/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by adcroft, Wed Aug 8 16:15:31 2001 UTC revision 1.33 by edhill, Sat Apr 8 01:50:49 2006 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4    %\section{Getting started}
5    
6  \begin{center}  In this section, we describe how to use the model. In the first
7  {\Large \textbf{Using the model}}  section, we provide enough information to help you get started with
8    the model. We believe the best way to familiarize yourself with the
9    model is to run the case study examples provided with the base
10    version. Information on how to obtain, compile, and run the code is
11    found there as well as a brief description of the model structure
12    directory and the case study examples.  The latter and the code
13    structure are described more fully in chapters
14    \ref{chap:discretization} and \ref{chap:sarch}, respectively. Here, in
15    this section, we provide information on how to customize the code when
16    you are ready to try implementing the configuration you have in mind.
17    
18    
19    \section{Where to find information}
20    \label{sect:whereToFindInfo}
21    \begin{rawhtml}
22    <!-- CMIREDIR:whereToFindInfo: -->
23    \end{rawhtml}
24    
25    A web site is maintained for release 2 (``Pelican'') of MITgcm:
26    \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}
27    \begin{verbatim}
28    http://mitgcm.org/pelican
29    \end{verbatim}
30    \begin{rawhtml} </A> \end{rawhtml}
31    Here you will find an on-line version of this document, a
32    ``browsable'' copy of the code and a searchable database of the model
33    and site, as well as links for downloading the model and
34    documentation, to data-sources, and other related sites.
35    
36    There is also a web-archived support mailing list for the model that
37    you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:
38    \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
39    \begin{verbatim}
40    http://mitgcm.org/mailman/listinfo/mitgcm-support/
41    http://mitgcm.org/pipermail/mitgcm-support/
42    \end{verbatim}
43    \begin{rawhtml} </A> \end{rawhtml}
44    Essentially all of the MITgcm web pages can be searched using a
45    popular web crawler such as Google or through our own search facility:
46    \begin{rawhtml} <A href=http://mitgcm.org/mailman/htdig/ target="idontexist"> \end{rawhtml}
47    \begin{verbatim}
48    http://mitgcm.org/htdig/
49    \end{verbatim}
50    \begin{rawhtml} </A> \end{rawhtml}
51    %%% http://www.google.com/search?q=hydrostatic+site%3Amitgcm.org
52    
53    
54    
55    \section{Obtaining the code}
56    \label{sect:obtainingCode}
57    \begin{rawhtml}
58    <!-- CMIREDIR:obtainingCode: -->
59    \end{rawhtml}
60    
61    MITgcm can be downloaded from our system by following
62    the instructions below. As a courtesy we ask that you send e-mail to us at
63    \begin{rawhtml} <A href=mailto:MITgcm-support@mitgcm.org> \end{rawhtml}
64    MITgcm-support@mitgcm.org
65    \begin{rawhtml} </A> \end{rawhtml}
66    to enable us to keep track of who's using the model and in what application.
67    You can download the model two ways:
68    
69    \begin{enumerate}
70    \item Using CVS software. CVS is a freely available source code management
71    tool. To use CVS you need to have the software installed. Many systems
72    come with CVS pre-installed, otherwise good places to look for
73    the software for a particular platform are
74    \begin{rawhtml} <A href=http://www.cvshome.org/ target="idontexist"> \end{rawhtml}
75    cvshome.org
76    \begin{rawhtml} </A> \end{rawhtml}
77    and
78    \begin{rawhtml} <A href=http://www.wincvs.org/ target="idontexist"> \end{rawhtml}
79    wincvs.org
80    \begin{rawhtml} </A> \end{rawhtml}
81    .
82    
83    \item Using a tar file. This method is simple and does not
84    require any special software. However, this method does not
85    provide easy support for maintenance updates.
86    
87  \vspace*{4mm}  \end{enumerate}
88    
89  \vspace*{3mm} {\large July 2001}  \subsection{Method 1 - Checkout from CVS}
90  \end{center}  \label{sect:cvs_checkout}
91    
92  In this part, we describe how to use the model. In the first section, we  If CVS is available on your system, we strongly encourage you to use it. CVS
93  provide enough information to help you get started with the model. We  provides an efficient and elegant way of organizing your code and keeping
94  believe the best way to familiarize yourself with the model is to run the  track of your changes. If CVS is not available on your machine, you can also
95  case study examples provided with the base version. Information on how to  download a tar file.
 obtain, compile, and run the code is found there as well as a brief  
 description of the model structure directory and the case study examples.  
 The latter and the code structure are described more fully in sections 2 and  
 3, respectively. In section 4, we provide information on how to customize  
 the code when you are ready to try implementing the configuration you have  
 in mind.  
   
 \section{Getting started}  
   
 \subsection{Obtaining the code}  
96    
97  The reference web site for the model is:  Before you can use CVS, the following environment variable(s) should
98    be set within your shell.  For a csh or tcsh shell, put the following
99  \begin{verbatim}  \begin{verbatim}
100  http://mitgcm.org  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
101  \end{verbatim}  \end{verbatim}
102    in your \texttt{.cshrc} or \texttt{.tcshrc} file.  For bash or sh
103  On this site, you can download the model as well as find useful information,  shells, put:
 some of which might overlap with what is written here. There is also a  
 support news group for the model located at (send your message to \texttt{%  
 support@mitgcm.org}):  
104  \begin{verbatim}  \begin{verbatim}
105  news://mitgcm.org/mitgcm.support  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
106  \end{verbatim}  \end{verbatim}
107    in your \texttt{.profile} or \texttt{.bashrc} file.
108    
 If CVS is available on your system, we strongly encourage you to use it. CVS  
 provides an efficient and elegant way of organizing your code and keeping  
 track of your changes. If CVS is not available on your machine, you can also  
 download a tar file.  
   
