudsen2} contains code and a makefile that    subdirectory \textit{knudsen2} contains code and a makefile that
315  compute coefficients of the polynomial approximation to the knudsen    compute coefficients of the polynomial approximation to the knudsen
316  formula for an ocean nonlinear equation of state. The \textit{matlab}    formula for an ocean nonlinear equation of state. The
317  subdirectory contains matlab scripts for reading model output directly    \textit{matlab} subdirectory contains matlab scripts for reading
318  into matlab. \textit{scripts} contains C-shell post-processing    model output directly into matlab. \textit{scripts} contains C-shell
319  scripts for joining processor-based and tiled-based model output.    post-processing scripts for joining processor-based and tiled-based
320      model output.
321      
322    \item \textit{verification}: this directory contains the model
323      examples. See section \ref{sect:modelExamples}.
324    
 \item \textit{verification}: this directory contains the model examples. See  
 section \ref{sect:modelExamples}.  
325  \end{itemize}  \end{itemize}
326    
327  \section{Example experiments}  \section[MITgcm Example Experiments]{Example experiments}
328  \label{sect:modelExamples}  \label{sect:modelExamples}
329    
330  %% a set of twenty-four pre-configured numerical experiments  %% a set of twenty-four pre-configured numerical experiments
# Line 295  below. Line 343  below.
343  \subsection{Full list of model examples}  \subsection{Full list of model examples}
344    
345  \begin{enumerate}  \begin{enumerate}
346      
347  \item \textit{exp0} - single layer, ocean double gyre (barotropic with  \item \textit{exp0} - single layer, ocean double gyre (barotropic with
348    free-surface). This experiment is described in detail in section    free-surface). This experiment is described in detail in section
349    \ref{sect:eg-baro}.    \ref{sect:eg-baro}.
# Line 420  Each example directory has the following Line 469  Each example directory has the following
469      of the number of threads to use in $X$ and $Y$ under multithreaded      of the number of threads to use in $X$ and $Y$ under multithreaded
470      execution.      execution.
471    \end{itemize}    \end{itemize}
472      
473  In addition, you will also find in this directory the forcing and    In addition, you will also find in this directory the forcing and
474  topography files as well as the files describing the initial state of    topography files as well as the files describing the initial state
475  the experiment.  This varies from experiment to experiment. See    of the experiment.  This varies from experiment to experiment. See
476  section 2 for more details.    section 2 for more details.
477    
478  \item \textit{results}: this directory contains the output file  \item \textit{results}: this directory contains the output file
479    \textit{output.txt} produced by the simulation example. This file is    \textit{output.txt} produced by the simulation example. This file is
# Line 432  section 2 for more details. Line 481  section 2 for more details.
481    experiment.    experiment.
482  \end{itemize}  \end{itemize}
483    
484  Once you have chosen the example you want to run, you are ready to compile  Once you have chosen the example you want to run, you are ready to
485  the code.  compile the code.
486    
487  \section{Building the code}  \section[Building MITgcm]{Building the code}
488  \label{sect:buildingCode}  \label{sect:buildingCode}
489    
490  To compile the code, we use the {\em make} program. This uses a file  To compile the code, we use the {\em make} program. This uses a file
# Line 474  mimic their syntax. Line 523  mimic their syntax.
523  Through the MITgcm-support list, the MITgcm developers are willing to  Through the MITgcm-support list, the MITgcm developers are willing to
524  provide help writing or modifing ``optfiles''.  And we encourage users  provide help writing or modifing ``optfiles''.  And we encourage users
525  to post new ``optfiles'' (particularly ones for new machines or  to post new ``optfiles'' (particularly ones for new machines or
526  architectures) to the MITgcm-support list.  architectures) to the
527    \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
528    MITgcm-support@mitgcm.org
529    \begin{rawhtml} </A> \end{rawhtml}
530    list.
531    
532  To specify an optfile to {\em genmake2}, the syntax is:  To specify an optfile to {\em genmake2}, the syntax is:
533  \begin{verbatim}  \begin{verbatim}
# Line 508  where we are re-directing the stream of Line 561  where we are re-directing the stream of
561  output.txt}.  output.txt}.
562    
563    
564  \subsection{Building/compiling the code elsewhere}  \section[Running MITgcm]{Running the model in prognostic mode}
   
 In the example above (section \ref{sect:buildingCode}) we built the  
 executable in the {\em input} directory of the experiment for  
 convenience. You can also configure and compile the code in other  
 locations, for example on a scratch disk with out having to copy the  
 entire source tree. The only requirement to do so is you have {\tt  
   genmake2} in your path or you know the absolute path to {\tt  
   genmake2}.  
   
