/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Annotation of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.42 - (hide annotations) (download) (as text)
Fri May 28 02:09:59 2010 UTC (15 years, 1 month ago) by jmc
Branch: MAIN
Changes since 1.41: +45 -36 lines
File MIME type: application/x-tex
update genmake2 documentation

1 jmc 1.42 % $Header: /u/gcmpack/manual/part3/getting_started.tex,v 1.41 2010/01/22 00:38:16 jmc Exp $
2 adcroft 1.2 % $Name: $
3 adcroft 1.1
4 adcroft 1.4 %\section{Getting started}
5 adcroft 1.1
6 molod 1.39 We believe the best way to familiarize yourself with the
7 adcroft 1.4 model is to run the case study examples provided with the base
8     version. Information on how to obtain, compile, and run the code is
9 molod 1.39 found here as well as a brief description of the model structure
10     directory and the case study examples. Information is also provided
11     here on how to customize the code when you are ready to try implementing
12     the configuration you have in mind. The code and algorithm
13     are described more fully in chapters \ref{chap:discretization} and
14     \ref{chap:sarch}.
15 adcroft 1.4
16     \section{Where to find information}
17     \label{sect:whereToFindInfo}
18 edhill 1.30 \begin{rawhtml}
19     <!-- CMIREDIR:whereToFindInfo: -->
20     \end{rawhtml}
21 adcroft 1.4
22 molod 1.37 There is a web-archived support mailing list for the model that
23 edhill 1.15 you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:
24     \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
25     \begin{verbatim}
26     http://mitgcm.org/mailman/listinfo/mitgcm-support/
27     http://mitgcm.org/pipermail/mitgcm-support/
28     \end{verbatim}
29     \begin{rawhtml} </A> \end{rawhtml}
30 adcroft 1.4
31     \section{Obtaining the code}
32     \label{sect:obtainingCode}
33 edhill 1.30 \begin{rawhtml}
34     <!-- CMIREDIR:obtainingCode: -->
35     \end{rawhtml}
36 adcroft 1.1
37 cnh 1.7 MITgcm can be downloaded from our system by following
38     the instructions below. As a courtesy we ask that you send e-mail to us at
39 edhill 1.14 \begin{rawhtml} <A href=mailto:MITgcm-support@mitgcm.org> \end{rawhtml}
40     MITgcm-support@mitgcm.org
41 cnh 1.7 \begin{rawhtml} </A> \end{rawhtml}
42     to enable us to keep track of who's using the model and in what application.
43     You can download the model two ways:
44    
45     \begin{enumerate}
46 cnh 1.9 \item Using CVS software. CVS is a freely available source code management
47 cnh 1.7 tool. To use CVS you need to have the software installed. Many systems
48     come with CVS pre-installed, otherwise good places to look for
49     the software for a particular platform are
50     \begin{rawhtml} <A href=http://www.cvshome.org/ target="idontexist"> \end{rawhtml}
51     cvshome.org
52     \begin{rawhtml} </A> \end{rawhtml}
53     and
54     \begin{rawhtml} <A href=http://www.wincvs.org/ target="idontexist"> \end{rawhtml}
55     wincvs.org
56     \begin{rawhtml} </A> \end{rawhtml}
57     .
58    
59     \item Using a tar file. This method is simple and does not
60     require any special software. However, this method does not
61     provide easy support for maintenance updates.
62    
63     \end{enumerate}
64    
65 cnh 1.27 \subsection{Method 1 - Checkout from CVS}
66 edhill 1.19 \label{sect:cvs_checkout}
67    
68 adcroft 1.1 If CVS is available on your system, we strongly encourage you to use it. CVS
69     provides an efficient and elegant way of organizing your code and keeping
70     track of your changes. If CVS is not available on your machine, you can also
71     download a tar file.
72    
73 edhill 1.15 Before you can use CVS, the following environment variable(s) should
74     be set within your shell. For a csh or tcsh shell, put the following
75     \begin{verbatim}
76     % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
77     \end{verbatim}
78 edhill 1.31 in your \texttt{.cshrc} or \texttt{.tcshrc} file. For bash or sh
79     shells, put:
80 adcroft 1.1 \begin{verbatim}
81 edhill 1.15 % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
82 adcroft 1.6 \end{verbatim}
83 edhill 1.20 in your \texttt{.profile} or \texttt{.bashrc} file.
84 adcroft 1.6
85 edhill 1.15
86     To get MITgcm through CVS, first register with the MITgcm CVS server
87     using command:
88 adcroft 1.6 \begin{verbatim}
89 adcroft 1.1 % cvs login ( CVS password: cvsanon )
90     \end{verbatim}
91 edhill 1.15 You only need to do a ``cvs login'' once.