 \subsubsection{using CVS}  
109    
110  Before you can use CVS, the following environment variable has to be set in  To get MITgcm through CVS, first register with the MITgcm CVS server
111  your .cshrc or .tcshrc:  using command:
112  \begin{verbatim}  \begin{verbatim}
 % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/u0/gcmpack  
113  % cvs login ( CVS password: cvsanon )  % cvs login ( CVS password: cvsanon )
114  \end{verbatim}  \end{verbatim}
115    You only need to do a ``cvs login'' once.
116    
117  You only need to do ``cvs login'' once. To obtain the latest source:  To obtain the latest sources type:
118  \begin{verbatim}  \begin{verbatim}
119  % cvs co -d directory models/MITgcmUV  % cvs co MITgcm
120  \end{verbatim}  \end{verbatim}
121    or to get a specific release type:
 This creates a directory called \textit{directory}. If \textit{directory}  
 exists this command updates your code based on the repository. Each  
 directory in the source tree contains a directory \textit{CVS}. This  
 information is required by CVS to keep track of your file versions with  
 respect to the repository. Don't edit the files in \textit{CVS}! To obtain a  
 specific \textit{version} that is not the latest source:  
122  \begin{verbatim}  \begin{verbatim}
123  % cvs co -d directory -r version models/MITgcmUV  % cvs co -P -r checkpoint52i_post  MITgcm
124  \end{verbatim}  \end{verbatim}
125    The MITgcm web site contains further directions concerning the source
126  \subsubsection{other methods}  code and CVS.  It also contains a web interface to our CVS archive so
127    that one may easily view the state of files, revisions, and other
128  You can download the model as a tar file from the reference web site at:  development milestones:
129    \begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml}
130    \begin{verbatim}
131    http://mitgcm.org/source_code.html
132    \end{verbatim}
133    \begin{rawhtml} </A> \end{rawhtml}
134    
135    As a convenience, the MITgcm CVS server contains aliases which are
136    named subsets of the codebase.  These aliases can be especially
137    helpful when used over slow internet connections or on machines with
138    restricted storage space.  Table \ref{tab:cvsModules} contains a list
139    of CVS aliases
140    \begin{table}[htb]
141      \centering
142      \begin{tabular}[htb]{|lp{3.25in}|}\hline
143        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
144        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
145        \texttt{MITgcm\_verif\_basic}
146        &  Source code plus a small set of the verification examples
147        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
148        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
149        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
150        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
151        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
152        verification examples. \\\hline
153      \end{tabular}
154      \caption{MITgcm CVS Modules}
155      \label{tab:cvsModules}
156    \end{table}
157    
158    The checkout process creates a directory called \texttt{MITgcm}. If
159    the directory \texttt{MITgcm} exists this command updates your code
160    based on the repository. Each directory in the source tree contains a
161    directory \texttt{CVS}. This information is required by CVS to keep
162    track of your file versions with respect to the repository. Don't edit
163    the files in \texttt{CVS}!  You can also use CVS to download code
164    updates.  More extensive information on using CVS for maintaining
165    MITgcm code can be found
166    \begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml}
167    here
168    \begin{rawhtml} </A> \end{rawhtml}
169    .
170    It is important to note that the CVS aliases in Table
171    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
172    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
173    they create can be changed to a different name following the check-out:
174    \begin{verbatim}
175       %  cvs co MITgcm_verif_basic
176       %  mv MITgcm MITgcm_verif_basic
177    \end{verbatim}
178    
179    
180    \subsection{Method 2 - Tar file download}
181    \label{sect:conventionalDownload}
182    
183    If you do not have CVS on your system, you can download the model as a
184    tar file from the web site at:
185    \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}
186  \begin{verbatim}  \begin{verbatim}
187  http://mitgcm.org/download/  http://mitgcm.org/download/
188  \end{verbatim}  \end{verbatim}
189    \begin{rawhtml} </A> \end{rawhtml}
190    The tar file still contains CVS information which we urge you not to
191    delete; even if you do not use CVS yourself the information can help
192    us if you should need to send us your copy of the code.  If a recent
193    tar file does not exist, then please contact the developers through
194    the
195    \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
196    MITgcm-support@mitgcm.org
197    \begin{rawhtml} </A> \end{rawhtml}
198    mailing list.
199    
200    \subsubsection{Upgrading from an earlier version}
201    
202    If you already have an earlier version of the code you can ``upgrade''
203    your copy instead of downloading the entire repository again. First,
204    ``cd'' (change directory) to the top of your working copy:
205    \begin{verbatim}
206    % cd MITgcm
207    \end{verbatim}
208    and then issue the cvs update command such as:
209    \begin{verbatim}
210    % cvs -q update -r checkpoint52i_post -d -P
211    \end{verbatim}
212    This will update the ``tag'' to ``checkpoint52i\_post'', add any new
213    directories (-d) and remove any empty directories (-P). The -q option
214    means be quiet which will reduce the number of messages you'll see in
215    the terminal. If you have modified the code prior to upgrading, CVS
216    will try to merge your changes with the upgrades. If there is a
217    conflict between your modifications and the upgrade, it will report
218    that file with a ``C'' in front, e.g.:
219    \begin{verbatim}
220    C model/src/ini_parms.F
221    \end{verbatim}
222    If the list of conflicts scrolled off the screen, you can re-issue the
223    cvs update command and it will report the conflicts. Conflicts are
224    indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
225    ``$>>>>>>>$''. For example,
226    {\small
227    \begin{verbatim}
228    <<<<<<< ini_parms.F
229         & bottomDragLinear,myOwnBottomDragCoefficient,
230    =======
231         & bottomDragLinear,bottomDragQuadratic,
232    >>>>>>> 1.18
233    \end{verbatim}
234    }
235    means that you added ``myOwnBottomDragCoefficient'' to a namelist at
236    the same time and place that we added ``bottomDragQuadratic''. You
237    need to resolve this conflict and in this case the line should be
238    changed to:
239    {\small
240    \begin{verbatim}
241         & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
242    \end{verbatim}
243    }
244    and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
245    Unless you are making modifications which exactly parallel
246    developments we make, these types of conflicts should be rare.
247    
248    \paragraph*{Upgrading to the current pre-release version}
249    
250    We don't make a ``release'' for every little patch and bug fix in
251    order to keep the frequency of upgrades to a minimum. However, if you
252    have run into a problem for which ``we have already fixed in the
253    latest code'' and we haven't made a ``tag'' or ``release'' since that
254    patch then you'll need to get the latest code:
255    \begin{verbatim}
256    % cvs -q update -A -d -P
257    \end{verbatim}
258    Unlike, the ``check-out'' and ``update'' procedures above, there is no
259    ``tag'' or release name. The -A tells CVS to upgrade to the
260    very latest version. As a rule, we don't recommend this since you
261    might upgrade while we are in the processes of checking in the code so
262    that you may only have part of a patch. Using this method of updating
263    also means we can't tell what version of the code you are working
264    with. So please be sure you understand what you're doing.
265    
266    \section{Model and directory structure}
267    \begin{rawhtml}
268    <!-- CMIREDIR:directory_structure: -->
269    \end{rawhtml}
270    
271    The ``numerical'' model is contained within a execution environment
272    support wrapper. This wrapper is designed to provide a general
273    framework for grid-point models. MITgcmUV is a specific numerical
274    model that uses the framework. Under this structure the model is split
275    into execution environment support code and conventional numerical
276    model code. The execution environment support code is held under the
277    \texttt{eesupp} directory. The grid point model code is held under the
278    \texttt{model} directory. Code execution actually starts in the
279    \texttt{eesupp} routines and not in the \texttt{model} routines. For
280    this reason the top-level \texttt{MAIN.F} is in the
281    \texttt{eesupp/src} directory. In general, end-users should not need
282    to worry about this level. The top-level routine for the numerical
283    part of the code is in \texttt{model/src/THE\_MODEL\_MAIN.F}. Here is
284    a brief description of the directory structure of the model under the
285    root tree (a detailed description is given in section 3: Code
286    structure).
287    
288    \begin{itemize}
289    
290    \item \texttt{bin}: this directory is initially empty. It is the
291      default directory in which to compile the code.
292      
293    \item \texttt{diags}: contains the code relative to time-averaged
294      diagnostics. It is subdivided into two subdirectories \texttt{inc}
295      and \texttt{src} that contain include files (\texttt{*.h} files) and
296      Fortran subroutines (\texttt{*.F} files), respectively.
297    
298    \item \texttt{doc}: contains brief documentation notes.
299      
300    \item \texttt{eesupp}: contains the execution environment source code.
301      Also subdivided into two subdirectories \texttt{inc} and
302      \texttt{src}.
303      
304    \item \texttt{exe}: this directory is initially empty. It is the
305      default directory in which to execute the code.
306      
307    \item \texttt{model}: this directory contains the main source code.
308      Also subdivided into two subdirectories \texttt{inc} and
309      \texttt{src}.
310      
311    \item \texttt{pkg}: contains the source code for the packages. Each
312      package corresponds to a subdirectory. For example, \texttt{gmredi}
313      contains the code related to the Gent-McWilliams/Redi scheme,
314      \texttt{aim} the code relative to the atmospheric intermediate
315      physics. The packages are described in detail in section 3.
316      
317    \item \texttt{tools}: this directory contains various useful tools.
318      For example, \texttt{genmake2} is a script written in csh (C-shell)
319      that should be used to generate your makefile. The directory
320      \texttt{adjoint} contains the makefile specific to the Tangent
321      linear and Adjoint Compiler (TAMC) that generates the adjoint code.
322      The latter is described in details in part V.
323      
324    \item \texttt{utils}: this directory contains various utilities. The
325      subdirectory \texttt{knudsen2} contains code and a makefile that
326      compute coefficients of the polynomial approximation to the knudsen
327      formula for an ocean nonlinear equation of state. The
328      \texttt{matlab} subdirectory contains matlab scripts for reading
329      model output directly into matlab. \texttt{scripts} contains C-shell
330      post-processing scripts for joining processor-based and tiled-based
331      model output.
332      
333    \item \texttt{verification}: this directory contains the model
334      examples. See section \ref{sect:modelExamples}.
335    
336    \end{itemize}
337    
338    \section[MITgcm Example Experiments]{Example experiments}
339    \label{sect:modelExamples}
340    \begin{rawhtml}
341    <!-- CMIREDIR:modelExamples: -->
342    \end{rawhtml}
343    
344    %% a set of twenty-four pre-configured numerical experiments
345    
346    The full MITgcm distribution comes with more than a dozen
347    pre-configured numerical experiments. Some of these example
348    experiments are tests of individual parts of the model code, but many
349    are fully fledged numerical simulations. A few of the examples are
350    used for tutorial documentation in sections \ref{sect:eg-baro} -
351    \ref{sect:eg-global}.  The other examples follow the same general
352    structure as the tutorial examples. However, they only include brief
353    instructions in a text file called {\it README}.  The examples are
354    located in subdirectories under the directory \texttt{verification}.
355    Each example is briefly described below.
356    
357    \subsection{Full list of model examples}
358    
359    \begin{enumerate}
360      
361    \item \texttt{exp0} - single layer, ocean double gyre (barotropic with
362      free-surface). This experiment is described in detail in section
363      \ref{sect:eg-baro}.
364    
365    \item \texttt{exp1} - Four layer, ocean double gyre. This experiment
366      is described in detail in section \ref{sect:eg-baroc}.
367      
368    \item \texttt{exp2} - 4x4 degree global ocean simulation with steady
369      climatological forcing. This experiment is described in detail in
370      section \ref{sect:eg-global}.
371      
372    \item \texttt{exp4} - Flow over a Gaussian bump in open-water or
373      channel with open boundaries.
374      
375    \item \texttt{exp5} - Inhomogenously forced ocean convection in a
376      doubly periodic box.
377    
378  \subsection{Model and directory structure}  \item \texttt{front\_relax} - Relaxation of an ocean thermal front (test for
   