 The following sections outline some possible methods of organizing  
 your source and data.  
   
 \subsubsection{Building from the {\em ../code directory}}  
   
 This is just as simple as building in the {\em input/} directory:  
 \begin{verbatim}  
 % cd verification/exp2/code  
 % ../../../tools/genmake2  
 % make depend  
 % make  
 \end{verbatim}  
 However, to run the model the executable ({\em mitgcmuv}) and input  
 files must be in the same place. If you only have one calculation to make:  
 \begin{verbatim}  
 % cd ../input  
 % cp ../code/mitgcmuv ./  
 % ./mitgcmuv > output.txt  
 \end{verbatim}  
 or if you will be making multiple runs with the same executable:  
 \begin{verbatim}  
 % cd ../  
 % cp -r input run1  
 % cp code/mitgcmuv run1  
 % cd run1  
 % ./mitgcmuv > output.txt  
 \end{verbatim}  
   
 \subsubsection{Building from a new directory}  
   
 Since the {\em input} directory contains input files it is often more  
 useful to keep {\em input} pristine and build in a new directory  
 within {\em verification/exp2/}:  
 \begin{verbatim}  
 % cd verification/exp2  
 % mkdir build  
 % cd build  
 % ../../../tools/genmake2 -mods=../code  
 % make depend  
 % make  
 \end{verbatim}  
 This builds the code exactly as before but this time you need to copy  
 either the executable or the input files or both in order to run the  
 model. For example,  
 \begin{verbatim}  
 % cp ../input/* ./  
 % ./mitgcmuv > output.txt  
 \end{verbatim}  
 or if you tend to make multiple runs with the same executable then  
 running in a new directory each time might be more appropriate:  
 \begin{verbatim}  
 % cd ../  
 % mkdir run1  
 % cp build/mitgcmuv run1/  
 % cp input/* run1/  
 % cd run1  
 % ./mitgcmuv > output.txt  
 \end{verbatim}  
   
 \subsubsection{Building on a scratch disk}  
   
 Model object files and output data can use up large amounts of disk  
 space so it is often the case that you will be operating on a large  
 scratch disk. Assuming the model source is in {\em ~/MITgcm} then the  
 following commands will build the model in {\em /scratch/exp2-run1}:  
 \begin{verbatim}  
 % cd /scratch/exp2-run1  
 % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \  
   -mods=~/MITgcm/verification/exp2/code  
 % make depend  
 % make  
 \end{verbatim}  
 To run the model here, you'll need the input files:  
 \begin{verbatim}  
 % cp ~/MITgcm/verification/exp2/input/* ./  
 % ./mitgcmuv > output.txt  
 \end{verbatim}  
   
 As before, you could build in one directory and make multiple runs of  
 the one experiment:  
 \begin{verbatim}  
 % cd /scratch/exp2  
 % mkdir build  
 % cd build  
 % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \  
   -mods=~/MITgcm/verification/exp2/code  
 % make depend  
 % make  
 % cd ../  
 % cp -r ~/MITgcm/verification/exp2/input run2  
 % cd run2  
 % ./mitgcmuv > output.txt  
 \end{verbatim}  
   
   
   
 \subsection{Using \textit{genmake2}}  
 \label{sect:genmake}  
   
 To compile the code, first use the program \texttt{genmake2} (located  
 in the \textit{tools} directory) to generate a Makefile.  
 \texttt{genmake2} is a shell script written to work with all  
 ``sh''--compatible shells including bash v1, bash v2, and Bourne.  
 Internally, \texttt{genmake2} determines the locations of needed  
 files, the compiler, compiler options, libraries, and Unix tools.  It  
 relies upon a number of ``optfiles'' located in the {\em  
   tools/build\_options} directory.  
   