92 adcroft 1.1
93 edhill 1.15 To obtain the latest sources type:
94     \begin{verbatim}
95     % cvs co MITgcm
96     \end{verbatim}
97     or to get a specific release type:
98 adcroft 1.1 \begin{verbatim}
99 edhill 1.16 % cvs co -P -r checkpoint52i_post MITgcm
100 adcroft 1.1 \end{verbatim}
101 edhill 1.15 The MITgcm web site contains further directions concerning the source
102     code and CVS. It also contains a web interface to our CVS archive so
103     that one may easily view the state of files, revisions, and other
104     development milestones:
105 jmc 1.40 %\begin{rawhtml} <A href="http://mitgcm.org/download" target="idontexist"> \end{rawhtml}
106     \begin{rawhtml} <A href="http://mitgcm.org/viewvc/MITgcm/MITgcm/" target="idontexist"> \end{rawhtml}
107 edhill 1.15 \begin{verbatim}
108 edhill 1.17 http://mitgcm.org/source_code.html
109 edhill 1.15 \end{verbatim}
110     \begin{rawhtml} </A> \end{rawhtml}
111 adcroft 1.1
112 edhill 1.19 As a convenience, the MITgcm CVS server contains aliases which are
113     named subsets of the codebase. These aliases can be especially
114     helpful when used over slow internet connections or on machines with
115     restricted storage space. Table \ref{tab:cvsModules} contains a list
116     of CVS aliases
117     \begin{table}[htb]
118     \centering
119     \begin{tabular}[htb]{|lp{3.25in}|}\hline
120     \textbf{Alias Name} & \textbf{Information (directories) Contained} \\\hline
121     \texttt{MITgcm\_code} & Only the source code -- none of the verification examples. \\
122     \texttt{MITgcm\_verif\_basic}
123     & Source code plus a small set of the verification examples
124     (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
125     \texttt{front\_relax}, and \texttt{plume\_on\_slope}). \\
126     \texttt{MITgcm\_verif\_atmos} & Source code plus all of the atmospheric examples. \\
127     \texttt{MITgcm\_verif\_ocean} & Source code plus all of the oceanic examples. \\
128     \texttt{MITgcm\_verif\_all} & Source code plus all of the
129     verification examples. \\\hline
130     \end{tabular}
131     \caption{MITgcm CVS Modules}
132     \label{tab:cvsModules}
133     \end{table}
134 edhill 1.15
135 edhill 1.31 The checkout process creates a directory called \texttt{MITgcm}. If
136     the directory \texttt{MITgcm} exists this command updates your code
137 edhill 1.15 based on the repository. Each directory in the source tree contains a
138 edhill 1.31 directory \texttt{CVS}. This information is required by CVS to keep
139 edhill 1.15 track of your file versions with respect to the repository. Don't edit
140 edhill 1.31 the files in \texttt{CVS}! You can also use CVS to download code
141 edhill 1.15 updates. More extensive information on using CVS for maintaining
142     MITgcm code can be found
143 jmc 1.41 \begin{rawhtml} <A href="http://mitgcm.org/public/using_cvs.html" target="idontexist"> \end{rawhtml}
144 cnh 1.7 here
145     \begin{rawhtml} </A> \end{rawhtml}
146     .
147 edhill 1.19 It is important to note that the CVS aliases in Table
148     \ref{tab:cvsModules} cannot be used in conjunction with the CVS
149     \texttt{-d DIRNAME} option. However, the \texttt{MITgcm} directories
150     they create can be changed to a different name following the check-out:
151     \begin{verbatim}
152     % cvs co MITgcm_verif_basic
153     % mv MITgcm MITgcm_verif_basic
154     \end{verbatim}
155 cnh 1.7
156 edhill 1.19 \subsubsection{Upgrading from an earlier version}
157 adcroft 1.12
158     If you already have an earlier version of the code you can ``upgrade''
159     your copy instead of downloading the entire repository again. First,
160     ``cd'' (change directory) to the top of your working copy:
161     \begin{verbatim}
162     % cd MITgcm
163     \end{verbatim}
164 edhill 1.15 and then issue the cvs update command such as:
165 adcroft 1.12 \begin{verbatim}
166 edhill 1.16 % cvs -q update -r checkpoint52i_post -d -P
167 adcroft 1.12 \end{verbatim}
168 edhill 1.16 This will update the ``tag'' to ``checkpoint52i\_post'', add any new
169 adcroft 1.12 directories (-d) and remove any empty directories (-P). The -q option
170     means be quiet which will reduce the number of messages you'll see in
171     the terminal. If you have modified the code prior to upgrading, CVS
172     will try to merge your changes with the upgrades. If there is a
173     conflict between your modifications and the upgrade, it will report
174     that file with a ``C'' in front, e.g.:
175     \begin{verbatim}
176     C model/src/ini_parms.F
177     \end{verbatim}
178     If the list of conflicts scrolled off the screen, you can re-issue the
179     cvs update command and it will report the conflicts. Conflicts are
180 edhill 1.15 indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
181     ``$>>>>>>>$''. For example,
182 edhill 1.17 {\small
183 adcroft 1.12 \begin{verbatim}
184     <<<<<<< ini_parms.F
185     & bottomDragLinear,myOwnBottomDragCoefficient,
186     =======
187     & bottomDragLinear,bottomDragQuadratic,
188     >>>>>>> 1.18
189     \end{verbatim}
190 edhill 1.17 }
191 adcroft 1.12 means that you added ``myOwnBottomDragCoefficient'' to a namelist at
192     the same time and place that we added ``bottomDragQuadratic''. You
193     need to resolve this conflict and in this case the line should be
194     changed to:
195 edhill 1.17 {\small
196 adcroft 1.12 \begin{verbatim}
197     & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
198     \end{verbatim}
199 edhill 1.17 }
200 edhill 1.15 and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
201 adcroft 1.12 Unless you are making modifications which exactly parallel
202     developments we make, these types of conflicts should be rare.
203    
204     \paragraph*{Upgrading to the current pre-release version}
205    
206     We don't make a ``release'' for every little patch and bug fix in
207     order to keep the frequency of upgrades to a minimum. However, if you
208     have run into a problem for which ``we have already fixed in the
209     latest code'' and we haven't made a ``tag'' or ``release'' since that
210     patch then you'll need to get the latest code:
211     \begin{verbatim}
212     % cvs -q update -A -d -P
213     \end{verbatim}
214     Unlike, the ``check-out'' and ``update'' procedures above, there is no
215     ``tag'' or release name. The -A tells CVS to upgrade to the
216     very latest version. As a rule, we don't recommend this since you
217     might upgrade while we are in the processes of checking in the code so
218     that you may only have part of a patch. Using this method of updating
219     also means we can't tell what version of the code you are working
220     with. So please be sure you understand what you're doing.