 The ``numerical'' model is contained within a execution environment support  
 wrapper. This wrapper is designed to provide a general framework for  
 grid-point models. MITgcmUV is a specific numerical model that uses the  
 framework. Under this structure the model is split into execution  
 environment support code and conventional numerical model code. The  
 execution environment support code is held under the \textit{eesupp}  
 directory. The grid point model code is held under the \textit{model}  
 directory. Code execution actually starts in the \textit{eesupp} routines  
 and not in the \textit{model} routines. For this reason the top-level  
 \textit{MAIN.F} is in the \textit{eesupp/src} directory. In general,  
 end-users should not need to worry about this level. The top-level routine  
 for the numerical part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F%  
 }. Here is a brief description of the directory structure of the model under  
 the root tree (a detailed description is given in section 3: Code structure).  
   
 \begin{itemize}  
 \item \textit{bin}: this directory is initially empty. It is the default  
 directory in which to compile the code.  
   
 \item \textit{diags}: contains the code relative to time-averaged  
 diagnostics. It is subdivided into two subdirectories \textit{inc} and  
 \textit{src} that contain include files (*.\textit{h} files) and fortran  
 subroutines (*.\textit{F} files), respectively.  
   
 \item \textit{doc}: contains brief documentation notes.  
   
 \item \textit{eesupp}: contains the execution environment source code. Also  
 subdivided into two subdirectories \textit{inc} and \textit{src}.  
   
 \item \textit{exe}: this directory is initially empty. It is the default  
 directory in which to execute the code.  
   
 \item \textit{model}: this directory contains the main source code. Also  
 subdivided into two subdirectories \textit{inc} and \textit{src}.  
   
 \item \textit{pkg}: contains the source code for the packages. Each package  
 corresponds to a subdirectory. For example, \textit{gmredi} contains the  
 code related to the Gent-McWilliams/Redi scheme, \textit{aim} the code  
 relative to the atmospheric intermediate physics. The packages are described  
 in detail in section 3.  
   
 \item \textit{tools}: this directory contains various useful tools. For  
 example, \textit{genmake} is a script written in csh (C-shell) that should  
 be used to generate your makefile. The directory \textit{adjoint} contains  
 the makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that  
 generates the adjoint code. The latter is described in details in part V.  
   
 \item \textit{utils}: this directory contains various utilities. The  
 subdirectory \textit{knudsen2} contains code and a makefile that compute  
 coefficients of the polynomial approximation to the knudsen formula for an  
 ocean nonlinear equation of state. The \textit{matlab} subdirectory contains  
 matlab scripts for reading model output directly into matlab. \textit{scripts%  
 } contains C-shell post-processing scripts for joining processor-based and  
 tiled-based model output.  
   
 \item \textit{verification}: this directory contains the model examples. See  
 below.  
 \end{itemize}  
   
 \subsection{Model examples}  
   
 Now that you have successfully downloaded the model code we recommend that  
 you first try to run the examples provided with the base version. You will  
 probably want to run the example that is the closest to the configuration  
 you will use eventually. The examples are located in subdirectories under  
 the directory \textit{verification} and are briefly described below (a full  
 description is given in section 2):  
   
 \subsubsection{List of model examples}  
   
 \begin{itemize}  
 \item \textit{exp0} - single layer, ocean double gyre (barotropic with  
 free-surface).  
   
 \item \textit{exp1} - 4 layers, ocean double gyre.  
   
 \item \textit{exp2} - 4x4 degree global ocean simulation with steady  
 climatological forcing.  
   
 \item \textit{exp4} - flow over a Gaussian bump in open-water or channel  
 with open boundaries.  
   
 \item \textit{exp5} - inhomogenously forced ocean convection in a doubly  
 periodic box.  
   
 \item \textit{front\_relax} - relaxation of an ocean thermal front (test for  
379  Gent/McWilliams scheme). 2D (Y-Z).  Gent/McWilliams scheme). 2D (Y-Z).
380    
381  \item \textit{internal wave} - ocean internal wave forced by open boundary  \item \texttt{internal wave} - Ocean internal wave forced by open
382  conditions.    boundary conditions.
383      
384  \item \textit{natl\_box} - eastern subtropical North Atlantic with KPP  \item \texttt{natl\_box} - Eastern subtropical North Atlantic with KPP
385  scheme; 1 month integration    scheme; 1 month integration
386      
387  \item \textit{hs94.1x64x5} - zonal averaged atmosphere using Held and Suarez  \item \texttt{hs94.1x64x5} - Zonal averaged atmosphere using Held and
388  '94 forcing.    Suarez '94 forcing.
389      
390  \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and Suarez  \item \texttt{hs94.128x64x5} - 3D atmosphere dynamics using Held and
391  '94 forcing.    Suarez '94 forcing.
392      
393  \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  \item \texttt{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and
394  Suarez '94 forcing on the cubed sphere.    Suarez '94 forcing on the cubed sphere.
395      
396  \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics, 5 layers  \item \texttt{aim.5l\_zon-ave} - Intermediate Atmospheric physics.
397  Molteni physics package. Global Zonal Mean configuration, 1x64x5 resolution.    Global Zonal Mean configuration, 1x64x5 resolution.
398      
399    \item \texttt{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate
400      Atmospheric physics, equatorial Slice configuration.  2D (X-Z).
401      
402    \item \texttt{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric
403      physics. 3D Equatorial Channel configuration.
404      
405    \item \texttt{aim.5l\_LatLon} - Intermediate Atmospheric physics.
406      Global configuration, on latitude longitude grid with 128x64x5 grid
407      points ($2.8^\circ$ resolution).
408      
409    \item \texttt{adjustment.128x64x1} Barotropic adjustment problem on
410      latitude longitude grid with 128x64 grid points ($2.8^\circ$ resolution).
411      
412    \item \texttt{adjustment.cs-32x32x1} Barotropic adjustment problem on
413      cube sphere grid with 32x32 points per face (roughly $2.8^\circ$
414      resolution).
415      
416    \item \texttt{advect\_cs} Two-dimensional passive advection test on
417      cube sphere grid.
418      
419    \item \texttt{advect\_xy} Two-dimensional (horizontal plane) passive
420      advection test on Cartesian grid.
421      
422    \item \texttt{advect\_yz} Two-dimensional (vertical plane) passive
423      advection test on Cartesian grid.
424      
425    \item \texttt{carbon} Simple passive tracer experiment. Includes
426      derivative calculation. Described in detail in section
427      \ref{sect:eg-carbon-ad}.
428    
429    \item \texttt{flt\_example} Example of using float package.
430      
431    \item \texttt{global\_ocean.90x40x15} Global circulation with GM, flux
432      boundary conditions and poles.
433    
434    \item \texttt{global\_ocean\_pressure} Global circulation in pressure
435      coordinate (non-Boussinesq ocean model). Described in detail in
436      section \ref{sect:eg-globalpressure}.
437      
438    \item \texttt{solid-body.cs-32x32x1} Solid body rotation test for cube
439      sphere grid.
440    
441  \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate Atmospheric  \end{enumerate}
 physics, 5 layers Molteni physics package. Equatorial Slice configuration.  
 2D (X-Z).  
442    
443  \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  \subsection{Directory structure of model examples}
 physics, 5 layers Molteni physics package. 3D Equatorial Channel  
 configuration (not completely tested).  
   
