/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Annotation of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.17 - (hide annotations) (download) (as text)
Thu Jan 29 15:11:39 2004 UTC (21 years, 5 months ago) by edhill
Branch: MAIN
Changes since 1.16: +404 -373 lines
File MIME type: application/x-tex
 o more changes to genmake2 in part3
 o trial of the "epsfig" package

1 edhill 1.17 % $Header: /u/u3/gcmpack/manual/part3/getting_started.tex,v 1.16 2004/01/29 03:02:33 edhill Exp $
2 adcroft 1.2 % $Name: $
3 adcroft 1.1
4 adcroft 1.4 %\section{Getting started}
5 adcroft 1.1
6 adcroft 1.4 In this section, we describe how to use the model. In the first
7     section, we provide enough information to help you get started with
8     the model. We believe the best way to familiarize yourself with the
9     model is to run the case study examples provided with the base
10     version. Information on how to obtain, compile, and run the code is
11     found there as well as a brief description of the model structure
12     directory and the case study examples. The latter and the code
13     structure are described more fully in chapters
14     \ref{chap:discretization} and \ref{chap:sarch}, respectively. Here, in
15     this section, we provide information on how to customize the code when
16     you are ready to try implementing the configuration you have in mind.
17    
18     \section{Where to find information}
19     \label{sect:whereToFindInfo}
20    
21 edhill 1.15 A web site is maintained for release 2 (``Pelican'') of MITgcm:
22     \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}
23 adcroft 1.4 \begin{verbatim}
24 edhill 1.15 http://mitgcm.org/pelican
25 adcroft 1.4 \end{verbatim}
26 edhill 1.15 \begin{rawhtml} </A> \end{rawhtml}
27 adcroft 1.4 Here you will find an on-line version of this document, a
28     ``browsable'' copy of the code and a searchable database of the model
29     and site, as well as links for downloading the model and
30 edhill 1.15 documentation, to data-sources, and other related sites.
31 adcroft 1.4
32 edhill 1.15 There is also a web-archived support mailing list for the model that
33     you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:
34     \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
35     \begin{verbatim}
36     http://mitgcm.org/mailman/listinfo/mitgcm-support/
37     http://mitgcm.org/pipermail/mitgcm-support/
38     \end{verbatim}
39     \begin{rawhtml} </A> \end{rawhtml}
40     Essentially all of the MITgcm web pages can be searched using a
41     popular web crawler such as Google or through our own search facility:
42 edhill 1.16 \begin{rawhtml} <A href=http://mitgcm.org/mailman/htdig/ target="idontexist"> \end{rawhtml}
43 adcroft 1.1 \begin{verbatim}
44 edhill 1.15 http://mitgcm.org/htdig/
45 adcroft 1.1 \end{verbatim}
46 edhill 1.15 \begin{rawhtml} </A> \end{rawhtml}
47     %%% http://www.google.com/search?q=hydrostatic+site%3Amitgcm.org
48    
49    
50 adcroft 1.4
51     \section{Obtaining the code}
52     \label{sect:obtainingCode}
53 adcroft 1.1
54 cnh 1.7 MITgcm can be downloaded from our system by following
55     the instructions below. As a courtesy we ask that you send e-mail to us at
56 edhill 1.14 \begin{rawhtml} <A href=mailto:MITgcm-support@mitgcm.org> \end{rawhtml}
57     MITgcm-support@mitgcm.org
58 cnh 1.7 \begin{rawhtml} </A> \end{rawhtml}
59     to enable us to keep track of who's using the model and in what application.
60     You can download the model two ways:
61    
62     \begin{enumerate}
63 cnh 1.9 \item Using CVS software. CVS is a freely available source code management
64 cnh 1.7 tool. To use CVS you need to have the software installed. Many systems
65     come with CVS pre-installed, otherwise good places to look for
66     the software for a particular platform are
67     \begin{rawhtml} <A href=http://www.cvshome.org/ target="idontexist"> \end{rawhtml}
68     cvshome.org
69     \begin{rawhtml} </A> \end{rawhtml}
70     and
71     \begin{rawhtml} <A href=http://www.wincvs.org/ target="idontexist"> \end{rawhtml}
72     wincvs.org
73     \begin{rawhtml} </A> \end{rawhtml}
74     .
75    
76     \item Using a tar file. This method is simple and does not
77     require any special software. However, this method does not
78     provide easy support for maintenance updates.
79    
80     \end{enumerate}
81    
82 adcroft 1.1 If CVS is available on your system, we strongly encourage you to use it. CVS
83     provides an efficient and elegant way of organizing your code and keeping
84     track of your changes. If CVS is not available on your machine, you can also
85     download a tar file.
86    
87 edhill 1.15 Before you can use CVS, the following environment variable(s) should
88     be set within your shell. For a csh or tcsh shell, put the following
89     \begin{verbatim}
90     % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
91     \end{verbatim}
92     in your .cshrc or .tcshrc file. For bash or sh shells, put:
93 adcroft 1.1 \begin{verbatim}
94 edhill 1.15 % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
95 adcroft 1.6 \end{verbatim}
96 edhill 1.15 in your .profile or .bashrc file.