 The purpose of the optfiles is to provide all the compilation options  
 for particular ``platforms'' (where ``platform'' roughly means the  
 combination of the hardware and the compiler) and code configurations.  
 Given the combinations of possible compilers and library dependencies  
 ({\it eg.}  MPI and NetCDF) there may be numerous optfiles available  
 for a single machine.  The naming scheme for the majority of the  
 optfiles shipped with the code is  
 \begin{center}  
   {\bf OS\_HARDWARE\_COMPILER }  
 \end{center}  
 where  
 \begin{description}  
 \item[OS] is the name of the operating system (generally the  
   lower-case output of the {\tt 'uname'} command)  
 \item[HARDWARE] is a string that describes the CPU type and  
   corresponds to output from the  {\tt 'uname -m'} command:  
   \begin{description}  
   \item[ia32] is for ``x86'' machines such as i386, i486, i586, i686,  
     and athlon  
   \item[ia64] is for Intel IA64 systems (eg. Itanium, Itanium2)  
   \item[amd64] is AMD x86\_64 systems  
   \item[ppc] is for Mac PowerPC systems  
   \end{description}  
 \item[COMPILER] is the compiler name (generally, the name of the  
   FORTRAN executable)  
 \end{description}  
   
 In many cases, the default optfiles are sufficient and will result in  
 usable Makefiles.  However, for some machines or code configurations,  
 new ``optfiles'' must be written. To create a new optfile, it is  
 generally best to start with one of the defaults and modify it to suit  
 your needs.  Like \texttt{genmake2}, the optfiles are all written  
 using a simple ``sh''--compatible syntax.  While nearly all variables  
 used within \texttt{genmake2} may be specified in the optfiles, the  
 critical ones that should be defined are:  
   
 \begin{description}  
 \item[FC] the FORTRAN compiler (executable) to use  
 \item[DEFINES] the command-line DEFINE options passed to the compiler  
 \item[CPP] the C pre-processor to use  
 \item[NOOPTFLAGS] options flags for special files that should not be  
   optimized  
 \end{description}  
   
 For example, the optfile for a typical Red Hat Linux machine (``ia32''  
 architecture) using the GCC (g77) compiler is  
 \begin{verbatim}  
 FC=g77  
 DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4'  
 CPP='cpp  -traditional -P'  
 NOOPTFLAGS='-O0'  
 #  For IEEE, use the "-ffloat-store" option  
 if test "x$IEEE" = x ; then  
     FFLAGS='-Wimplicit -Wunused -Wuninitialized'  
     FOPTIM='-O3 -malign-double -funroll-loops'  
 else  
     FFLAGS='-Wimplicit -Wunused -ffloat-store'  
     FOPTIM='-O0 -malign-double'  
 fi  
 \end{verbatim}  
   
 If you write an optfile for an unrepresented machine or compiler, you  
 are strongly encouraged to submit the optfile to the MITgcm project  
 for inclusion.  Please send the file to the  
 \begin{rawhtml} <A href="mail-to:MITgcm-support@mitgcm.org"> \end{rawhtml}  
 \begin{center}  
   MITgcm-support@mitgcm.org  
 \end{center}  
 \begin{rawhtml} </A> \end{rawhtml}  
 mailing list.  
   
 In addition to the optfiles, \texttt{genmake2} supports a number of  
 helpful command-line options.  A complete list of these options can be  
 obtained from:  
 \begin{verbatim}  
 % genmake2 -h  
 \end{verbatim}  
   
 The most important command-line options are:  
 \begin{description}  
     
 \item[--optfile=/PATH/FILENAME] specifies the optfile that should be  
   used for a particular build.  
     
   If no "optfile" is specified (either through the command line or the  
   MITGCM\_OPTFILE environment variable), genmake2 will try to make a  
   reasonable guess from the list provided in {\em  
     tools/build\_options}.  The method used for making this guess is  
   to first determine the combination of operating system and hardware  
   (eg. "linux\_ia32") and then find a working FORTRAN compiler within  
   the user's path.  When these three items have been identified,  
   genmake2 will try to find an optfile that has a matching name.  
     
 \item[--pdepend=/PATH/FILENAME] specifies the dependency file used for  
   packages.  
     
   If not specified, the default dependency file {\em pkg/pkg\_depend}  
   is used.  The syntax for this file is parsed on a line-by-line basis  
   where each line containes either a comment ("\#") or a simple  
   "PKGNAME1 (+|-)PKGNAME2" pairwise rule where the "+" or "-" symbol  
   specifies a "must be used with" or a "must not be used with"  
   relationship, respectively.  If no rule is specified, then it is  
   assumed that the two packages are compatible and will function  
   either with or without each other.  
     
 \item[--pdefault='PKG1 PKG2 PKG3 ...'] specifies the default set of  
   packages to be used.  
     