 \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics, 5 layers  
 Molteni physics package. Global configuration, 128x64x5 resolution.  
   
 \item \textit{adjustment.128x64x1}  
   
 \item \textit{adjustment.cs-32x32x1}  
 \end{itemize}  
   
 \subsubsection{Directory structure of model examples}  
444    
445  Each example directory has the following subdirectories:  Each example directory has the following subdirectories:
446    
447  \begin{itemize}  \begin{itemize}
448  \item \textit{code}: contains the code particular to the example. At a  \item \texttt{code}: contains the code particular to the example. At a
449  minimum, this directory includes the following files:    minimum, this directory includes the following files:
   
 \begin{itemize}  
 \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to the  
 ``execution environment'' part of the code. The default version is located  
 in \textit{eesupp/inc}.  
   
 \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to the  
 ``numerical model'' part of the code. The default version is located in  
 \textit{model/inc}.  
   
 \item \textit{code/SIZE.h}: declares size of underlying computational grid.  
 The default version is located in \textit{model/inc}.  
 \end{itemize}  
   
 In addition, other include files and subroutines might be present in \textit{%  
 code} depending on the particular experiment. See section 2 for more details.  
   
 \item \textit{input}: contains the input data files required to run the  
 example. At a mimimum, the \textit{input} directory contains the following  
 files:  
   
 \begin{itemize}  
 \item \textit{input/data}: this file, written as a namelist, specifies the  
 main parameters for the experiment.  
   
 \item \textit{input/data.pkg}: contains parameters relative to the packages  
 used in the experiment.  
   
 \item \textit{input/eedata}: this file contains ``execution environment''  
 data. At present, this consists of a specification of the number of threads  
 to use in $X$ and $Y$ under multithreaded execution.  
 \end{itemize}  
   
 In addition, you will also find in this directory the forcing and topography  
 files as well as the files describing the initial state of the experiment.  
 This varies from experiment to experiment. See section 2 for more details.  
   
 \item \textit{results}: this directory contains the output file \textit{%  
 output.txt} produced by the simulation example. This file is useful for  
 comparison with your own output when you run the experiment.  
 \end{itemize}  
   
 Once you have chosen the example you want to run, you are ready to compile  
 the code.  
   
 \subsection{Compiling the code}  
   
 \subsubsection{The script \textit{genmake}}  
   
 To compile the code, use the script \textit{genmake} located in the \textit{%  
 tools} directory. \textit{genmake} is a script that generates the makefile.  
 It has been written so that the code can be compiled on a wide diversity of  
 machines and systems. However, if it doesn't work the first time on your  
 platform, you might need to edit certain lines of \textit{genmake} in the  
 section containing the setups for the different machines. The file is  
 structured like this:  
 \begin{verbatim}  
         .  
         .  
         .  
 general instructions (machine independent)  
         .  
         .  
         .  
     - setup machine 1  
     - setup machine 2  
     - setup machine 3  
     - setup machine 4  
        etc  
         .  
         .  
         .  
 \end{verbatim}  
   
 For example, the setup corresponding to a DEC alpha machine is reproduced  
 here:  
 \begin{verbatim}  
   case OSF1+mpi:  
     echo "Configuring for DEC Alpha"  
     set CPP        = ( '/usr/bin/cpp -P' )  
     set DEFINES    = ( ${DEFINES}  '-DTARGET_DEC -DWORDLENGTH=1' )  
     set KPP        = ( 'kapf' )  
     set KPPFILES   = ( 'main.F' )  
     set KFLAGS1    = ( '-scan=132 -noconc -cmp=' )  
     set FC         = ( 'f77' )  
     set FFLAGS     = ( '-convert big_endian -r8 -extend_source -automatic -call_shared -notransform_loops -align dcommons' )  
     set FOPTIM     = ( '-O5 -fast -tune host -inline all' )  
     set NOOPTFLAGS = ( '-O0' )  
     set LIBS       = ( '-lfmpi -lmpi -lkmp_osfp10 -pthread' )  
     set NOOPTFILES = ( 'barrier.F different_multiple.F external_fields_load.F')  
     set RMFILES    = ( '*.p.out' )  
     breaksw  
 \end{verbatim}  
   
 Typically, these are the lines that you might need to edit to make \textit{%  
 genmake} work on your platform if it doesn't work the first time. \textit{%  
 genmake} understands several options that are described here:  
   
 \begin{itemize}  
 \item -rootdir=dir  
   
 indicates where the model root directory is relative to the directory where  
 you are compiling. This option is not needed if you compile in the \textit{%  
 bin} directory (which is the default compilation directory) or within the  
 \textit{verification} tree.  
   
 \item -mods=dir1,dir2,...  
   
 indicates the relative or absolute paths directories where the sources  
 should take precedence over the default versions (located in \textit{model},  
 \textit{eesupp},...). Typically, this option is used when running the  
 examples, see below.  
450    
451  \item -enable=pkg1,pkg2,...    \begin{itemize}
452      \item \texttt{code/packages.conf}: declares the list of packages or
453        package groups to be used.  If not included, the default version
454        is located in \texttt{pkg/pkg\_default}.  Package groups are
455        simply convenient collections of commonly used packages which are
456        defined in \texttt{pkg/pkg\_default}.  Some packages may require
457        other packages or may require their absence (that is, they are
458        incompatible) and these package dependencies are listed in
459        \texttt{pkg/pkg\_depend}.
460    
461      \item \texttt{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
462        the ``execution environment'' part of the code. The default
463        version is located in \texttt{eesupp/inc}.
464      
465      \item \texttt{code/CPP\_OPTIONS.h}: declares CPP keys relative to
466        the ``numerical model'' part of the code. The default version is
467        located in \texttt{model/inc}.
468      
469      \item \texttt{code/SIZE.h}: declares size of underlying
470        computational grid.  The default version is located in
471        \texttt{model/inc}.
472      \end{itemize}
473      
474      In addition, other include files and subroutines might be present in
475      \texttt{code} depending on the particular experiment. See Section 2
476      for more details.
477      
478    \item \texttt{input}: contains the input data files required to run
479      the example. At a minimum, the \texttt{input} directory contains the
480      following files:
481    
482      \begin{itemize}
483      \item \texttt{input/data}: this file, written as a namelist,
484        specifies the main parameters for the experiment.
485      
486      \item \texttt{input/data.pkg}: contains parameters relative to the
487        packages used in the experiment.
488      
489      \item \texttt{input/eedata}: this file contains ``execution
490        environment'' data. At present, this consists of a specification
491        of the number of threads to use in $X$ and $Y$ under multithreaded
492        execution.
493      \end{itemize}
494      
495      In addition, you will also find in this directory the forcing and
496      topography files as well as the files describing the initial state
497      of the experiment.  This varies from experiment to experiment. See
498      section 2 for more details.
499    
500    \item \texttt{results}: this directory contains the output file
501      \texttt{output.txt} produced by the simulation example. This file is
502      useful for comparison with your own output when you run the
503      experiment.
504    \end{itemize}
505    
506    Once you have chosen the example you want to run, you are ready to
507    compile the code.
508    
509    \section[Building MITgcm]{Building the code}
510    \label{sect:buildingCode}
511    \begin{rawhtml}
512    <!-- CMIREDIR:buildingCode: -->
513    \end{rawhtml}
514    
515    To compile the code, we use the \texttt{make} program. This uses a
516    file (\texttt{Makefile}) that allows us to pre-process source files,
517    specify compiler and optimization options and also figures out any
518    file dependencies. We supply a script (\texttt{genmake2}), described
519    in section \ref{sect:genmake}, that automatically creates the
520    \texttt{Makefile} for you. You then need to build the dependencies and
521    compile the code.
522    
523    As an example, assume that you want to build and run experiment
524    \texttt{verification/exp2}. The are multiple ways and places to
525    actually do this but here let's build the code in
526    \texttt{verification/exp2/build}:
527    \begin{verbatim}
528    % cd verification/exp2/build
529    \end{verbatim}
530    First, build the \texttt{Makefile}:
531    \begin{verbatim}
532    % ../../../tools/genmake2 -mods=../code
533    \end{verbatim}
534    The command line option tells \texttt{genmake} to override model source
535    code with any files in the directory \texttt{../code/}.
536    
537    On many systems, the \texttt{genmake2} program will be able to
538    automatically recognize the hardware, find compilers and other tools
539    within the user's path (``\texttt{echo \$PATH}''), and then choose an
540    appropriate set of options from the files (``optfiles'') contained in
541    the \texttt{tools/build\_options} directory.  Under some
542    circumstances, a user may have to create a new ``optfile'' in order to
543    specify the exact combination of compiler, compiler flags, libraries,
544    and other options necessary to build a particular configuration of
545    MITgcm.  In such cases, it is generally helpful to read the existing
546    ``optfiles'' and mimic their syntax.
547    
548    Through the MITgcm-support list, the MITgcm developers are willing to
549    provide help writing or modifing ``optfiles''.  And we encourage users
550    to post new ``optfiles'' (particularly ones for new machines or
551    architectures) to the
552    \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
553    MITgcm-support@mitgcm.org
554    \begin{rawhtml} </A> \end{rawhtml}
555    list.
556    
557  enables packages source code \textit{pkg1}, \textit{pkg2},... when creating  To specify an optfile to \texttt{genmake2}, the syntax is:
558  the makefile.  \begin{verbatim}
559    % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
560  \item -disable=pkg1,pkg2,...  \end{verbatim}
   