97 adcroft 1.6
98 edhill 1.15
99     To get MITgcm through CVS, first register with the MITgcm CVS server
100     using command:
101 adcroft 1.6 \begin{verbatim}
102 adcroft 1.1 % cvs login ( CVS password: cvsanon )
103     \end{verbatim}
104 edhill 1.15 You only need to do a ``cvs login'' once.
105 adcroft 1.1
106 edhill 1.15 To obtain the latest sources type:
107     \begin{verbatim}
108     % cvs co MITgcm
109     \end{verbatim}
110     or to get a specific release type:
111 adcroft 1.1 \begin{verbatim}
112 edhill 1.16 % cvs co -P -r checkpoint52i_post MITgcm
113 adcroft 1.1 \end{verbatim}
114 edhill 1.15 The MITgcm web site contains further directions concerning the source
115     code and CVS. It also contains a web interface to our CVS archive so
116     that one may easily view the state of files, revisions, and other
117     development milestones:
118 edhill 1.17 \begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml}
119 edhill 1.15 \begin{verbatim}
120 edhill 1.17 http://mitgcm.org/source_code.html
121 edhill 1.15 \end{verbatim}
122     \begin{rawhtml} </A> \end{rawhtml}
123 adcroft 1.1
124 edhill 1.15
125     The checkout process creates a directory called \textit{MITgcm}. If
126     the directory \textit{MITgcm} exists this command updates your code
127     based on the repository. Each directory in the source tree contains a
128     directory \textit{CVS}. This information is required by CVS to keep
129     track of your file versions with respect to the repository. Don't edit
130     the files in \textit{CVS}! You can also use CVS to download code
131     updates. More extensive information on using CVS for maintaining
132     MITgcm code can be found
133 edhill 1.17 \begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml}
134 cnh 1.7 here
135     \begin{rawhtml} </A> \end{rawhtml}
136     .
137    
138 adcroft 1.1
139 adcroft 1.4 \paragraph*{Conventional download method}
140     \label{sect:conventionalDownload}
141 adcroft 1.1
142 adcroft 1.4 If you do not have CVS on your system, you can download the model as a
143 edhill 1.15 tar file from the web site at:
144 cnh 1.7 \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}
145 adcroft 1.1 \begin{verbatim}
146     http://mitgcm.org/download/
147     \end{verbatim}
148 cnh 1.7 \begin{rawhtml} </A> \end{rawhtml}
149 adcroft 1.4 The tar file still contains CVS information which we urge you not to
150     delete; even if you do not use CVS yourself the information can help
151 edhill 1.15 us if you should need to send us your copy of the code. If a recent
152     tar file does not exist, then please contact the developers through
153 edhill 1.17 the
154     \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
155     MITgcm-support@mitgcm.org
156     \begin{rawhtml} </A> \end{rawhtml}
157     mailing list.
158 adcroft 1.1
159 adcroft 1.12 \paragraph*{Upgrading from an earlier version}
160    
161     If you already have an earlier version of the code you can ``upgrade''
162     your copy instead of downloading the entire repository again. First,
163     ``cd'' (change directory) to the top of your working copy:
164     \begin{verbatim}
165     % cd MITgcm
166     \end{verbatim}
167 edhill 1.15 and then issue the cvs update command such as:
168 adcroft 1.12 \begin{verbatim}
169 edhill 1.16 % cvs -q update -r checkpoint52i_post -d -P
170 adcroft 1.12 \end{verbatim}
171 edhill 1.16 This will update the ``tag'' to ``checkpoint52i\_post'', add any new
172 adcroft 1.12 directories (-d) and remove any empty directories (-P). The -q option
173     means be quiet which will reduce the number of messages you'll see in
174     the terminal. If you have modified the code prior to upgrading, CVS
175     will try to merge your changes with the upgrades. If there is a
176     conflict between your modifications and the upgrade, it will report
177     that file with a ``C'' in front, e.g.:
178     \begin{verbatim}
179     C model/src/ini_parms.F
180     \end{verbatim}
181     If the list of conflicts scrolled off the screen, you can re-issue the
182     cvs update command and it will report the conflicts. Conflicts are
183 edhill 1.15 indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
184     ``$>>>>>>>$''. For example,
185 edhill 1.17 {\small
186 adcroft 1.12 \begin{verbatim}
187     <<<<<<< ini_parms.F
188     & bottomDragLinear,myOwnBottomDragCoefficient,
189     =======
190     & bottomDragLinear,bottomDragQuadratic,
191     >>>>>>> 1.18
192     \end{verbatim}
193 edhill 1.17 }
194 adcroft 1.12 means that you added ``myOwnBottomDragCoefficient'' to a namelist at
195     the same time and place that we added ``bottomDragQuadratic''. You
196     need to resolve this conflict and in this case the line should be
197     changed to:
198 edhill 1.17 {\small
199 adcroft 1.12 \begin{verbatim}
200     & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
201     \end{verbatim}
202 edhill 1.17 }
203 edhill 1.15 and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
204 adcroft 1.12 Unless you are making modifications which exactly parallel
205     developments we make, these types of conflicts should be rare.