   If not set, the default package list will be read from {\em  
     pkg/pkg\_default}  
     
 \item[--adof=/path/to/file] specifies the "adjoint" or automatic  
   differentiation options file to be used.  The file is analogous to  
   the ``optfile'' defined above but it specifies information for the  
   AD build process.  
     
   The default file is located in {\em  
     tools/adjoint\_options/adjoint\_default} and it defines the "TAF"  
   and "TAMC" compilers.  An alternate version is also available at  
   {\em tools/adjoint\_options/adjoint\_staf} that selects the newer  
   "STAF" compiler.  As with any compilers, it is helpful to have their  
   directories listed in your {\tt \$PATH} environment variable.  
     
 \item[--mods='DIR1 DIR2 DIR3 ...'] specifies a list of directories  
   containing ``modifications''.  These directories contain files with  
   names that may (or may not) exist in the main MITgcm source tree but  
   will be overridden by any identically-named sources within the  
   ``MODS'' directories.  
     
   The order of precedence for this "name-hiding" is as follows:  
   \begin{itemize}  
   \item ``MODS'' directories (in the order given)  
   \item Packages either explicitly specified or provided by default  
     (in the order given)  
   \item Packages included due to package dependencies (in the order  
     that that package dependencies are parsed)  
   \item The "standard dirs" (which may have been specified by the  
     ``-standarddirs'' option)  
   \end{itemize}  
     
 \item[--make=/path/to/gmake] Due to the poor handling of soft-links and  
   other bugs common with the \texttt{make} versions provided by  
   commercial Unix vendors, GNU \texttt{make} (sometimes called  
   \texttt{gmake}) should be preferred.  This option provides a means  
   for specifying the make executable to be used.  
   
 \end{description}  
   
   
   
 \section{Running the model}  
565  \label{sect:runModel}  \label{sect:runModel}
566    
567  If compilation finished succesfuully (section \ref{sect:buildModel})  If compilation finished succesfuully (section \ref{sect:buildingCode})
568  then an executable called {\em mitgcmuv} will now exist in the local  then an executable called \texttt{mitgcmuv} will now exist in the
569  directory.  local directory.
570    
571  To run the model as a single process (ie. not in parallel) simply  To run the model as a single process (ie. not in parallel) simply
572  type:  type:
# Line 799  normally re-direct the {\em stdout} stre Line 584  normally re-direct the {\em stdout} stre
584  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
585  \end{verbatim}  \end{verbatim}
586    
587  For the example experiments in {\em vericication}, an example of the  For the example experiments in {\em verification}, an example of the
588  output is kept in {\em results/output.txt} for comparison. You can compare  output is kept in {\em results/output.txt} for comparison. You can compare
589  your {\em output.txt} with this one to check that the set-up works.  your {\em output.txt} with this one to check that the set-up works.
590    
# Line 885  Some examples of reading and visualizing Line 670  Some examples of reading and visualizing
670  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
671  \end{verbatim}  \end{verbatim}
672    
 \section{Doing it yourself: customizing the code}  
   
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies experiment  
 (described previously) that is the closest to your configuration. Then, the  
 amount of setup will be minimized. In this section, we focus on the setup  
 relative to the ''numerical model'' part of the code (the setup relative to  
 the ''execution environment'' part is covered in the parallel implementation  
 section) and on the variables and parameters that you are likely to change.  
   
 \subsection{Configuration and setup}  
   
 The CPP keys relative to the ''numerical model'' part of the code are all  
 defined and set in the file \textit{CPP\_OPTIONS.h }in the directory \textit{%  
 model/inc }or in one of the \textit{code }directories of the case study  
 experiments under \textit{verification.} The model parameters are defined  
 and declared in the file \textit{model/inc/PARAMS.h }and their default  
 values are set in the routine \textit{model/src/set\_defaults.F. }The  
 default values can be modified in the namelist file \textit{data }which  
 needs to be located in the directory where you will run the model. The  
 parameters are initialized in the routine \textit{model/src/ini\_parms.F}.  
 Look at this routine to see in what part of the namelist the parameters are  
 located.  
   
 In what follows the parameters are grouped into categories related to the  
 computational domain, the equations solved in the model, and the simulation  
 controls.  
   