221    
222 molod 1.37 \subsection{Method 2 - Tar file download}
223     \label{sect:conventionalDownload}
224    
225     If you do not have CVS on your system, you can download the model as a
226     tar file from the web site at:
227 jmc 1.40 \begin{rawhtml} <A href=http://mitgcm.org/download/ target="idontexist"> \end{rawhtml}
228 molod 1.37 \begin{verbatim}
229     http://mitgcm.org/download/
230     \end{verbatim}
231     \begin{rawhtml} </A> \end{rawhtml}
232     The tar file still contains CVS information which we urge you not to
233     delete; even if you do not use CVS yourself the information can help
234     us if you should need to send us your copy of the code. If a recent
235     tar file does not exist, then please contact the developers through
236     the
237     \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
238     MITgcm-support@mitgcm.org
239     \begin{rawhtml} </A> \end{rawhtml}
240     mailing list.
241    
242 adcroft 1.4 \section{Model and directory structure}
243 edhill 1.30 \begin{rawhtml}
244     <!-- CMIREDIR:directory_structure: -->
245     \end{rawhtml}
246 adcroft 1.1
247 adcroft 1.12 The ``numerical'' model is contained within a execution environment
248     support wrapper. This wrapper is designed to provide a general
249     framework for grid-point models. MITgcmUV is a specific numerical
250     model that uses the framework. Under this structure the model is split
251     into execution environment support code and conventional numerical
252     model code. The execution environment support code is held under the
253 edhill 1.31 \texttt{eesupp} directory. The grid point model code is held under the
254     \texttt{model} directory. Code execution actually starts in the
255     \texttt{eesupp} routines and not in the \texttt{model} routines. For
256     this reason the top-level \texttt{MAIN.F} is in the
257     \texttt{eesupp/src} directory. In general, end-users should not need
258 edhill 1.17 to worry about this level. The top-level routine for the numerical
259 edhill 1.31 part of the code is in \texttt{model/src/THE\_MODEL\_MAIN.F}. Here is
260 edhill 1.17 a brief description of the directory structure of the model under the
261     root tree (a detailed description is given in section 3: Code
262     structure).
263 adcroft 1.1
264     \begin{itemize}
265    
266 edhill 1.31 \item \texttt{doc}: contains brief documentation notes.
267    
268     \item \texttt{eesupp}: contains the execution environment source code.
269     Also subdivided into two subdirectories \texttt{inc} and
270     \texttt{src}.
271 edhill 1.17
272 edhill 1.31 \item \texttt{model}: this directory contains the main source code.
273     Also subdivided into two subdirectories \texttt{inc} and
274     \texttt{src}.
275 edhill 1.17
276 edhill 1.31 \item \texttt{pkg}: contains the source code for the packages. Each
277     package corresponds to a subdirectory. For example, \texttt{gmredi}
278 edhill 1.17 contains the code related to the Gent-McWilliams/Redi scheme,
279 edhill 1.31 \texttt{aim} the code relative to the atmospheric intermediate
280 molod 1.37 physics. The packages are described in detail in chapter \ref{chap.packagesI}.
281 edhill 1.17
282 edhill 1.31 \item \texttt{tools}: this directory contains various useful tools.
283     For example, \texttt{genmake2} is a script written in csh (C-shell)
284 edhill 1.17 that should be used to generate your makefile. The directory
285 edhill 1.31 \texttt{adjoint} contains the makefile specific to the Tangent
286 edhill 1.17 linear and Adjoint Compiler (TAMC) that generates the adjoint code.
287 molod 1.37 The latter is described in detail in part \ref{chap.ecco}.
288     This directory also contains the subdirectory build\_options, which
289     contains the `optfiles' with the compiler options for the different
290     compilers and machines that can run MITgcm.
291 edhill 1.17
292 edhill 1.31 \item \texttt{utils}: this directory contains various utilities. The
293     subdirectory \texttt{knudsen2} contains code and a makefile that
294 edhill 1.17 compute coefficients of the polynomial approximation to the knudsen
295     formula for an ocean nonlinear equation of state. The
296 edhill 1.31 \texttt{matlab} subdirectory contains matlab scripts for reading
297     model output directly into matlab. \texttt{scripts} contains C-shell
298 edhill 1.17 post-processing scripts for joining processor-based and tiled-based
299 molod 1.37 model output. The subdirectory exch2 contains the code needed for
300     the exch2 package to work with different combinations of domain
301     decompositions.
302 edhill 1.17
303 edhill 1.31 \item \texttt{verification}: this directory contains the model
304 edhill 1.17 examples. See section \ref{sect:modelExamples}.
305 adcroft 1.1
306 molod 1.37 \item \texttt{jobs}: contains sample job scripts for running MITgcm.
307    
308     \item \texttt{lsopt}: Line search code used for optimization.
309    
310     \item \texttt{optim}: Interface between MITgcm and line search code.
311    
312 adcroft 1.1 \end{itemize}
313    
314 cnh 1.26 \section[Building MITgcm]{Building the code}
315 adcroft 1.4 \label{sect:buildingCode}
316 edhill 1.30 \begin{rawhtml}
317     <!-- CMIREDIR:buildingCode: -->
318     \end{rawhtml}
319 adcroft 1.4
320 edhill 1.31 To compile the code, we use the \texttt{make} program. This uses a
321     file (\texttt{Makefile}) that allows us to pre-process source files,
322     specify compiler and optimization options and also figures out any
323     file dependencies. We supply a script (\texttt{genmake2}), described
324     in section \ref{sect:genmake}, that automatically creates the
325     \texttt{Makefile} for you. You then need to build the dependencies and
326 edhill 1.16 compile the code.