206    
207     \paragraph*{Upgrading to the current pre-release version}
208    
209     We don't make a ``release'' for every little patch and bug fix in
210     order to keep the frequency of upgrades to a minimum. However, if you
211     have run into a problem for which ``we have already fixed in the
212     latest code'' and we haven't made a ``tag'' or ``release'' since that
213     patch then you'll need to get the latest code:
214     \begin{verbatim}
215     % cvs -q update -A -d -P
216     \end{verbatim}
217     Unlike, the ``check-out'' and ``update'' procedures above, there is no
218     ``tag'' or release name. The -A tells CVS to upgrade to the
219     very latest version. As a rule, we don't recommend this since you
220     might upgrade while we are in the processes of checking in the code so
221     that you may only have part of a patch. Using this method of updating
222     also means we can't tell what version of the code you are working
223     with. So please be sure you understand what you're doing.
224    
225 adcroft 1.4 \section{Model and directory structure}
226 adcroft 1.1
227 adcroft 1.12 The ``numerical'' model is contained within a execution environment
228     support wrapper. This wrapper is designed to provide a general
229     framework for grid-point models. MITgcmUV is a specific numerical
230     model that uses the framework. Under this structure the model is split
231     into execution environment support code and conventional numerical
232     model code. The execution environment support code is held under the
233     \textit{eesupp} directory. The grid point model code is held under the
234     \textit{model} directory. Code execution actually starts in the
235     \textit{eesupp} routines and not in the \textit{model} routines. For
236 edhill 1.17 this reason the top-level \textit{MAIN.F} is in the
237     \textit{eesupp/src} directory. In general, end-users should not need
238     to worry about this level. The top-level routine for the numerical
239     part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F}. Here is
240     a brief description of the directory structure of the model under the
241     root tree (a detailed description is given in section 3: Code
242     structure).
243 adcroft 1.1
244     \begin{itemize}
245    
246 edhill 1.17 \item \textit{bin}: this directory is initially empty. It is the
247     default directory in which to compile the code.
248    
249 adcroft 1.1 \item \textit{diags}: contains the code relative to time-averaged
250 edhill 1.17 diagnostics. It is subdivided into two subdirectories \textit{inc}
251     and \textit{src} that contain include files (*.\textit{h} files) and
252     Fortran subroutines (*.\textit{F} files), respectively.
253 adcroft 1.1
254     \item \textit{doc}: contains brief documentation notes.
255 edhill 1.17
256     \item \textit{eesupp}: contains the execution environment source code.
257     Also subdivided into two subdirectories \textit{inc} and
258     \textit{src}.
259    
260     \item \textit{exe}: this directory is initially empty. It is the
261     default directory in which to execute the code.
262    
263     \item \textit{model}: this directory contains the main source code.
264     Also subdivided into two subdirectories \textit{inc} and
265     \textit{src}.
266    
267     \item \textit{pkg}: contains the source code for the packages. Each
268     package corresponds to a subdirectory. For example, \textit{gmredi}
269     contains the code related to the Gent-McWilliams/Redi scheme,
270     \textit{aim} the code relative to the atmospheric intermediate
271     physics. The packages are described in detail in section 3.
272    
273     \item \textit{tools}: this directory contains various useful tools.
274     For example, \textit{genmake2} is a script written in csh (C-shell)
275     that should be used to generate your makefile. The directory
276     \textit{adjoint} contains the makefile specific to the Tangent
277     linear and Adjoint Compiler (TAMC) that generates the adjoint code.
278     The latter is described in details in part V.
279    
280 adcroft 1.1 \item \textit{utils}: this directory contains various utilities. The
281 edhill 1.17 subdirectory \textit{knudsen2} contains code and a makefile that
282     compute coefficients of the polynomial approximation to the knudsen
283     formula for an ocean nonlinear equation of state. The
284     \textit{matlab} subdirectory contains matlab scripts for reading
285     model output directly into matlab. \textit{scripts} contains C-shell
286     post-processing scripts for joining processor-based and tiled-based
287     model output.
288    
289     \item \textit{verification}: this directory contains the model
290     examples. See section \ref{sect:modelExamples}.
291 adcroft 1.1
292     \end{itemize}
293    
294 adcroft 1.4 \section{Example experiments}
295     \label{sect:modelExamples}
296 adcroft 1.1
297 edhill 1.15 %% a set of twenty-four pre-configured numerical experiments
298    
299     The MITgcm distribution comes with more than a dozen pre-configured
300     numerical experiments. Some of these example experiments are tests of
301     individual parts of the model code, but many are fully fledged
302     numerical simulations. A few of the examples are used for tutorial
303     documentation in sections \ref{sect:eg-baro} - \ref{sect:eg-global}.
304     The other examples follow the same general structure as the tutorial
305     examples. However, they only include brief instructions in a text file
306     called {\it README}. The examples are located in subdirectories under
307     the directory \textit{verification}. Each example is briefly described
308     below.
309 adcroft 1.1
310 cnh 1.8 \subsection{Full list of model examples}
311 adcroft 1.1
312 cnh 1.8 \begin{enumerate}
313 edhill 1.17
314 adcroft 1.1 \item \textit{exp0} - single layer, ocean double gyre (barotropic with
315 edhill 1.15 free-surface). This experiment is described in detail in section
316     \ref{sect:eg-baro}.
317 adcroft 1.1
318 edhill 1.15 \item \textit{exp1} - Four layer, ocean double gyre. This experiment
319     is described in detail in section \ref{sect:eg-baroc}.
320    
321 adcroft 1.1 \item \textit{exp2} - 4x4 degree global ocean simulation with steady
322 edhill 1.15 climatological forcing. This experiment is described in detail in
323     section \ref{sect:eg-global}.