 \subsection{Computational domain, geometry and time-discretization}  
   
 \begin{itemize}  
 \item dimensions  
 \end{itemize}  
   
 The number of points in the x, y,\textit{\ }and r\textit{\ }directions are  
 represented by the variables \textbf{sNx}\textit{, }\textbf{sNy}\textit{, }%  
 and \textbf{Nr}\textit{\ }respectively which are declared and set in the  
 file \textit{model/inc/SIZE.h. }(Again, this assumes a mono-processor  
 calculation. For multiprocessor calculations see section on parallel  
 implementation.)  
   
 \begin{itemize}  
 \item grid  
 \end{itemize}  
   
 Three different grids are available: cartesian, spherical polar, and  
 curvilinear (including the cubed sphere). The grid is set through the  
 logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{%  
 usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{%  
 usingCurvilinearGrid}\textit{. }In the case of spherical and curvilinear  
 grids, the southern boundary is defined through the variable \textbf{phiMin}%  
 \textit{\ }which corresponds to the latitude of the southern most cell face  
 (in degrees). The resolution along the x and y directions is controlled by  
 the 1D arrays \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters  
 in the case of a cartesian grid, in degrees otherwise). The vertical grid  
 spacing is set through the 1D array \textbf{delz }for the ocean (in meters)  
 or \textbf{delp}\textit{\ }for the atmosphere (in Pa). The variable \textbf{%  
 Ro\_SeaLevel} represents the standard position of Sea-Level in ''R''  
 coordinate. This is typically set to 0m for the ocean (default value) and 10$%  
 ^{5}$Pa for the atmosphere. For the atmosphere, also set the logical  
 variable \textbf{groundAtK1} to '.\texttt{TRUE}.'. which put the first level  
 (k=1) at the lower boundary (ground).  
   
 For the cartesian grid case, the Coriolis parameter $f$ is set through the  
 variables \textbf{f0}\textit{\ }and \textbf{beta}\textit{\ }which correspond  
 to the reference Coriolis parameter (in s$^{-1}$) and $\frac{\partial f}{%  
 \partial y}$(in m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ }%  
 is set to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the  
 southern edge of the domain.  
   
 \begin{itemize}  
 \item topography - full and partial cells  
 \end{itemize}  
   
 The domain bathymetry is read from a file that contains a 2D (x,y) map of  
 depths (in m) for the ocean or pressures (in Pa) for the atmosphere. The  
 file name is represented by the variable \textbf{bathyFile}\textit{. }The  
 file is assumed to contain binary numbers giving the depth (pressure) of the  
 model at each grid cell, ordered with the x coordinate varying fastest. The  
 points are ordered from low coordinate to high coordinate for both axes. The  
 model code applies without modification to enclosed, periodic, and double  
 periodic domains. Periodicity is assumed by default and is suppressed by  
 setting the depths to 0m for the cells at the limits of the computational  
 domain (note: not sure this is the case for the atmosphere). The precision  
 with which to read the binary data is controlled by the integer variable  
 \textbf{readBinaryPrec }which can take the value \texttt{32} (single  
 precision) or \texttt{64} (double precision). See the matlab program \textit{%  
 gendata.m }in the \textit{input }directories under \textit{verification }to  
 see how the bathymetry files are generated for the case study experiments.  
   
 To use the partial cell capability, the variable \textbf{hFacMin}\textit{\ }%  
 needs to be set to a value between 0 and 1 (it is set to 1 by default)  
 corresponding to the minimum fractional size of the cell. For example if the  
 bottom cell is 500m thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the  
 actual thickness of the cell (i.e. used in the code) can cover a range of  
 discrete values 50m apart from 50m to 500m depending on the value of the  
 bottom depth (in \textbf{bathyFile}) at this point.  
   
 Note that the bottom depths (or pressures) need not coincide with the models  
 levels as deduced from \textbf{delz}\textit{\ }or\textit{\ }\textbf{delp}%  
 \textit{. }The model will interpolate the numbers in \textbf{bathyFile}%  
 \textit{\ }so that they match the levels obtained from \textbf{delz}\textit{%  
 \ }or\textit{\ }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
   
 (Note: the atmospheric case is a bit more complicated than what is written  
 here I think. To come soon...)  
   
 \begin{itemize}  
 \item time-discretization  
 \end{itemize}  
   
 The time steps are set through the real variables \textbf{deltaTMom}  
 and \textbf{deltaTtracer} (in s) which represent the time step for the  
 momentum and tracer equations, respectively. For synchronous  
 integrations, simply set the two variables to the same value (or you  
 can prescribe one time step only through the variable  
 \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set  
 through the variable \textbf{abEps} (dimensionless). The stagger  
 baroclinic time stepping can be activated by setting the logical  
 variable \textbf{staggerTimeStep} to '.\texttt{TRUE}.'.  
   