327 adcroft 1.4
328 edhill 1.31 As an example, assume that you want to build and run experiment
329     \texttt{verification/exp2}. The are multiple ways and places to
330 edhill 1.16 actually do this but here let's build the code in
331 edhill 1.31 \texttt{verification/exp2/build}:
332 adcroft 1.4 \begin{verbatim}
333 edhill 1.31 % cd verification/exp2/build
334 adcroft 1.4 \end{verbatim}
335 edhill 1.31 First, build the \texttt{Makefile}:
336 adcroft 1.4 \begin{verbatim}
337 edhill 1.16 % ../../../tools/genmake2 -mods=../code
338 adcroft 1.4 \end{verbatim}
339 edhill 1.31 The command line option tells \texttt{genmake} to override model source
340     code with any files in the directory \texttt{../code/}.
341 adcroft 1.4
342 edhill 1.31 On many systems, the \texttt{genmake2} program will be able to
343 edhill 1.16 automatically recognize the hardware, find compilers and other tools
344 edhill 1.31 within the user's path (``\texttt{echo \$PATH}''), and then choose an
345 edhill 1.29 appropriate set of options from the files (``optfiles'') contained in
346 edhill 1.31 the \texttt{tools/build\_options} directory. Under some
347     circumstances, a user may have to create a new ``optfile'' in order to
348     specify the exact combination of compiler, compiler flags, libraries,
349     and other options necessary to build a particular configuration of
350     MITgcm. In such cases, it is generally helpful to read the existing
351     ``optfiles'' and mimic their syntax.
352 edhill 1.16
353     Through the MITgcm-support list, the MITgcm developers are willing to
354     provide help writing or modifing ``optfiles''. And we encourage users
355     to post new ``optfiles'' (particularly ones for new machines or
356 edhill 1.17 architectures) to the
357 edhill 1.34 \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
358 edhill 1.17 MITgcm-support@mitgcm.org
359     \begin{rawhtml} </A> \end{rawhtml}
360     list.
361 edhill 1.16
362 edhill 1.31 To specify an optfile to \texttt{genmake2}, the syntax is:
363 adcroft 1.4 \begin{verbatim}
364 edhill 1.16 % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
365 adcroft 1.4 \end{verbatim}
366    
367 edhill 1.31 Once a \texttt{Makefile} has been generated, we create the
368     dependencies with the command:
369 adcroft 1.4 \begin{verbatim}
370     % make depend
371     \end{verbatim}
372 edhill 1.31 This modifies the \texttt{Makefile} by attaching a (usually, long)
373     list of files upon which other files depend. The purpose of this is to
374     reduce re-compilation if and when you start to modify the code. The
375     {\tt make depend} command also creates links from the model source to
376     this directory. It is important to note that the {\tt make depend}
377     stage will occasionally produce warnings or errors since the
378     dependency parsing tool is unable to find all of the necessary header
379     files (\textit{eg.} \texttt{netcdf.inc}). In these circumstances, it
380     is usually OK to ignore the warnings/errors and proceed to the next
381     step.
382 adcroft 1.1
383 edhill 1.31 Next one can compile the code using:
384 adcroft 1.4 \begin{verbatim}
385     % make
386     \end{verbatim}
387 edhill 1.31 The {\tt make} command creates an executable called \texttt{mitgcmuv}.
388 edhill 1.16 Additional make ``targets'' are defined within the makefile to aid in
389 edhill 1.31 the production of adjoint and other versions of MITgcm. On SMP
390     (shared multi-processor) systems, the build process can often be sped
391     up appreciably using the command:
392     \begin{verbatim}
393     % make -j 2
394     \end{verbatim}
395     where the ``2'' can be replaced with a number that corresponds to the
396     number of CPUs available.
397 adcroft 1.4
398     Now you are ready to run the model. General instructions for doing so are
399 edhill 1.31 given in section \ref{sect:runModel}. Here, we can run the model by
400     first creating links to all the input files:
401     \begin{verbatim}
402     ln -s ../input/* .
403     \end{verbatim}
404     and then calling the executable with:
405 adcroft 1.4 \begin{verbatim}
406     ./mitgcmuv > output.txt
407     \end{verbatim}
408 edhill 1.31 where we are re-directing the stream of text output to the file
409     \texttt{output.txt}.
410 adcroft 1.4
411 molod 1.35 \subsection{Building/compiling the code elsewhere}
412    
413     In the example above (section \ref{sect:buildingCode}) we built the
414     executable in the {\em input} directory of the experiment for
415     convenience. You can also configure and compile the code in other
416     locations, for example on a scratch disk with out having to copy the
417     entire source tree. The only requirement to do so is you have {\tt
418     genmake2} in your path or you know the absolute path to {\tt
419     genmake2}.
420    
421     The following sections outline some possible methods of organizing
422     your source and data.