324    
325     \item \textit{exp4} - Flow over a Gaussian bump in open-water or
326     channel with open boundaries.
327    
328     \item \textit{exp5} - Inhomogenously forced ocean convection in a
329     doubly periodic box.
330 adcroft 1.1
331 cnh 1.8 \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for
332 adcroft 1.1 Gent/McWilliams scheme). 2D (Y-Z).
333    
334 edhill 1.15 \item \textit{internal wave} - Ocean internal wave forced by open
335     boundary conditions.
336    
337 cnh 1.8 \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP
338 edhill 1.15 scheme; 1 month integration
339    
340     \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and
341     Suarez '94 forcing.
342    
343     \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and
344     Suarez '94 forcing.
345    
346 adcroft 1.1 \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and
347 edhill 1.15 Suarez '94 forcing on the cubed sphere.
348    
349     \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics.
350     Global Zonal Mean configuration, 1x64x5 resolution.
351    
352     \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate
353     Atmospheric physics, equatorial Slice configuration. 2D (X-Z).
354    
355 adcroft 1.1 \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric
356 edhill 1.15 physics. 3D Equatorial Channel configuration.
357    
358 cnh 1.8 \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.
359 edhill 1.15 Global configuration, on latitude longitude grid with 128x64x5 grid
360     points ($2.8^\circ{\rm degree}$ resolution).
361    
362     \item \textit{adjustment.128x64x1} Barotropic adjustment problem on
363     latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm
364     degree}$ resolution).
365    
366     \item \textit{adjustment.cs-32x32x1} Barotropic adjustment problem on
367     cube sphere grid with 32x32 points per face ( roughly $2.8^\circ{\rm
368     degree}$ resolution).
369    
370 cnh 1.8 \item \textit{advect\_cs} Two-dimensional passive advection test on
371 edhill 1.15 cube sphere grid.
372    
373     \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive
374     advection test on Cartesian grid.
375    
376     \item \textit{advect\_yz} Two-dimensional (vertical plane) passive
377     advection test on Cartesian grid.
378    
379     \item \textit{carbon} Simple passive tracer experiment. Includes
380     derivative calculation. Described in detail in section
381     \ref{sect:eg-carbon-ad}.
382 cnh 1.8
383     \item \textit{flt\_example} Example of using float package.
384 edhill 1.15
385     \item \textit{global\_ocean.90x40x15} Global circulation with GM, flux
386     boundary conditions and poles.
387 cnh 1.8
388 mlosch 1.13 \item \textit{global\_ocean\_pressure} Global circulation in pressure
389     coordinate (non-Boussinesq ocean model). Described in detail in
390     section \ref{sect:eg-globalpressure}.
391 edhill 1.15
392     \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube
393     sphere grid.
394 cnh 1.8
395     \end{enumerate}
396 adcroft 1.1
397 adcroft 1.4 \subsection{Directory structure of model examples}
398 adcroft 1.1
399     Each example directory has the following subdirectories:
400    
401     \begin{itemize}
402     \item \textit{code}: contains the code particular to the example. At a
403 edhill 1.16 minimum, this directory includes the following files:
404 adcroft 1.1
405 edhill 1.16 \begin{itemize}
406     \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
407     the ``execution environment'' part of the code. The default
408     version is located in \textit{eesupp/inc}.
409    
410     \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to
411     the ``numerical model'' part of the code. The default version is
412     located in \textit{model/inc}.
413    
414     \item \textit{code/SIZE.h}: declares size of underlying
415     computational grid. The default version is located in
416     \textit{model/inc}.
417     \end{itemize}
418    
419     In addition, other include files and subroutines might be present in
420     \textit{code} depending on the particular experiment. See Section 2
421     for more details.
422 edhill 1.15
423     \item \textit{input}: contains the input data files required to run
424     the example. At a minimum, the \textit{input} directory contains the
425     following files:
426 adcroft 1.1
427 edhill 1.16 \begin{itemize}
428     \item \textit{input/data}: this file, written as a namelist,
429     specifies the main parameters for the experiment.
430    
431     \item \textit{input/data.pkg}: contains parameters relative to the
432     packages used in the experiment.
433    
434     \item \textit{input/eedata}: this file contains ``execution
435     environment'' data. At present, this consists of a specification
436     of the number of threads to use in $X$ and $Y$ under multithreaded
437     execution.
438     \end{itemize}
439 edhill 1.17
440     In addition, you will also find in this directory the forcing and
441     topography files as well as the files describing the initial state
442     of the experiment. This varies from experiment to experiment. See
443     section 2 for more details.
444 edhill 1.16
445     \item \textit{results}: this directory contains the output file
446     \textit{output.txt} produced by the simulation example. This file is
447     useful for comparison with your own output when you run the
448     experiment.
449 adcroft 1.1 \end{itemize}
450    
451 edhill 1.17 Once you have chosen the example you want to run, you are ready to
452     compile the code.
453 adcroft 1.1
454 adcroft 1.4 \section{Building the code}
455     \label{sect:buildingCode}
456    
457     To compile the code, we use the {\em make} program. This uses a file
458     ({\em Makefile}) that allows us to pre-process source files, specify
459     compiler and optimization options and also figures out any file
460 edhill 1.16 dependencies. We supply a script ({\em genmake2}), described in
461     section \ref{sect:genmake}, that automatically creates the {\em
462     Makefile} for you. You then need to build the dependencies and
463     compile the code.