 disables packages source code \textit{pkg1}, \textit{pkg2},... when creating  
 the makefile.  
   
 \item -platform=machine  
   
 specifies the platform for which you want the makefile. In general, you  
 won't need this option. \textit{genmake} will select the right machine for  
 you (the one you're working on!). However, this option is useful if you have  
 a choice of several compilers on one machine and you want to use the one  
 that is not the default (ex: \texttt{pgf77} instead of \texttt{f77} under  
 Linux).  
   
 \item -mpi  
   
 this is used when you want to run the model in parallel processing mode  
 under mpi (see section on parallel computation for more details).  
   
 \item -jam  
   
 this is used when you want to run the model in parallel processing mode  
 under jam (see section on parallel computation for more details).  
 \end{itemize}  
561    
562  For some of the examples, there is a file called \textit{.genmakerc} in the  Once a \texttt{Makefile} has been generated, we create the
563  \textit{input} directory that has the relevant \textit{genmake} options for  dependencies with the command:
 that particular example. In this way you don't need to type the options when  
 invoking \textit{genmake}.  
   
 \subsubsection{Compiling}  
   
 Let's assume that you want to run, say, example \textit{exp2} in the \textit{%  
 input} directory. To compile the code, type the following commands from the  
 model root tree:  
564  \begin{verbatim}  \begin{verbatim}
 % cd verification/exp2/input  
 % ../../../tools/genmake  
565  % make depend  % make depend
 % make  
566  \end{verbatim}  \end{verbatim}
567    This modifies the \texttt{Makefile} by attaching a (usually, long)
568    list of files upon which other files depend. The purpose of this is to
569    reduce re-compilation if and when you start to modify the code. The
570    {\tt make depend} command also creates links from the model source to
571    this directory.  It is important to note that the {\tt make depend}
572    stage will occasionally produce warnings or errors since the
573    dependency parsing tool is unable to find all of the necessary header
574    files (\textit{eg.}  \texttt{netcdf.inc}).  In these circumstances, it
575    is usually OK to ignore the warnings/errors and proceed to the next
576    step.
577    
578  If there is no \textit{.genmakerc} in the \textit{input} directory, you have  Next one can compile the code using:
 to use the following options when invoking \textit{genmake}:  
579  \begin{verbatim}  \begin{verbatim}
580  % ../../../tools/genmake  -mods=../code  % make
581  \end{verbatim}  \end{verbatim}
582    The {\tt make} command creates an executable called \texttt{mitgcmuv}.
583    Additional make ``targets'' are defined within the makefile to aid in
584    the production of adjoint and other versions of MITgcm.  On SMP
585    (shared multi-processor) systems, the build process can often be sped
586    up appreciably using the command:
587    \begin{verbatim}
588    % make -j 2
589    \end{verbatim}
590    where the ``2'' can be replaced with a number that corresponds to the
591    number of CPUs available.
592    
593  In addition, you will probably want to disable some of the packages. Taking  Now you are ready to run the model. General instructions for doing so are
594  again the case of \textit{exp2}, the full \textit{genmake} command will  given in section \ref{sect:runModel}. Here, we can run the model by
595  probably look like this:  first creating links to all the input files:
596    \begin{verbatim}
597    ln -s ../input/* .
598    \end{verbatim}
599    and then calling the executable with:
600  \begin{verbatim}  \begin{verbatim}
601  % ../../../tools/genmake  -mods=../code  -disable=kpp,gmredi,aim,...  ./mitgcmuv > output.txt
602  \end{verbatim}  \end{verbatim}
603    where we are re-directing the stream of text output to the file
604    \texttt{output.txt}.
605    
606    
607  The make command creates an executable called \textit{mitgcmuv}.  \section[Running MITgcm]{Running the model in prognostic mode}
608    \label{sect:runModel}
609    \begin{rawhtml}
610    <!-- CMIREDIR:runModel: -->
611    \end{rawhtml}
612    
613  Note that you can compile and run the code in another directory than \textit{%  If compilation finished succesfully (section \ref{sect:buildingCode})
614  input}. You just need to make sure that you copy the input data files into  then an executable called \texttt{mitgcmuv} will now exist in the
615  the directory where you want to run the model. For example to compile from  local directory.
616  \textit{code}:  
617    To run the model as a single process (\textit{ie.} not in parallel)
618    simply type:
619  \begin{verbatim}  \begin{verbatim}
620  % cd verification/exp2/code  % ./mitgcmuv
621  % ../../../tools/genmake  \end{verbatim}
622  % make depend  The ``./'' is a safe-guard to make sure you use the local executable
623  % make  in case you have others that exist in your path (surely odd if you
624    do!). The above command will spew out many lines of text output to
625    your screen.  This output contains details such as parameter values as
626    well as diagnostics such as mean Kinetic energy, largest CFL number,
627    etc. It is worth keeping this text output with the binary output so we
628    normally re-direct the \texttt{stdout} stream as follows:
629    \begin{verbatim}
630    % ./mitgcmuv > output.txt
631  \end{verbatim}  \end{verbatim}
632    In the event that the model encounters an error and stops, it is very
633    helpful to include the last few line of this \texttt{output.txt} file
634    along with the (\texttt{stderr}) error message within any bug reports.
635    
636    For the example experiments in \texttt{verification}, an example of the
637    output is kept in \texttt{results/output.txt} for comparison. You can
638    compare your \texttt{output.txt} with the corresponding one for that
639    experiment to check that the set-up works.
640    
641    
642    
643    \subsection{Output files}
644    
645  \subsection{Running the model}  The model produces various output files and, when using \texttt{mnc},
646    sometimes even directories.  Depending upon the I/O package(s)
647    selected at compile time (either \texttt{mdsio} or \texttt{mnc} or
648    both as determined by \texttt{code/packages.conf}) and the run-time
649    flags set (in \texttt{input/data.pkg}), the following output may
650    appear.
651    
 The first thing to do is to run the code by typing \textit{mitgcmuv} and see  
 what happens. You can compare what you get with what is in the \textit{%  
 results} directory. Unless noted otherwise, most examples are set up to run  
 for a few time steps only so that you can quickly figure out whether the  
 model is working or not.  
652    
653  \subsubsection{Output files}  \subsubsection{MDSIO output files}
654    
655  The model produces various output files. At a minimum, the instantaneous  The ``traditional'' output files are generated by the \texttt{mdsio}
656  ``state'' of the model is written out, which is made of the following files:  package.  At a minimum, the instantaneous ``state'' of the model is
657    written out, which is made of the following files:
658    
659  \begin{itemize}  \begin{itemize}
660  \item \textit{U.00000nIter} - zonal component of velocity field (m/s and $>  \item \texttt{U.00000nIter} - zonal component of velocity field (m/s and $>
661  0 $ eastward).  0 $ eastward).
662    
663  \item \textit{V.00000nIter} - meridional component of velocity field (m/s  \item \texttt{V.00000nIter} - meridional component of velocity field (m/s
664  and $> 0$ northward).  and $> 0$ northward).
665    
666  \item \textit{W.00000nIter} - vertical component of velocity field (ocean:  \item \texttt{W.00000nIter} - vertical component of velocity field (ocean:
667  m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure  m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure
668  i.e. downward).  i.e. downward).
669    
670  \item \textit{T.00000nIter} - potential temperature (ocean: $^{0}$C,  \item \texttt{T.00000nIter} - potential temperature (ocean: $^{0}$C,
671  atmosphere: $^{0}$K).  atmosphere: $^{0}$K).
672    
673  \item \textit{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor  \item \texttt{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor
674  (g/kg).  (g/kg).
675    
676  \item \textit{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:  \item \texttt{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:
677  surface pressure anomaly (Pa).  surface pressure anomaly (Pa).
678  \end{itemize}  \end{itemize}
679    
680  The chain \textit{00000nIter} consists of ten figures that specify the  The chain \texttt{00000nIter} consists of ten figures that specify the
681  iteration number at which the output is written out. For example, \textit{%  iteration number at which the output is written out. For example, \texttt{%
682  U.0000000300} is the zonal velocity at iteration 300.  U.0000000300} is the zonal velocity at iteration 300.
683    
684  In addition, a ``pickup'' or ``checkpoint'' file called:  In addition, a ``pickup'' or ``checkpoint'' file called:
685    
686  \begin{itemize}  \begin{itemize}
687  \item \textit{pickup.00000nIter}  \item \texttt{pickup.00000nIter}
688  \end{itemize}  \end{itemize}
689    
690  is written out. This file represents the state of the model in a condensed  is written out. This file represents the state of the model in a condensed
# Line 440  form and is used for restarting the inte Line 692  form and is used for restarting the inte
692  there is an additional ``pickup'' file:  there is an additional ``pickup'' file:
693    
694  \begin{itemize}  \begin{itemize}
695  \item \textit{pickup\_cd.00000nIter}  \item \texttt{pickup\_cd.00000nIter}
696  \end{itemize}  \end{itemize}
697    
698  containing the D-grid velocity data and that has to be written out as well  containing the D-grid velocity data and that has to be written out as well
699  in order to restart the integration. Rolling checkpoint files are the same  in order to restart the integration. Rolling checkpoint files are the same
700  as the pickup files but are named differently. Their name contain the chain  as the pickup files but are named differently. Their name contain the chain
701  \textit{ckptA} or \textit{ckptB} instead of \textit{00000nIter}. They can be  \texttt{ckptA} or \texttt{ckptB} instead of \texttt{00000nIter}. They can be
702  used to restart the model but are overwritten every other time they are  used to restart the model but are overwritten every other time they are
703  output to save disk space during long integrations.  output to save disk space during long integrations.
704    
 \subsubsection{Looking at the output}  
   