423    
424     \subsubsection{Building from the {\em ../code directory}}
425    
426     This is just as simple as building in the {\em input/} directory:
427     \begin{verbatim}
428     % cd verification/exp2/code
429     % ../../../tools/genmake2
430     % make depend
431     % make
432     \end{verbatim}
433     However, to run the model the executable ({\em mitgcmuv}) and input
434     files must be in the same place. If you only have one calculation to make:
435     \begin{verbatim}
436     % cd ../input
437     % cp ../code/mitgcmuv ./
438     % ./mitgcmuv > output.txt
439     \end{verbatim}
440     or if you will be making multiple runs with the same executable:
441     \begin{verbatim}
442     % cd ../
443     % cp -r input run1
444     % cp code/mitgcmuv run1
445     % cd run1
446     % ./mitgcmuv > output.txt
447     \end{verbatim}
448    
449     \subsubsection{Building from a new directory}
450    
451     Since the {\em input} directory contains input files it is often more
452     useful to keep {\em input} pristine and build in a new directory
453     within {\em verification/exp2/}:
454     \begin{verbatim}
455     % cd verification/exp2
456     % mkdir build
457     % cd build
458     % ../../../tools/genmake2 -mods=../code
459     % make depend
460     % make
461     \end{verbatim}
462     This builds the code exactly as before but this time you need to copy
463     either the executable or the input files or both in order to run the
464     model. For example,
465     \begin{verbatim}
466     % cp ../input/* ./
467     % ./mitgcmuv > output.txt
468     \end{verbatim}
469     or if you tend to make multiple runs with the same executable then
470     running in a new directory each time might be more appropriate:
471     \begin{verbatim}
472     % cd ../
473     % mkdir run1
474     % cp build/mitgcmuv run1/
475     % cp input/* run1/
476     % cd run1
477     % ./mitgcmuv > output.txt
478     \end{verbatim}
479    
480     \subsubsection{Building on a scratch disk}
481    
482     Model object files and output data can use up large amounts of disk
483     space so it is often the case that you will be operating on a large
484     scratch disk. Assuming the model source is in {\em ~/MITgcm} then the
485     following commands will build the model in {\em /scratch/exp2-run1}:
486     \begin{verbatim}
487     % cd /scratch/exp2-run1
488     % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
489     -mods=~/MITgcm/verification/exp2/code
490     % make depend
491     % make
492     \end{verbatim}
493     To run the model here, you'll need the input files:
494     \begin{verbatim}
495     % cp ~/MITgcm/verification/exp2/input/* ./
496     % ./mitgcmuv > output.txt
497     \end{verbatim}
498    
499     As before, you could build in one directory and make multiple runs of
500     the one experiment:
501     \begin{verbatim}
502     % cd /scratch/exp2
503     % mkdir build
504     % cd build
505     % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
506     -mods=~/MITgcm/verification/exp2/code
507     % make depend
508     % make
509     % cd ../
510     % cp -r ~/MITgcm/verification/exp2/input run2
511     % cd run2
512     % ./mitgcmuv > output.txt
513     \end{verbatim}
514    
515    
516     \subsection{Using \texttt{genmake2}}
517     \label{sect:genmake}
518    
519     To compile the code, first use the program \texttt{genmake2} (located
520     in the \texttt{tools} directory) to generate a Makefile.
521     \texttt{genmake2} is a shell script written to work with all
522     ``sh''--compatible shells including bash v1, bash v2, and Bourne.
523 jmc 1.42 %Internally, \texttt{genmake2} determines the locations of needed
524     %files, the compiler, compiler options, libraries, and Unix tools. It
525     %relies upon a number of ``optfiles'' located in the
526     %\texttt{tools/build\_options} directory.
527     \texttt{genmake2} parses information from the following sources:
528     \begin{description}
529     \item[-] a {\em gemake\_local} file if one is found in the current
530     directory
531     \item[-] command-line options
532     \item[-] an "options file" as specified by the command-line option
533     \texttt{--optfile=/PATH/FILENAME}
534     \item[-] a {\em packages.conf} file (if one is found) with the
535     specific list of packages to compile. The search path for
536     file {\em packages.conf} is, first, the current directory and
537     then each of the "MODS" directories in the given order (see below).
538     \end{description}
539    
540     \subsubsection{Optfiles in \texttt{tools/build\_options} directory:}
541 molod 1.35
542     The purpose of the optfiles is to provide all the compilation options
543     for particular ``platforms'' (where ``platform'' roughly means the
544     combination of the hardware and the compiler) and code configurations.
545     Given the combinations of possible compilers and library dependencies
546     ({\it eg.} MPI and NetCDF) there may be numerous optfiles available
547     for a single machine. The naming scheme for the majority of the
548     optfiles shipped with the code is
549     \begin{center}
550     {\bf OS\_HARDWARE\_COMPILER }
551     \end{center}
552     where
553     \begin{description}
554     \item[OS] is the name of the operating system (generally the
555     lower-case output of the {\tt 'uname'} command)
556     \item[HARDWARE] is a string that describes the CPU type and
557     corresponds to output from the {\tt 'uname -m'} command:
558     \begin{description}
559     \item[ia32] is for ``x86'' machines such as i386, i486, i586, i686,
560     and athlon
561     \item[ia64] is for Intel IA64 systems (eg. Itanium, Itanium2)
562     \item[amd64] is AMD x86\_64 systems
563     \item[ppc] is for Mac PowerPC systems
564     \end{description}
565     \item[COMPILER] is the compiler name (generally, the name of the
566     FORTRAN executable)
567     \end{description}
568    
569     In many cases, the default optfiles are sufficient and will result in
570     usable Makefiles. However, for some machines or code configurations,
571     new ``optfiles'' must be written. To create a new optfile, it is
572     generally best to start with one of the defaults and modify it to suit
573     your needs. Like \texttt{genmake2}, the optfiles are all written
574     using a simple ``sh''--compatible syntax. While nearly all variables
575     used within \texttt{genmake2} may be specified in the optfiles, the
576     critical ones that should be defined are:
577    
578     \begin{description}
579     \item[FC] the FORTRAN compiler (executable) to use
580     \item[DEFINES] the command-line DEFINE options passed to the compiler
581     \item[CPP] the C pre-processor to use
582     \item[NOOPTFLAGS] options flags for special files that should not be
583     optimized
584     \end{description}
585    
586     For example, the optfile for a typical Red Hat Linux machine (``ia32''
587     architecture) using the GCC (g77) compiler is
588     \begin{verbatim}
589     FC=g77
590     DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4'
591     CPP='cpp -traditional -P'
592     NOOPTFLAGS='-O0'
593     # For IEEE, use the "-ffloat-store" option
594     if test "x$IEEE" = x ; then
595     FFLAGS='-Wimplicit -Wunused -Wuninitialized'
596     FOPTIM='-O3 -malign-double -funroll-loops'
597     else
598     FFLAGS='-Wimplicit -Wunused -ffloat-store'
599     FOPTIM='-O0 -malign-double'
600     fi
601     \end{verbatim}
602    
603     If you write an optfile for an unrepresented machine or compiler, you
604     are strongly encouraged to submit the optfile to the MITgcm project
605     for inclusion. Please send the file to the
606     \begin{rawhtml} <A href="mail-to:MITgcm-support@mitgcm.org"> \end{rawhtml}
607     \begin{center}
608     MITgcm-support@mitgcm.org
609     \end{center}
610     \begin{rawhtml} </A> \end{rawhtml}
611     mailing list.