464 adcroft 1.4
465     As an example, let's assume that you want to build and run experiment
466 edhill 1.16 \textit{verification/exp2}. The are multiple ways and places to
467     actually do this but here let's build the code in
468 adcroft 1.4 \textit{verification/exp2/input}:
469     \begin{verbatim}
470     % cd verification/exp2/input
471     \end{verbatim}
472     First, build the {\em Makefile}:
473     \begin{verbatim}
474 edhill 1.16 % ../../../tools/genmake2 -mods=../code
475 adcroft 1.4 \end{verbatim}
476     The command line option tells {\em genmake} to override model source
477     code with any files in the directory {\em ./code/}.
478    
479 edhill 1.16 On many systems, the {\em genmake2} program will be able to
480     automatically recognize the hardware, find compilers and other tools
481     within the user's path (``echo \$PATH''), and then choose an
482     appropriate set of options from the files contained in the {\em
483     tools/build\_options} directory. Under some circumstances, a user
484     may have to create a new ``optfile'' in order to specify the exact
485     combination of compiler, compiler flags, libraries, and other options
486     necessary to build a particular configuration of MITgcm. In such
487     cases, it is generally helpful to read the existing ``optfiles'' and
488     mimic their syntax.
489    
490     Through the MITgcm-support list, the MITgcm developers are willing to
491     provide help writing or modifing ``optfiles''. And we encourage users
492     to post new ``optfiles'' (particularly ones for new machines or
493 edhill 1.17 architectures) to the
494     \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
495     MITgcm-support@mitgcm.org
496     \begin{rawhtml} </A> \end{rawhtml}
497     list.
498 edhill 1.16
499     To specify an optfile to {\em genmake2}, the syntax is:
500 adcroft 1.4 \begin{verbatim}
501 edhill 1.16 % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
502 adcroft 1.4 \end{verbatim}
503    
504 edhill 1.16 Once a {\em Makefile} has been generated, we create the dependencies:
505 adcroft 1.4 \begin{verbatim}
506     % make depend
507     \end{verbatim}
508 edhill 1.16 This modifies the {\em Makefile} by attaching a [long] list of files
509     upon which other files depend. The purpose of this is to reduce
510     re-compilation if and when you start to modify the code. The {\tt make
511     depend} command also creates links from the model source to this
512     directory.
513 adcroft 1.1
514 edhill 1.16 Next compile the code:
515 adcroft 1.4 \begin{verbatim}
516     % make
517     \end{verbatim}
518     The {\tt make} command creates an executable called \textit{mitgcmuv}.
519 edhill 1.16 Additional make ``targets'' are defined within the makefile to aid in
520     the production of adjoint and other versions of MITgcm.
521 adcroft 1.4
522     Now you are ready to run the model. General instructions for doing so are
523     given in section \ref{sect:runModel}. Here, we can run the model with:
524     \begin{verbatim}
525     ./mitgcmuv > output.txt
526     \end{verbatim}
527     where we are re-directing the stream of text output to the file {\em
528     output.txt}.
529    
530    
531     \subsection{Building/compiling the code elsewhere}
532    
533     In the example above (section \ref{sect:buildingCode}) we built the
534     executable in the {\em input} directory of the experiment for
535     convenience. You can also configure and compile the code in other
536     locations, for example on a scratch disk with out having to copy the
537     entire source tree. The only requirement to do so is you have {\tt
538 edhill 1.16 genmake2} in your path or you know the absolute path to {\tt
539     genmake2}.
540 adcroft 1.4
541 edhill 1.16 The following sections outline some possible methods of organizing
542     your source and data.