 All the model data are written according to a ``meta/data'' file format.  
 Each variable is associated with two files with suffix names \textit{.data}  
 and \textit{.meta}. The \textit{.data} file contains the data written in  
 binary form (big\_endian by default). The \textit{.meta} file is a  
 ``header'' file that contains information about the size and the structure  
 of the \textit{.data} file. This way of organizing the output is  
 particularly useful when running multi-processors calculations. The base  
 version of the model includes a few matlab utilities to read output files  
 written in this format. The matlab scripts are located in the directory  
 \textit{utils/matlab} under the root tree. The script \textit{rdmds.m} reads  
 the data. Look at the comments inside the script to see how to use it.  
   
 \section{Code structure}  
   
 \section{Doing it yourself: customizing the code}  
   
 \subsection{\protect\bigskip Configuration and setup}  
   
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies experiment  
 (described previously) that is the closest to your configuration. Then, the  
 amount of setup will be minimized. In this section, we focus on the setup  
 relative to the ''numerical model'' part of the code (the setup relative to  
 the ''execution environment'' part is covered in the parallel implementation  
 section) and on the variables and parameters that you are likely to change.  
   
 The CPP keys relative to the ''numerical model'' part of the code are all  
 defined and set in the file \textit{CPP\_OPTIONS.h }in the directory \textit{%  
 model/inc }or in one of the \textit{code }directories of the case study  
 experiments under \textit{verification.} The model parameters are defined  
 and declared in the file \textit{model/inc/PARAMS.h }and their default  
 values are set in the routine \textit{model/src/set\_defaults.F. }The  
 default values can be modified in the namelist file \textit{data }which  
 needs to be located in the directory where you will run the model. The  
 parameters are initialized in the routine \textit{model/src/ini\_parms.F}.  
 Look at this routine to see in what part of the namelist the parameters are  
 located.  
   
 In what follows the parameters are grouped into categories related to the  
 computational domain, the equations solved in the model, and the simulation  
 controls.  
   
 \subsubsection{Computational domain, geometry and time-discretization}  
   
 \begin{itemize}  
 \item dimensions  
 \end{itemize}  
   
 The number of points in the x, y,\textit{\ }and r\textit{\ }directions are  
 represented by the variables \textbf{sNx}\textit{, }\textbf{sNy}\textit{, }%  
 and \textbf{Nr}\textit{\ }respectively which are declared and set in the  
 file \textit{model/inc/SIZE.h. }(Again, this assumes a mono-processor  
 calculation. For multiprocessor calculations see section on parallel  
 implementation.)  
   
 \begin{itemize}  
 \item grid  
 \end{itemize}  
   
 Three different grids are available: cartesian, spherical polar, and  
 curvilinear (including the cubed sphere). The grid is set through the  
 logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{%  
 usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{%  
 usingCurvilinearGrid}\textit{. }In the case of spherical and curvilinear  
 grids, the southern boundary is defined through the variable \textbf{phiMin}%  
 \textit{\ }which corresponds to the latitude of the southern most cell face  
 (in degrees). The resolution along the x and y directions is controlled by  
 the 1D arrays \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters  
 in the case of a cartesian grid, in degrees otherwise). The vertical grid  
 spacing is set through the 1D array \textbf{delz }for the ocean (in meters)  
 or \textbf{delp}\textit{\ }for the atmosphere (in Pa). The variable \textbf{%  
 Ro\_SeaLevel} represents the standard position of Sea-Level in ''R''  
 coordinate. This is typically set to 0m for the ocean (default value) and 10$%  
 ^{5}$Pa for the atmosphere. For the atmosphere, also set the logical  
 variable \textbf{groundAtK1} to '.\texttt{TRUE}.'. which put the first level  
 (k=1) at the lower boundary (ground).  
   
 For the cartesian grid case, the Coriolis parameter $f$ is set through the  
 variables \textbf{f0}\textit{\ }and \textbf{beta}\textit{\ }which correspond  
 to the reference Coriolis parameter (in s$^{-1}$) and $\frac{\partial f}{%  
 \partial y}$(in m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ }%  
 is set to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the  
 southern edge of the domain.  
   
 \begin{itemize}  
 \item topography - full and partial cells  
 \end{itemize}  
   
 The domain bathymetry is read from a file that contains a 2D (x,y) map of  
 depths (in m) for the ocean or pressures (in Pa) for the atmosphere. The  
 file name is represented by the variable \textbf{bathyFile}\textit{. }The  
 file is assumed to contain binary numbers giving the depth (pressure) of the  
 model at each grid cell, ordered with the x coordinate varying fastest. The  
 points are ordered from low coordinate to high coordinate for both axes. The  
 model code applies without modification to enclosed, periodic, and double  
 periodic domains. Periodicity is assumed by default and is suppressed by  
 setting the depths to 0m for the cells at the limits of the computational  
 domain (note: not sure this is the case for the atmosphere). The precision  
 with which to read the binary data is controlled by the integer variable  
 \textbf{readBinaryPrec }which can take the value \texttt{32} (single  
 precision) or \texttt{64} (double precision). See the matlab program \textit{%  
 gendata.m }in the \textit{input }directories under \textit{verification }to  
 see how the bathymetry files are generated for the case study experiments.  
   