612    
613 jmc 1.42 \subsubsection{Command-line options:}
614    
615 molod 1.35 In addition to the optfiles, \texttt{genmake2} supports a number of
616     helpful command-line options. A complete list of these options can be
617     obtained from:
618     \begin{verbatim}
619     % genmake2 -h
620     \end{verbatim}
621    
622     The most important command-line options are:
623     \begin{description}
624    
625     \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that
626     should be used for a particular build.
627    
628     If no "optfile" is specified (either through the command line or the
629     MITGCM\_OPTFILE environment variable), genmake2 will try to make a
630     reasonable guess from the list provided in {\em
631     tools/build\_options}. The method used for making this guess is
632     to first determine the combination of operating system and hardware
633     (eg. "linux\_ia32") and then find a working FORTRAN compiler within
634     the user's path. When these three items have been identified,
635     genmake2 will try to find an optfile that has a matching name.
636    
637 jmc 1.42 \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
638     directories containing ``modifications''. These directories contain
639     files with names that may (or may not) exist in the main MITgcm
640     source tree but will be overridden by any identically-named sources
641     within the ``MODS'' directories.
642    
643     The order of precedence for this "name-hiding" is as follows:
644     \begin{itemize}
645     \item ``MODS'' directories (in the order given)
646     \item Packages either explicitly specified or provided by default
647     (in the order given)
648     \item Packages included due to package dependencies (in the order
649     that that package dependencies are parsed)
650     \item The "standard dirs" (which may have been specified by the
651     ``-standarddirs'' option)
652     \end{itemize}
653 molod 1.35
654 jmc 1.42 \item[\texttt{--pgroups=/PATH/FILENAME}] specifies the file
655     where package groups are defined. If not set, the package-groups
656     definition will be read from {\em pkg/pkg\_groups}.
657     It also contains the default list of packages (defined
658     as the group ``{\it default\_pkg\_list}'' which is used
659     when no specific package list ({\em packages.conf})
660     is found in current directory or in any "MODS" directory.
661    
662 molod 1.35 \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
663     used for packages.
664    
665     If not specified, the default dependency file {\em pkg/pkg\_depend}
666     is used. The syntax for this file is parsed on a line-by-line basis
667     where each line containes either a comment ("\#") or a simple
668     "PKGNAME1 (+|-)PKGNAME2" pairwise rule where the "+" or "-" symbol
669     specifies a "must be used with" or a "must not be used with"
670     relationship, respectively. If no rule is specified, then it is
671     assumed that the two packages are compatible and will function
672     either with or without each other.
673    
674     \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
675     automatic differentiation options file to be used. The file is
676     analogous to the ``optfile'' defined above but it specifies
677     information for the AD build process.
678    
679     The default file is located in {\em
680     tools/adjoint\_options/adjoint\_default} and it defines the "TAF"
681     and "TAMC" compilers. An alternate version is also available at
682     {\em tools/adjoint\_options/adjoint\_staf} that selects the newer
683     "STAF" compiler. As with any compilers, it is helpful to have their
684     directories listed in your {\tt \$PATH} environment variable.
685    
686     \item[\texttt{--mpi}] This option enables certain MPI features (using
687     CPP \texttt{\#define}s) within the code and is necessary for MPI
688     builds (see Section \ref{sect:mpi-build}).
689    
690     \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
691     soft-links and other bugs common with the \texttt{make} versions
692     provided by commercial Unix vendors, GNU \texttt{make} (sometimes
693     called \texttt{gmake}) should be preferred. This option provides a
694     means for specifying the make executable to be used.
695    
696     \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
697     machines, the ``bash'' shell is unavailable. To run on these
698     systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
699     a Bourne, POSIX, or compatible) shell. The syntax in these
700     circumstances is:
701     \begin{center}
702     \texttt{\% /bin/sh genmake2 -bash=/bin/sh [...options...]}
703     \end{center}
704     where \texttt{/bin/sh} can be replaced with the full path and name
705     of the desired shell.
706    
707     \end{description}
708    
709    
710     \subsection{Building with MPI}
711     \label{sect:mpi-build}
712    
713     Building MITgcm to use MPI libraries can be complicated due to the
714     variety of different MPI implementations available, their dependencies
715     or interactions with different compilers, and their often ad-hoc
716     locations within file systems. For these reasons, its generally a
717     good idea to start by finding and reading the documentation for your
718     machine(s) and, if necessary, seeking help from your local systems
719     administrator.
720    
721     The steps for building MITgcm with MPI support are:
722     \begin{enumerate}
723    
724     \item Determine the locations of your MPI-enabled compiler and/or MPI
725     libraries and put them into an options file as described in Section
726     \ref{sect:genmake}. One can start with one of the examples in:
727     \begin{rawhtml} <A
728 jmc 1.40 href="http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/build_options/">
729 molod 1.35 \end{rawhtml}
730     \begin{center}
731     \texttt{MITgcm/tools/build\_options/}
732     \end{center}
733     \begin{rawhtml} </A> \end{rawhtml}
734     such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
735     \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
736     hand. You may need help from your user guide or local systems
737     administrator to determine the exact location of the MPI libraries.