 \subsection{Equation of state}  
   
 First, because the model equations are written in terms of  
 perturbations, a reference thermodynamic state needs to be specified.  
 This is done through the 1D arrays \textbf{tRef} and \textbf{sRef}.  
 \textbf{tRef} specifies the reference potential temperature profile  
 (in $^{o}$C for the ocean and $^{o}$K for the atmosphere) starting  
 from the level k=1. Similarly, \textbf{sRef} specifies the reference  
 salinity profile (in ppt) for the ocean or the reference specific  
 humidity profile (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character  
 variables \textbf{buoyancyRelation} and \textbf{eosType}.  
 \textbf{buoyancyRelation} is set to '\texttt{OCEANIC}' by default and  
 needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations.  
 In this case, \textbf{eosType} must be set to '\texttt{IDEALGAS}'.  
 For the ocean, two forms of the equation of state are available:  
 linear (set \textbf{eosType} to '\texttt{LINEAR}') and a polynomial  
 approximation to the full nonlinear equation ( set  
 \textbf{eosType}\textit{\ }to '\texttt{POLYNOMIAL}'). In the linear  
 case, you need to specify the thermal and haline expansion  
 coefficients represented by the variables \textbf{tAlpha}\textit{\  
   }(in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For the nonlinear  
 case, you need to generate a file of polynomial coefficients called  
 \textit{POLY3.COEFFS}. To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number  
 and the values of the vertical levels in \textit{knudsen2.f} so that  
 they match those of your configuration).  
   
 There there are also higher polynomials for the equation of state:  
 \begin{description}  
 \item['\texttt{UNESCO}':] The UNESCO equation of state formula of  
   Fofonoff and Millard \cite{fofonoff83}. This equation of state  
   assumes in-situ temperature, which is not a model variable; \emph{its use  
   is therefore discouraged, and it is only listed for completeness}.  
 \item['\texttt{JMD95Z}':] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The '\texttt{Z}' indicates that this equation  
   of state uses a horizontally and temporally constant pressure  
   $p_{0}=-g\rho_{0}z$.  
 \item['\texttt{JMD95P}':] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The '\texttt{P}' indicates that this equation  
   of state uses the actual hydrostatic pressure of the last time  
   step. Lagging the pressure in this way requires an additional pickup  
   file for restarts.  
 \item['\texttt{MDJWF}':] The new, more accurate and less expensive  
   equation of state by McDougall et~al. \cite{mcdougall03}. It also  
   requires lagging the pressure and therefore an additional pickup  
   file for restarts.  
 \end{description}  
 For none of these options an reference profile of temperature or  
 salinity is required.  
   
 \subsection{Momentum equations}  
   
 In this section, we only focus for now on the parameters that you are likely  
 to change, i.e. the ones relative to forcing and dissipation for example.  
 The details relevant to the vector-invariant form of the equations and the  
 various advection schemes are not covered for the moment. We assume that you  
 use the standard form of the momentum equations (i.e. the flux-form) with  
 the default advection scheme. Also, there are a few logical variables that  
 allow you to turn on/off various terms in the momentum equation. These  
 variables are called \textbf{momViscosity, momAdvection, momForcing,  
 useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  
 \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.  
 Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  
 these variables.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The velocity components are initialized to 0 unless the simulation is  
 starting from a pickup file (see section on simulation control parameters).  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This section only applies to the ocean. You need to generate wind-stress  
 data into two files \textbf{zonalWindFile}\textit{\ }and \textbf{%  
 meridWindFile }corresponding to the zonal and meridional components of the  
 wind stress, respectively (if you want the stress to be along the direction  
 of only one of the model horizontal axes, you only need to generate one  
 file). The format of the files is similar to the bathymetry file. The zonal  
 (meridional) stress data are assumed to be in Pa and located at U-points  
 (V-points). As for the bathymetry, the precision with which to read the  
 binary data is controlled by the variable \textbf{readBinaryPrec}.\textbf{\ }  
 See the matlab program \textit{gendata.m }in the \textit{input }directories  
 under \textit{verification }to see how simple analytical wind forcing data  
 are generated for the case study experiments.  
   