 To use the partial cell capability, the variable \textbf{hFacMin}\textit{\ }%  
 needs to be set to a value between 0 and 1 (it is set to 1 by default)  
 corresponding to the minimum fractional size of the cell. For example if the  
 bottom cell is 500m thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the  
 actual thickness of the cell (i.e. used in the code) can cover a range of  
 discrete values 50m apart from 50m to 500m depending on the value of the  
 bottom depth (in \textbf{bathyFile}) at this point.  
   
 Note that the bottom depths (or pressures) need not coincide with the models  
 levels as deduced from \textbf{delz}\textit{\ }or\textit{\ }\textbf{delp}%  
 \textit{. }The model will interpolate the numbers in \textbf{bathyFile}%  
 \textit{\ }so that they match the levels obtained from \textbf{delz}\textit{%  
 \ }or\textit{\ }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
   
 (Note: the atmospheric case is a bit more complicated than what is written  
 here I think. To come soon...)  
   
 \begin{itemize}  
 \item time-discretization  
 \end{itemize}  
   
 The time steps are set through the real variables \textbf{deltaTMom }and  
 \textbf{deltaTtracer }(in s) which represent the time step for the momentum  
 and tracer equations, respectively. For synchronous integrations, simply set  
 the two variables to the same value (or you can prescribe one time step only  
 through the variable \textbf{deltaT}). The Adams-Bashforth stabilizing  
 parameter is set through the variable \textbf{abEps }(dimensionless). The  
 stagger baroclinic time stepping can be activated by setting the logical  
 variable \textbf{staggerTimeStep }to '.\texttt{TRUE}.'.  
   
 \subsubsection{Equation of state}  
   
 First, because the model equations are written in terms of perturbations, a  
 reference thermodynamic state needs to be specified. This is done through  
 the 1D arrays \textbf{tRef}\textit{\ }and \textbf{sRef}. \textbf{tRef }%  
 specifies the reference potential temperature profile (in $^{o}$C for  
 the ocean and $^{o}$K for the atmosphere) starting from the level  
 k=1. Similarly, \textbf{sRef}\textit{\ }specifies the reference salinity  
 profile (in ppt) for the ocean or the reference specific humidity profile  
 (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character variables  
 \textbf{buoyancyRelation}\textit{\ }and \textbf{eosType}\textit{. }\textbf{%  
 buoyancyRelation}\textit{\ }is set to '\texttt{OCEANIC}' by default and  
 needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations. In  
 this case, \textbf{eosType}\textit{\ }must be set to '\texttt{IDEALGAS}'.  
 For the ocean, two forms of the equation of state are available: linear (set  
 \textbf{eosType}\textit{\ }to '\texttt{LINEAR}') and a polynomial  
 approximation to the full nonlinear equation ( set \textbf{eosType}\textit{\  
 }to '\texttt{POLYNOMIAL}'). In the linear case, you need to specify the  
 thermal and haline expansion coefficients represented by the variables  
 \textbf{tAlpha}\textit{\ }(in K$^{-1}$) and \textbf{sBeta}\textit{\ }(in ppt$%  
 ^{-1}$). For the nonlinear case, you need to generate a file of polynomial  
 coefficients called \textit{POLY3.COEFFS. }To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f }under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number and the  
 values of the vertical levels in \textit{knudsen2.f }so that they match  
 those of your configuration). \textit{\ }  
   
 \subsubsection{Momentum equations}  
   
 In this section, we only focus for now on the parameters that you are likely  
 to change, i.e. the ones relative to forcing and dissipation for example.  
 The details relevant to the vector-invariant form of the equations and the  
 various advection schemes are not covered for the moment. We assume that you  
 use the standard form of the momentum equations (i.e. the flux-form) with  
 the default advection scheme. Also, there are a few logical variables that  
 allow you to turn on/off various terms in the momentum equation. These  
 variables are called \textbf{momViscosity, momAdvection, momForcing,  
 useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  
 \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.  
 Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  
 these variables.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The velocity components are initialized to 0 unless the simulation is  
 starting from a pickup file (see section on simulation control parameters).  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This section only applies to the ocean. You need to generate wind-stress  
 data into two files \textbf{zonalWindFile}\textit{\ }and \textbf{%  
 meridWindFile }corresponding to the zonal and meridional components of the  
 wind stress, respectively (if you want the stress to be along the direction  
 of only one of the model horizontal axes, you only need to generate one  
 file). The format of the files is similar to the bathymetry file. The zonal  
 (meridional) stress data are assumed to be in Pa and located at U-points  
 (V-points). As for the bathymetry, the precision with which to read the  
 binary data is controlled by the variable \textbf{readBinaryPrec}.\textbf{\ }  
 See the matlab program \textit{gendata.m }in the \textit{input }directories  
 under \textit{verification }to see how simple analytical wind forcing data  
 are generated for the case study experiments.  
   
 There is also the possibility of prescribing time-dependent periodic  
 forcing. To do this, concatenate the successive time records into a single  
 file (for each stress component) ordered in a (x, y, t) fashion and set the  
 following variables: \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',  
 \textbf{externForcingPeriod }to the period (in s) of which the forcing  
 varies (typically 1 month), and \textbf{externForcingCycle }to the repeat  
 time (in s) of the forcing (typically 1 year -- note: \textbf{%  
 externForcingCycle }must be a multiple of \textbf{externForcingPeriod}).  
 With these variables set up, the model will interpolate the forcing linearly  
 at each iteration.  
705    
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 The lateral eddy viscosity coefficient is specified through the variable  
 \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The vertical eddy viscosity  
 coefficient is specified through the variable \textbf{viscAz }(in m$^{2}$s$%  
 ^{-1}$) for the ocean and \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$)  
 for the atmosphere. The vertical diffusive fluxes can be computed implicitly  
 by setting the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic mixing can be added as well through the variable  
 \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a spherical polar grid,  
 you might also need to set the variable \textbf{cosPower} which is set to 0  
 by default and which represents the power of cosine of latitude to multiply  
 viscosity. Slip or no-slip conditions at lateral and bottom boundaries are  
 specified through the logical variables \textbf{no\_slip\_sides}\textit{\ }%  
 and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}', free-slip  
 boundary conditions are applied. If no-slip boundary conditions are applied  
 at the bottom, a bottom drag can be applied as well. Two forms are  
 available: linear (set the variable \textbf{bottomDragLinear}\textit{\ }in s$%  
 ^{-1}$) and quadratic (set the variable \textbf{bottomDragQuadratic}\textit{%  
 \ }in m$^{-1}$).  
706    
707  The Fourier and Shapiro filters are described elsewhere.  \subsubsection{MNC output files}
708    
709    Unlike the \texttt{mdsio} output, the \texttt{mnc}--generated output
710    is usually (though not necessarily) placed within a subdirectory with
711    a name such as \texttt{mnc\_test\_\${DATE}\_\${SEQ}}.  The files
712    within this subdirectory are all in the ``self-describing'' netCDF
713    format and can thus be browsed and/or plotted using tools such as:
714  \begin{itemize}  \begin{itemize}
715  \item C-D scheme  \item \texttt{ncdump} is a utility which is typically included
716  \end{itemize}    with every netCDF install:
717      \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
718  If you run at a sufficiently coarse resolution, you will need the C-D scheme  \begin{verbatim}
719  for the computation of the Coriolis terms. The variable\textbf{\ tauCD},       http://www.unidata.ucar.edu/packages/netcdf/
720  which represents the C-D scheme coupling timescale (in s) needs to be set.  \end{verbatim}
721      \begin{rawhtml} </A> \end{rawhtml} and it converts the netCDF
722  \begin{itemize}    binaries into formatted ASCII text files.
 \item calculation of pressure/geopotential  
 \end{itemize}  
   
 First, to run a non-hydrostatic ocean simulation, set the logical variable  
 \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure field is then  
 inverted through a 3D elliptic equation. (Note: this capability is not  
 available for the atmosphere yet.) By default, a hydrostatic simulation is  
 assumed and a 2D elliptic equation is used to invert the pressure field. The  
 parameters controlling the behaviour of the elliptic solvers are the  
 variables \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual }%  
 for the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{%  
 cg3dTargetResidual }for the 3D case. You probably won't need to alter the  
 default values (are we sure of this?).  
   