738     If libraries are not installed, MPI implementations and related
739     tools are available including:
740     \begin{itemize}
741     \item \begin{rawhtml} <A
742     href="http://www-unix.mcs.anl.gov/mpi/mpich/">
743     \end{rawhtml}
744     MPICH
745     \begin{rawhtml} </A> \end{rawhtml}
746    
747     \item \begin{rawhtml} <A
748     href="http://www.lam-mpi.org/">
749     \end{rawhtml}
750     LAM/MPI
751     \begin{rawhtml} </A> \end{rawhtml}
752    
753     \item \begin{rawhtml} <A
754     href="http://www.osc.edu/~pw/mpiexec/">
755     \end{rawhtml}
756     MPIexec
757     \begin{rawhtml} </A> \end{rawhtml}
758     \end{itemize}
759    
760     \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
761     (see Section \ref{sect:genmake}) using commands such as:
762     {\footnotesize \begin{verbatim}
763     % ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
764     % make depend
765     % make
766     \end{verbatim} }
767    
768     \item Run the code with the appropriate MPI ``run'' or ``exec''
769     program provided with your particular implementation of MPI.
770     Typical MPI packages such as MPICH will use something like:
771     \begin{verbatim}
772     % mpirun -np 4 -machinefile mf ./mitgcmuv
773     \end{verbatim}
774     Sightly more complicated scripts may be needed for many machines
775     since execution of the code may be controlled by both the MPI
776     library and a job scheduling and queueing system such as PBS,
777     LoadLeveller, Condor, or any of a number of similar tools. A few
778     example scripts (those used for our \begin{rawhtml} <A
779 jmc 1.41 href="http://mitgcm.org/public/testing.html"> \end{rawhtml}regular
780 molod 1.35 verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
781     at:
782     \begin{rawhtml} <A
783 jmc 1.41 href="http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example_scripts/">
784     \end{rawhtml}
785     {\footnotesize \tt
786     http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example\_scripts/ }
787     \begin{rawhtml} </A> \end{rawhtml}
788     or at:
789     \begin{rawhtml} <A
790 jmc 1.40 href="http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/test_scripts/">
791 molod 1.35 \end{rawhtml}
792     {\footnotesize \tt
793 jmc 1.40 http://mitgcm.org/viewvc/MITgcm/MITgcm\_contrib/test\_scripts/ }
794 molod 1.35 \begin{rawhtml} </A> \end{rawhtml}
795    
796     \end{enumerate}
797    
798     An example of the above process on the MITgcm cluster (``cg01'') using
799     the GNU g77 compiler and the mpich MPI library is:
800    
801     {\footnotesize \begin{verbatim}
802     % cd MITgcm/verification/exp5
803     % mkdir build
804     % cd build
805     % ../../../tools/genmake2 -mpi -mods=../code \
806     -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
807     % make depend
808     % make
809     % cd ../input
810     % /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
811     -machinefile mf --gm-kill 5 -v -np 2 ../build/mitgcmuv
812     \end{verbatim} }
813 adcroft 1.4
814 cnh 1.26 \section[Running MITgcm]{Running the model in prognostic mode}
815 adcroft 1.4 \label{sect:runModel}
816 edhill 1.30 \begin{rawhtml}
817     <!-- CMIREDIR:runModel: -->
818     \end{rawhtml}
819 adcroft 1.4
820 edhill 1.31 If compilation finished succesfully (section \ref{sect:buildingCode})
821 edhill 1.23 then an executable called \texttt{mitgcmuv} will now exist in the
822     local directory.
823 adcroft 1.1
824 edhill 1.29 To run the model as a single process (\textit{ie.} not in parallel)
825     simply type:
826 adcroft 1.1 \begin{verbatim}
827 adcroft 1.4 % ./mitgcmuv
828 adcroft 1.1 \end{verbatim}
829 adcroft 1.4 The ``./'' is a safe-guard to make sure you use the local executable
830     in case you have others that exist in your path (surely odd if you
831     do!). The above command will spew out many lines of text output to
832     your screen. This output contains details such as parameter values as
833     well as diagnostics such as mean Kinetic energy, largest CFL number,
834     etc. It is worth keeping this text output with the binary output so we
835 edhill 1.31 normally re-direct the \texttt{stdout} stream as follows:
836 adcroft 1.1 \begin{verbatim}
837 adcroft 1.4 % ./mitgcmuv > output.txt
838 adcroft 1.1 \end{verbatim}
839 edhill 1.29 In the event that the model encounters an error and stops, it is very
840     helpful to include the last few line of this \texttt{output.txt} file
841     along with the (\texttt{stderr}) error message within any bug reports.
842 adcroft 1.1
843 edhill 1.31 For the example experiments in \texttt{verification}, an example of the
844     output is kept in \texttt{results/output.txt} for comparison. You can
845     compare your \texttt{output.txt} with the corresponding one for that
846 edhill 1.29 experiment to check that the set-up works.
847 adcroft 1.1
848    
849    
850 adcroft 1.4 \subsection{Output files}
851 adcroft 1.1
852 edhill 1.31 The model produces various output files and, when using \texttt{mnc},
853     sometimes even directories. Depending upon the I/O package(s)
854     selected at compile time (either \texttt{mdsio} or \texttt{mnc} or
855     both as determined by \texttt{code/packages.conf}) and the run-time
856     flags set (in \texttt{input/data.pkg}), the following output may
857     appear.
858 edhill 1.29
859    
860     \subsubsection{MDSIO output files}
861    
862     The ``traditional'' output files are generated by the \texttt{mdsio}
863     package. At a minimum, the instantaneous ``state'' of the model is
864     written out, which is made of the following files:
865 adcroft 1.1
866     \begin{itemize}
867 edhill 1.34 \item \texttt{U.00000nIter} - zonal component of velocity field (m/s
868     and positive eastward).
869 adcroft 1.1
870 edhill 1.34 \item \texttt{V.00000nIter} - meridional component of velocity field
871     (m/s and positive northward).