543 adcroft 1.4
544     \subsubsection{Building from the {\em ../code directory}}
545    
546     This is just as simple as building in the {\em input/} directory:
547     \begin{verbatim}
548     % cd verification/exp2/code
549 edhill 1.16 % ../../../tools/genmake2
550 adcroft 1.4 % make depend
551     % make
552     \end{verbatim}
553     However, to run the model the executable ({\em mitgcmuv}) and input
554     files must be in the same place. If you only have one calculation to make:
555     \begin{verbatim}
556     % cd ../input
557     % cp ../code/mitgcmuv ./
558     % ./mitgcmuv > output.txt
559     \end{verbatim}
560 cnh 1.9 or if you will be making multiple runs with the same executable:
561 adcroft 1.4 \begin{verbatim}
562     % cd ../
563     % cp -r input run1
564     % cp code/mitgcmuv run1
565     % cd run1
566     % ./mitgcmuv > output.txt
567     \end{verbatim}
568    
569     \subsubsection{Building from a new directory}
570    
571     Since the {\em input} directory contains input files it is often more
572 cnh 1.9 useful to keep {\em input} pristine and build in a new directory
573 adcroft 1.4 within {\em verification/exp2/}:
574     \begin{verbatim}
575     % cd verification/exp2
576     % mkdir build
577     % cd build
578 edhill 1.16 % ../../../tools/genmake2 -mods=../code
579 adcroft 1.4 % make depend
580     % make
581     \end{verbatim}
582     This builds the code exactly as before but this time you need to copy
583     either the executable or the input files or both in order to run the
584     model. For example,
585     \begin{verbatim}
586     % cp ../input/* ./
587     % ./mitgcmuv > output.txt
588     \end{verbatim}
589     or if you tend to make multiple runs with the same executable then
590     running in a new directory each time might be more appropriate:
591     \begin{verbatim}
592     % cd ../
593     % mkdir run1
594     % cp build/mitgcmuv run1/
595     % cp input/* run1/
596     % cd run1
597     % ./mitgcmuv > output.txt
598     \end{verbatim}
599    
600 edhill 1.16 \subsubsection{Building on a scratch disk}
601 adcroft 1.4
602     Model object files and output data can use up large amounts of disk
603     space so it is often the case that you will be operating on a large
604     scratch disk. Assuming the model source is in {\em ~/MITgcm} then the
605     following commands will build the model in {\em /scratch/exp2-run1}:
606     \begin{verbatim}
607     % cd /scratch/exp2-run1
608 edhill 1.16 % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
609     -mods=~/MITgcm/verification/exp2/code
610 adcroft 1.4 % make depend
611     % make
612     \end{verbatim}
613     To run the model here, you'll need the input files:
614     \begin{verbatim}
615     % cp ~/MITgcm/verification/exp2/input/* ./
616     % ./mitgcmuv > output.txt
617     \end{verbatim}
618    
619     As before, you could build in one directory and make multiple runs of
620     the one experiment:
621     \begin{verbatim}
622     % cd /scratch/exp2
623     % mkdir build
624     % cd build
625 edhill 1.16 % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
626     -mods=~/MITgcm/verification/exp2/code
627 adcroft 1.4 % make depend
628     % make
629     % cd ../
630     % cp -r ~/MITgcm/verification/exp2/input run2
631     % cd run2
632     % ./mitgcmuv > output.txt
633     \end{verbatim}
634    
635    
636    
637 edhill 1.16 \subsection{Using \textit{genmake2}}
638 adcroft 1.4 \label{sect:genmake}
639 adcroft 1.1
640 edhill 1.16 To compile the code, first use the program \texttt{genmake2} (located
641     in the \textit{tools} directory) to generate a Makefile.
642     \texttt{genmake2} is a shell script written to work with all
643     ``sh''--compatible shells including bash v1, bash v2, and Bourne.
644     Internally, \texttt{genmake2} determines the locations of needed
645     files, the compiler, compiler options, libraries, and Unix tools. It
646     relies upon a number of ``optfiles'' located in the {\em
647     tools/build\_options} directory.
648    
649     The purpose of the optfiles is to provide all the compilation options
650     for particular ``platforms'' (where ``platform'' roughly means the
651     combination of the hardware and the compiler) and code configurations.
652     Given the combinations of possible compilers and library dependencies
653     ({\it eg.} MPI and NetCDF) there may be numerous optfiles available
654     for a single machine. The naming scheme for the majority of the
655     optfiles shipped with the code is
656     \begin{center}
657     {\bf OS\_HARDWARE\_COMPILER }
658     \end{center}
659     where
660     \begin{description}
661     \item[OS] is the name of the operating system (generally the
662     lower-case output of the {\tt 'uname'} command)
663     \item[HARDWARE] is a string that describes the CPU type and
664     corresponds to output from the {\tt 'uname -m'} command:
665     \begin{description}
666     \item[ia32] is for ``x86'' machines such as i386, i486, i586, i686,
667     and athlon
668     \item[ia64] is for Intel IA64 systems (eg. Itanium, Itanium2)
669     \item[amd64] is AMD x86\_64 systems
670     \item[ppc] is for Mac PowerPC systems
671     \end{description}
672     \item[COMPILER] is the compiler name (generally, the name of the
673     FORTRAN executable)
674     \end{description}
675    
676     In many cases, the default optfiles are sufficient and will result in
677     usable Makefiles. However, for some machines or code configurations,
678     new ``optfiles'' must be written. To create a new optfile, it is
679     generally best to start with one of the defaults and modify it to suit
680     your needs. Like \texttt{genmake2}, the optfiles are all written
681     using a simple ``sh''--compatible syntax. While nearly all variables
682     used within \texttt{genmake2} may be specified in the optfiles, the
683     critical ones that should be defined are:
684    
685     \begin{description}
686     \item[FC] the FORTRAN compiler (executable) to use
687     \item[DEFINES] the command-line DEFINE options passed to the compiler
688     \item[CPP] the C pre-processor to use
689     \item[NOOPTFLAGS] options flags for special files that should not be
690     optimized
691     \end{description}
692    
693     For example, the optfile for a typical Red Hat Linux machine (``ia32''
694     architecture) using the GCC (g77) compiler is
695     \begin{verbatim}
696     FC=g77
697     DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4'
698     CPP='cpp -traditional -P'
699     NOOPTFLAGS='-O0'
700     # For IEEE, use the "-ffloat-store" option
701     if test "x$IEEE" = x ; then
702     FFLAGS='-Wimplicit -Wunused -Wuninitialized'
703     FOPTIM='-O3 -malign-double -funroll-loops'
704     else
705     FFLAGS='-Wimplicit -Wunused -ffloat-store'
706     FOPTIM='-O0 -malign-double'
707     fi
708     \end{verbatim}
709    
710     If you write an optfile for an unrepresented machine or compiler, you
711     are strongly encouraged to submit the optfile to the MITgcm project
712     for inclusion. Please send the file to the
713     \begin{rawhtml} <A href="mail-to:MITgcm-support@mitgcm.org"> \end{rawhtml}
714     \begin{center}
715     MITgcm-support@mitgcm.org
716     \end{center}
717     \begin{rawhtml} </A> \end{rawhtml}
718     mailing list.