 There is also the possibility of prescribing time-dependent periodic  
 forcing. To do this, concatenate the successive time records into a single  
 file (for each stress component) ordered in a (x, y, t) fashion and set the  
 following variables: \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',  
 \textbf{externForcingPeriod }to the period (in s) of which the forcing  
 varies (typically 1 month), and \textbf{externForcingCycle }to the repeat  
 time (in s) of the forcing (typically 1 year -- note: \textbf{%  
 externForcingCycle }must be a multiple of \textbf{externForcingPeriod}).  
 With these variables set up, the model will interpolate the forcing linearly  
 at each iteration.  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 The lateral eddy viscosity coefficient is specified through the variable  
 \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The vertical eddy viscosity  
 coefficient is specified through the variable \textbf{viscAz }(in m$^{2}$s$%  
 ^{-1}$) for the ocean and \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$)  
 for the atmosphere. The vertical diffusive fluxes can be computed implicitly  
 by setting the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic mixing can be added as well through the variable  
 \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a spherical polar grid,  
 you might also need to set the variable \textbf{cosPower} which is set to 0  
 by default and which represents the power of cosine of latitude to multiply  
 viscosity. Slip or no-slip conditions at lateral and bottom boundaries are  
 specified through the logical variables \textbf{no\_slip\_sides}\textit{\ }%  
 and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}', free-slip  
 boundary conditions are applied. If no-slip boundary conditions are applied  
 at the bottom, a bottom drag can be applied as well. Two forms are  
 available: linear (set the variable \textbf{bottomDragLinear}\textit{\ }in s$%  
 ^{-1}$) and quadratic (set the variable \textbf{bottomDragQuadratic}\textit{%  
 \ }in m$^{-1}$).  
   
 The Fourier and Shapiro filters are described elsewhere.  
   
 \begin{itemize}  
 \item C-D scheme  
 \end{itemize}  
   
 If you run at a sufficiently coarse resolution, you will need the C-D scheme  
 for the computation of the Coriolis terms. The variable\textbf{\ tauCD},  
 which represents the C-D scheme coupling timescale (in s) needs to be set.  
   
 \begin{itemize}  
 \item calculation of pressure/geopotential  
 \end{itemize}  
   
 First, to run a non-hydrostatic ocean simulation, set the logical variable  
 \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure field is then  
 inverted through a 3D elliptic equation. (Note: this capability is not  
 available for the atmosphere yet.) By default, a hydrostatic simulation is  
 assumed and a 2D elliptic equation is used to invert the pressure field. The  
 parameters controlling the behaviour of the elliptic solvers are the  
 variables \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual }%  
 for the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{%  
 cg3dTargetResidual }for the 3D case. You probably won't need to alter the  
 default values (are we sure of this?).  
   
 For the calculation of the surface pressure (for the ocean) or surface  
 geopotential (for the atmosphere) you need to set the logical variables  
 \textbf{rigidLid} and \textbf{implicitFreeSurface}\textit{\ }(set one to '.%  
 \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how you  
 want to deal with the ocean upper or atmosphere lower boundary).  
   
 \subsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential temperature  
 equation and the salinity (for the ocean) or specific humidity (for the  
 atmosphere) equation. As for the momentum equations, we only describe for  
 now the parameters that you are likely to change. The logical variables  
 \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{%  
 tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  
 terms in the temperature equation (same thing for salinity or specific  
 humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{%  
 saltAdvection}\textit{\ }etc). These variables are all assumed here to be  
 set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  
 precise definition.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The initial tracer data can be contained in the binary files \textbf{%  
 hydrogThetaFile }and \textbf{hydrogSaltFile}. These files should contain 3D  
 data ordered in an (x, y, r) fashion with k=1 as the first vertical level.  
 If no file names are provided, the tracers are then initialized with the  
 values of \textbf{tRef }and \textbf{sRef }mentioned above (in the equation  
 of state section). In this case, the initial tracer data are uniform in x  
 and y for each depth level.  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This part is more relevant for the ocean, the procedure for the atmosphere  
 not being completely stabilized at the moment.  
   