872 adcroft 1.1
873 edhill 1.34 \item \texttt{W.00000nIter} - vertical component of velocity field
874     (ocean: m/s and positive upward, atmosphere: Pa/s and positive
875     towards increasing pressure i.e. downward).
876 adcroft 1.1
877 edhill 1.34 \item \texttt{T.00000nIter} - potential temperature (ocean:
878     $^{\circ}\mathrm{C}$, atmosphere: $^{\circ}\mathrm{K}$).
879 adcroft 1.1
880 edhill 1.34 \item \texttt{S.00000nIter} - ocean: salinity (psu), atmosphere: water
881     vapor (g/kg).
882 adcroft 1.1
883 edhill 1.34 \item \texttt{Eta.00000nIter} - ocean: surface elevation (m),
884     atmosphere: surface pressure anomaly (Pa).
885 adcroft 1.1 \end{itemize}
886    
887 edhill 1.31 The chain \texttt{00000nIter} consists of ten figures that specify the
888 edhill 1.34 iteration number at which the output is written out. For example,
889     \texttt{U.0000000300} is the zonal velocity at iteration 300.
890 adcroft 1.1
891     In addition, a ``pickup'' or ``checkpoint'' file called:
892    
893     \begin{itemize}
894 edhill 1.31 \item \texttt{pickup.00000nIter}
895 adcroft 1.1 \end{itemize}
896    
897     is written out. This file represents the state of the model in a condensed
898     form and is used for restarting the integration. If the C-D scheme is used,
899     there is an additional ``pickup'' file:
900    
901     \begin{itemize}
902 edhill 1.31 \item \texttt{pickup\_cd.00000nIter}
903 adcroft 1.1 \end{itemize}
904    
905     containing the D-grid velocity data and that has to be written out as well
906     in order to restart the integration. Rolling checkpoint files are the same
907     as the pickup files but are named differently. Their name contain the chain
908 edhill 1.31 \texttt{ckptA} or \texttt{ckptB} instead of \texttt{00000nIter}. They can be
909 adcroft 1.1 used to restart the model but are overwritten every other time they are
910     output to save disk space during long integrations.
911    
912 edhill 1.29 \subsubsection{MNC output files}
913    
914     Unlike the \texttt{mdsio} output, the \texttt{mnc}--generated output
915     is usually (though not necessarily) placed within a subdirectory with
916 molod 1.38 a name such as \texttt{mnc\_test\_\${DATE}\_\${SEQ}}.
917 edhill 1.29
918 adcroft 1.4 \subsection{Looking at the output}
919 adcroft 1.1
920 edhill 1.29 The ``traditional'' or mdsio model data are written according to a
921     ``meta/data'' file format. Each variable is associated with two files
922 edhill 1.31 with suffix names \texttt{.data} and \texttt{.meta}. The
923     \texttt{.data} file contains the data written in binary form
924     (big\_endian by default). The \texttt{.meta} file is a ``header'' file
925 edhill 1.29 that contains information about the size and the structure of the
926 edhill 1.31 \texttt{.data} file. This way of organizing the output is particularly
927 edhill 1.29 useful when running multi-processors calculations. The base version of
928     the model includes a few matlab utilities to read output files written
929     in this format. The matlab scripts are located in the directory
930 edhill 1.31 \texttt{utils/matlab} under the root tree. The script \texttt{rdmds.m}
931 edhill 1.29 reads the data. Look at the comments inside the script to see how to
932     use it.
933 adcroft 1.1
934 adcroft 1.4 Some examples of reading and visualizing some output in {\em Matlab}:
935     \begin{verbatim}
936     % matlab
937     >> H=rdmds('Depth');
938     >> contourf(H');colorbar;
939     >> title('Depth of fluid as used by model');
940    
941     >> eta=rdmds('Eta',10);
942     >> imagesc(eta');axis ij;colorbar;
943     >> title('Surface height at iter=10');
944    
945     >> eta=rdmds('Eta',[0:10:100]);
946     >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
947     \end{verbatim}
948 adcroft 1.1
949 edhill 1.31 Similar scripts for netCDF output (\texttt{rdmnc.m}) are available and
950     they are described in Section \ref{sec:pkg:mnc}.
951    
952 molod 1.38 The MNC output files are all in the ``self-describing'' netCDF
953     format and can thus be browsed and/or plotted using tools such as:
954     \begin{itemize}
955     \item \texttt{ncdump} is a utility which is typically included
956     with every netCDF install:
957     \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
958     \begin{verbatim}
959     http://www.unidata.ucar.edu/packages/netcdf/
960     \end{verbatim}
961     \begin{rawhtml} </A> \end{rawhtml} and it converts the netCDF
962     binaries into formatted ASCII text files.
963    
964     \item \texttt{ncview} utility is a very convenient and quick way
965     to plot netCDF data and it runs on most OSes:
966     \begin{rawhtml} <A href="http://meteora.ucsd.edu/~pierce/ncview_home_page.html"> \end{rawhtml}
967     \begin{verbatim}
968     http://meteora.ucsd.edu/~pierce/ncview_home_page.html
969     \end{verbatim}
970     \begin{rawhtml} </A> \end{rawhtml}
971    
972     \item MatLAB(c) and other common post-processing environments provide
973     various netCDF interfaces including:
974     \begin{rawhtml} <A href="http://mexcdf.sourceforge.net/"> \end{rawhtml}
975     \begin{verbatim}
976     http://mexcdf.sourceforge.net/
977     \end{verbatim}
978     \begin{rawhtml} </A> \end{rawhtml}
979     \begin{rawhtml} <A href="http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html"> \end{rawhtml}
980     \begin{verbatim}
981     http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html
982     \end{verbatim}
983     \begin{rawhtml} </A> \end{rawhtml}
984     \end{itemize}
985    

  ViewVC Help
Powered by ViewVC 1.1.22