719 adcroft 1.1
720 edhill 1.16 In addition to the optfiles, \texttt{genmake2} supports a number of
721     helpful command-line options. A complete list of these options can be
722     obtained from:
723     \begin{verbatim}
724     % genmake2 -h
725     \end{verbatim}
726    
727     The most important command-line options are:
728     \begin{description}
729    
730 edhill 1.17 \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that
731     should be used for a particular build.
732 edhill 1.16
733     If no "optfile" is specified (either through the command line or the
734     MITGCM\_OPTFILE environment variable), genmake2 will try to make a
735     reasonable guess from the list provided in {\em
736     tools/build\_options}. The method used for making this guess is
737     to first determine the combination of operating system and hardware
738     (eg. "linux\_ia32") and then find a working FORTRAN compiler within
739     the user's path. When these three items have been identified,
740     genmake2 will try to find an optfile that has a matching name.
741    
742 edhill 1.17 \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
743     used for packages.
744 edhill 1.16
745     If not specified, the default dependency file {\em pkg/pkg\_depend}
746     is used. The syntax for this file is parsed on a line-by-line basis
747     where each line containes either a comment ("\#") or a simple
748     "PKGNAME1 (+|-)PKGNAME2" pairwise rule where the "+" or "-" symbol
749     specifies a "must be used with" or a "must not be used with"
750     relationship, respectively. If no rule is specified, then it is
751     assumed that the two packages are compatible and will function
752     either with or without each other.
753    
754 edhill 1.17 \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default
755     set of packages to be used.
756 edhill 1.16
757     If not set, the default package list will be read from {\em
758     pkg/pkg\_default}
759    
760 edhill 1.17 \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
761     automatic differentiation options file to be used. The file is
762     analogous to the ``optfile'' defined above but it specifies
763     information for the AD build process.
764 edhill 1.16
765     The default file is located in {\em
766     tools/adjoint\_options/adjoint\_default} and it defines the "TAF"
767     and "TAMC" compilers. An alternate version is also available at
768     {\em tools/adjoint\_options/adjoint\_staf} that selects the newer
769     "STAF" compiler. As with any compilers, it is helpful to have their
770     directories listed in your {\tt \$PATH} environment variable.
771    
772 edhill 1.17 \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
773     directories containing ``modifications''. These directories contain
774     files with names that may (or may not) exist in the main MITgcm
775     source tree but will be overridden by any identically-named sources
776     within the ``MODS'' directories.
777 edhill 1.16
778     The order of precedence for this "name-hiding" is as follows:
779     \begin{itemize}
780     \item ``MODS'' directories (in the order given)
781     \item Packages either explicitly specified or provided by default
782     (in the order given)
783     \item Packages included due to package dependencies (in the order
784     that that package dependencies are parsed)
785     \item The "standard dirs" (which may have been specified by the
786     ``-standarddirs'' option)
787     \end{itemize}
788    
789 edhill 1.17 \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
790     soft-links and other bugs common with the \texttt{make} versions
791     provided by commercial Unix vendors, GNU \texttt{make} (sometimes
792     called \texttt{gmake}) should be preferred. This option provides a
793     means for specifying the make executable to be used.
794 adcroft 1.1
795 edhill 1.16 \end{description}
796 adcroft 1.1
797    
798    
799 adcroft 1.4 \section{Running the model}
800     \label{sect:runModel}
801    
802     If compilation finished succesfuully (section \ref{sect:buildModel})
803     then an executable called {\em mitgcmuv} will now exist in the local
804     directory.
805 adcroft 1.1
806 adcroft 1.4 To run the model as a single process (ie. not in parallel) simply
807     type:
808 adcroft 1.1 \begin{verbatim}
809 adcroft 1.4 % ./mitgcmuv
810 adcroft 1.1 \end{verbatim}
811 adcroft 1.4 The ``./'' is a safe-guard to make sure you use the local executable
812     in case you have others that exist in your path (surely odd if you
813     do!). The above command will spew out many lines of text output to
814     your screen. This output contains details such as parameter values as
815     well as diagnostics such as mean Kinetic energy, largest CFL number,
816     etc. It is worth keeping this text output with the binary output so we
817     normally re-direct the {\em stdout} stream as follows:
818 adcroft 1.1 \begin{verbatim}
819 adcroft 1.4 % ./mitgcmuv > output.txt
820 adcroft 1.1 \end{verbatim}
821    
822 edhill 1.17 For the example experiments in {\em verification}, an example of the
823 adcroft 1.4 output is kept in {\em results/output.txt} for comparison. You can compare
824     your {\em output.txt} with this one to check that the set-up works.
825 adcroft 1.1
826    
827    
828 adcroft 1.4 \subsection{Output files}
829 adcroft 1.1
830     The model produces various output files. At a minimum, the instantaneous
831     ``state'' of the model is written out, which is made of the following files:
832    
833     \begin{itemize}
834     \item \textit{U.00000nIter} - zonal component of velocity field (m/s and $>
835     0 $ eastward).