 A combination of fluxes data and relaxation terms can be used for driving  
 the tracer equations. \ For potential temperature, heat flux data (in W/m$%  
 ^{2}$) can be stored in the 2D binary file \textbf{surfQfile}\textit{. }%  
 Alternatively or in addition, the forcing can be specified through a  
 relaxation term. The SST data to which the model surface temperatures are  
 restored to are supposed to be stored in the 2D binary file \textbf{%  
 thetaClimFile}\textit{. }The corresponding relaxation time scale coefficient  
 is set through the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The  
 same procedure applies for salinity with the variable names \textbf{EmPmRfile%  
 }\textit{, }\textbf{saltClimFile}\textit{, }and \textbf{tauSaltClimRelax}%  
 \textit{\ }for freshwater flux (in m/s) and surface salinity (in ppt) data  
 files and relaxation time scale coefficient (in s), respectively. Also for  
 salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, natural  
 boundary conditions are applied i.e. when computing the surface salinity  
 tendency, the freshwater flux is multiplied by the model surface salinity  
 instead of a constant salinity value.  
   
 As for the other input files, the precision with which to read the data is  
 controlled by the variable \textbf{readBinaryPrec}. Time-dependent, periodic  
 forcing can be applied as well following the same procedure used for the  
 wind forcing data (see above).  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 Lateral eddy diffusivities for temperature and salinity/specific humidity  
 are specified through the variables \textbf{diffKhT }and \textbf{diffKhS }%  
 (in m$^{2}$/s). Vertical eddy diffusivities are specified through the  
 variables \textbf{diffKzT }and \textbf{diffKzS }(in m$^{2}$/s) for the ocean  
 and \textbf{diffKpT }and \textbf{diffKpS }(in Pa$^{2}$/s) for the  
 atmosphere. The vertical diffusive fluxes can be computed implicitly by  
 setting the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic diffusivities can be specified as well through  
 the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in m$^{4}$/s). Note  
 that the cosine power scaling (specified through \textbf{cosPower }- see the  
 momentum equations section) is applied to the tracer diffusivities  
 (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization  
 for oceanic tracers is described in the package section. Finally, note that  
 tracers can be also subject to Fourier and Shapiro filtering (see the  
 corresponding section on these filters).  
   
 \begin{itemize}  
 \item ocean convection  
 \end{itemize}  
   
 Two options are available to parameterize ocean convection: one is to use  
 the convective adjustment scheme. In this case, you need to set the variable  
 \textbf{cadjFreq}, which represents the frequency (in s) with which the  
 adjustment algorithm is called, to a non-zero value (if set to a negative  
 value by the user, the model will set it to the tracer time step). The other  
 option is to parameterize convection with implicit vertical diffusion. To do  
 this, set the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .' and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s) you  
 wish the tracer vertical diffusivities to have when mixing tracers  
 vertically due to static instabilities. Note that \textbf{cadjFreq }and  
 \textbf{ivdc\_kappa }can not both have non-zero value.  
   
 \subsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  
 which determines the IO frequencies and is used in tagging output.  
 Typically, you will set it to the tracer time step for accelerated runs  
 (otherwise it is simply set to the default time step \textbf{deltaT}).  
 Frequency of checkpointing and dumping of the model state are referenced to  
 this clock (see below).  
   
 \begin{itemize}  
 \item run duration  
 \end{itemize}  
   
 The beginning of a simulation is set by specifying a start time (in s)  
 through the real variable \textbf{startTime }or by specifying an initial  
 iteration number through the integer variable \textbf{nIter0}. If these  
 variables are set to nonzero values, the model will look for a ''pickup''  
 file \textit{pickup.0000nIter0 }to restart the integration\textit{. }The end  
 of a simulation is set through the real variable \textbf{endTime }(in s).  
 Alternatively, you can specify instead the number of time steps to execute  
 through the integer variable \textbf{nTimeSteps}.  
   
 \begin{itemize}  
 \item frequency of output  
 \end{itemize}  
   
 Real variables defining frequencies (in s) with which output files are  
 written on disk need to be set up. \textbf{dumpFreq }controls the frequency  
 with which the instantaneous state of the model is saved. \textbf{chkPtFreq }%  
 and \textbf{pchkPtFreq }control the output frequency of rolling and  
 permanent checkpoint files, respectively. See section 1.5.1 Output files for the  
 definition of model state and checkpoint files. In addition, time-averaged  
 fields can be written out by setting the variable \textbf{taveFreq} (in s).  
 The precision with which to write the binary data is controlled by the  
 integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32} or \texttt{%  
 64}).  
   
 %%% Local Variables:  
 %%% mode: latex  
 %%% TeX-master: t  
 %%% End:  

Legend:
Removed from v.1.16  
changed lines
  Added in v.1.28

  ViewVC Help
Powered by ViewVC 1.1.22