 For the calculation of the surface pressure (for the ocean) or surface  
 geopotential (for the atmosphere) you need to set the logical variables  
 \textbf{rigidLid} and \textbf{implicitFreeSurface}\textit{\ }(set one to '.%  
 \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how you  
 want to deal with the ocean upper or atmosphere lower boundary).  
   
 \subsubsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential temperature  
 equation and the salinity (for the ocean) or specific humidity (for the  
 atmosphere) equation. As for the momentum equations, we only describe for  
 now the parameters that you are likely to change. The logical variables  
 \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{%  
 tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  
 terms in the temperature equation (same thing for salinity or specific  
 humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{%  
 saltAdvection}\textit{\ }etc). These variables are all assumed here to be  
 set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  
 precise definition.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The initial tracer data can be contained in the binary files \textbf{%  
 hydrogThetaFile }and \textbf{hydrogSaltFile}. These files should contain 3D  
 data ordered in an (x, y, r) fashion with k=1 as the first vertical level.  
 If no file names are provided, the tracers are then initialized with the  
 values of \textbf{tRef }and \textbf{sRef }mentioned above (in the equation  
 of state section). In this case, the initial tracer data are uniform in x  
 and y for each depth level.  
723    
724  \begin{itemize}  \item \texttt{ncview} utility is a very convenient and quick way
725  \item forcing    to plot netCDF data and it runs on most OSes:
726      \begin{rawhtml} <A href="http://meteora.ucsd.edu/~pierce/ncview_home_page.html"> \end{rawhtml}
727    \begin{verbatim}
728         http://meteora.ucsd.edu/~pierce/ncview_home_page.html
729    \end{verbatim}
730      \begin{rawhtml} </A> \end{rawhtml}
731      
732    \item MatLAB(c) and other common post-processing environments provide
733      various netCDF interfaces including:
734      \begin{rawhtml} <A href="http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html"> \end{rawhtml}
735    \begin{verbatim}
736    http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html
737    \end{verbatim}
738      \begin{rawhtml} </A> \end{rawhtml}
739  \end{itemize}  \end{itemize}
740    
 This part is more relevant for the ocean, the procedure for the atmosphere  
 not being completely stabilized at the moment.  
   
 A combination of fluxes data and relaxation terms can be used for driving  
 the tracer equations. \ For potential temperature, heat flux data (in W/m$%  
 ^{2}$) can be stored in the 2D binary file \textbf{surfQfile}\textit{. }%  
 Alternatively or in addition, the forcing can be specified through a  
 relaxation term. The SST data to which the model surface temperatures are  
 restored to are supposed to be stored in the 2D binary file \textbf{%  
 thetaClimFile}\textit{. }The corresponding relaxation time scale coefficient  
 is set through the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The  
 same procedure applies for salinity with the variable names \textbf{EmPmRfile%  
 }\textit{, }\textbf{saltClimFile}\textit{, }and \textbf{tauSaltClimRelax}%  
 \textit{\ }for freshwater flux (in m/s) and surface salinity (in ppt) data  
 files and relaxation time scale coefficient (in s), respectively. Also for  
 salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, natural  
 boundary conditions are applied i.e. when computing the surface salinity  
 tendency, the freshwater flux is multiplied by the model surface salinity  
 instead of a constant salinity value.  
   
 As for the other input files, the precision with which to read the data is  
 controlled by the variable \textbf{readBinaryPrec}. Time-dependent, periodic  
 forcing can be applied as well following the same procedure used for the  
 wind forcing data (see above).  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
741    
742  Lateral eddy diffusivities for temperature and salinity/specific humidity  \subsection{Looking at the output}
 are specified through the variables \textbf{diffKhT }and \textbf{diffKhS }%  
 (in m$^{2}$/s). Vertical eddy diffusivities are specified through the  
 variables \textbf{diffKzT }and \textbf{diffKzS }(in m$^{2}$/s) for the ocean  
 and \textbf{diffKpT }and \textbf{diffKpS }(in Pa$^{2}$/s) for the  
 atmosphere. The vertical diffusive fluxes can be computed implicitly by  
 setting the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic diffusivities can be specified as well through  
 the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in m$^{4}$/s). Note  
 that the cosine power scaling (specified through \textbf{cosPower }- see the  
 momentum equations section) is applied to the tracer diffusivities  
 (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization  
 for oceanic tracers is described in the package section. Finally, note that  
 tracers can be also subject to Fourier and Shapiro filtering (see the  
 corresponding section on these filters).  
743    
744  \begin{itemize}  The ``traditional'' or mdsio model data are written according to a
745  \item ocean convection  ``meta/data'' file format.  Each variable is associated with two files
746  \end{itemize}  with suffix names \texttt{.data} and \texttt{.meta}. The
747    \texttt{.data} file contains the data written in binary form
748    (big\_endian by default). The \texttt{.meta} file is a ``header'' file
749    that contains information about the size and the structure of the
750    \texttt{.data} file. This way of organizing the output is particularly
751    useful when running multi-processors calculations. The base version of
752    the model includes a few matlab utilities to read output files written
753    in this format. The matlab scripts are located in the directory
754    \texttt{utils/matlab} under the root tree. The script \texttt{rdmds.m}
755    reads the data. Look at the comments inside the script to see how to
756    use it.
757    
758  Two options are available to parameterize ocean convection: one is to use  Some examples of reading and visualizing some output in {\em Matlab}:
759  the convective adjustment scheme. In this case, you need to set the variable  \begin{verbatim}
760  \textbf{cadjFreq}, which represents the frequency (in s) with which the  % matlab
761  adjustment algorithm is called, to a non-zero value (if set to a negative  >> H=rdmds('Depth');
762  value by the user, the model will set it to the tracer time step). The other  >> contourf(H');colorbar;
763  option is to parameterize convection with implicit vertical diffusion. To do  >> title('Depth of fluid as used by model');
 this, set the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .' and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s) you  
 wish the tracer vertical diffusivities to have when mixing tracers  
 vertically due to static instabilities. Note that \textbf{cadjFreq }and  
 \textbf{ivdc\_kappa }can not both have non-zero value.  
   
 \subsubsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  
 which determines the IO frequencies and is used in tagging output.  
 Typically, you will set it to the tracer time step for accelerated runs  
 (otherwise it is simply set to the default time step \textbf{deltaT}).  
 Frequency of checkpointing and dumping of the model state are referenced to  
 this clock (see below).  
764    
765  \begin{itemize}  >> eta=rdmds('Eta',10);
766  \item run duration  >> imagesc(eta');axis ij;colorbar;
767  \end{itemize}  >> title('Surface height at iter=10');
768    
769  The beginning of a simulation is set by specifying a start time (in s)  >> eta=rdmds('Eta',[0:10:100]);
770  through the real variable \textbf{startTime }or by specifying an initial  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
771  iteration number through the integer variable \textbf{nIter0}. If these  \end{verbatim}
 variables are set to nonzero values, the model will look for a ''pickup''  
 file \textit{pickup.0000nIter0 }to restart the integration\textit{. }The end  
 of a simulation is set through the real variable \textbf{endTime }(in s).  
 Alternatively, you can specify instead the number of time steps to execute  
 through the integer variable \textbf{nTimeSteps}.  
772    
773  \begin{itemize}  Similar scripts for netCDF output (\texttt{rdmnc.m}) are available and
774  \item frequency of output  they are described in Section \ref{sec:pkg:mnc}.
 \end{itemize}  
775    
 Real variables defining frequencies (in s) with which output files are  
 written on disk need to be set up. \textbf{dumpFreq }controls the frequency  
 with which the instantaneous state of the model is saved. \textbf{chkPtFreq }%  
 and \textbf{pchkPtFreq }control the output frequency of rolling and  
 permanent checkpoint files, respectively. See section 1.5.1 Output files for the  
 definition of model state and checkpoint files. In addition, time-averaged  
 fields can be written out by setting the variable \textbf{taveFreq} (in s).  
 The precision with which to write the binary data is controlled by the  
 integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32} or \texttt{%  
 64}).  

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.33

  ViewVC Help
Powered by ViewVC 1.1.22