836    
837     \item \textit{V.00000nIter} - meridional component of velocity field (m/s
838     and $> 0$ northward).
839    
840     \item \textit{W.00000nIter} - vertical component of velocity field (ocean:
841     m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure
842     i.e. downward).
843    
844     \item \textit{T.00000nIter} - potential temperature (ocean: $^{0}$C,
845     atmosphere: $^{0}$K).
846    
847     \item \textit{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor
848     (g/kg).
849    
850     \item \textit{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:
851     surface pressure anomaly (Pa).
852     \end{itemize}
853    
854     The chain \textit{00000nIter} consists of ten figures that specify the
855     iteration number at which the output is written out. For example, \textit{%
856     U.0000000300} is the zonal velocity at iteration 300.
857    
858     In addition, a ``pickup'' or ``checkpoint'' file called:
859    
860     \begin{itemize}
861     \item \textit{pickup.00000nIter}
862     \end{itemize}
863    
864     is written out. This file represents the state of the model in a condensed
865     form and is used for restarting the integration. If the C-D scheme is used,
866     there is an additional ``pickup'' file:
867    
868     \begin{itemize}
869     \item \textit{pickup\_cd.00000nIter}
870     \end{itemize}
871    
872     containing the D-grid velocity data and that has to be written out as well
873     in order to restart the integration. Rolling checkpoint files are the same
874     as the pickup files but are named differently. Their name contain the chain
875     \textit{ckptA} or \textit{ckptB} instead of \textit{00000nIter}. They can be
876     used to restart the model but are overwritten every other time they are
877     output to save disk space during long integrations.
878    
879 adcroft 1.4 \subsection{Looking at the output}
880 adcroft 1.1
881     All the model data are written according to a ``meta/data'' file format.
882     Each variable is associated with two files with suffix names \textit{.data}
883     and \textit{.meta}. The \textit{.data} file contains the data written in
884     binary form (big\_endian by default). The \textit{.meta} file is a
885     ``header'' file that contains information about the size and the structure
886     of the \textit{.data} file. This way of organizing the output is
887     particularly useful when running multi-processors calculations. The base
888     version of the model includes a few matlab utilities to read output files
889     written in this format. The matlab scripts are located in the directory
890     \textit{utils/matlab} under the root tree. The script \textit{rdmds.m} reads
891     the data. Look at the comments inside the script to see how to use it.
892    
893 adcroft 1.4 Some examples of reading and visualizing some output in {\em Matlab}:
894     \begin{verbatim}
895     % matlab
896     >> H=rdmds('Depth');
897     >> contourf(H');colorbar;
898     >> title('Depth of fluid as used by model');
899    
900     >> eta=rdmds('Eta',10);
901     >> imagesc(eta');axis ij;colorbar;
902     >> title('Surface height at iter=10');
903    
904     >> eta=rdmds('Eta',[0:10:100]);
905     >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
906     \end{verbatim}
907 adcroft 1.1
908     \section{Doing it yourself: customizing the code}
909    
910     When you are ready to run the model in the configuration you want, the
911 edhill 1.17 easiest thing is to use and adapt the setup of the case studies
912     experiment (described previously) that is the closest to your
913     configuration. Then, the amount of setup will be minimized. In this
914     section, we focus on the setup relative to the ``numerical model''
915     part of the code (the setup relative to the ``execution environment''
916     part is covered in the parallel implementation section) and on the
917     variables and parameters that you are likely to change.
918 adcroft 1.1
919 adcroft 1.5 \subsection{Configuration and setup}
920 adcroft 1.4
921 edhill 1.17 The CPP keys relative to the ``numerical model'' part of the code are
922     all defined and set in the file \textit{CPP\_OPTIONS.h }in the
923     directory \textit{ model/inc }or in one of the \textit{code
924     }directories of the case study experiments under
925     \textit{verification.} The model parameters are defined and declared
926     in the file \textit{model/inc/PARAMS.h }and their default values are
927     set in the routine \textit{model/src/set\_defaults.F. }The default
928     values can be modified in the namelist file \textit{data }which needs
929     to be located in the directory where you will run the model. The
930     parameters are initialized in the routine
931     \textit{model/src/ini\_parms.F}. Look at this routine to see in what
932     part of the namelist the parameters are located.
933    
934     In what follows the parameters are grouped into categories related to
935     the computational domain, the equations solved in the model, and the
936     simulation controls.
937 adcroft 1.1
938 adcroft 1.4 \subsection{Computational domain, geometry and time-discretization}
939 adcroft 1.1
940 edhill 1.17 \begin{description}
941     \item[dimensions] \
942    
943     The number of points in the x, y,\textit{\ }and r\textit{\
944     }directions are represented by the variables \textbf{sNx}\textit{,
945     }\textbf{sNy}\textit{, } and \textbf{Nr}\textit{\ }respectively
946     which are declared and set in the file \textit{model/inc/SIZE.h.
947     }(Again, this assumes a mono-processor calculation. For
948     multiprocessor calculations see section on parallel implementation.)
949    
950     \item[grid] \
951    
952     Three different grids are available: cartesian, spherical polar, and
953     curvilinear (including the cubed sphere). The grid is set through
954     the logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{
955     usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{
956     usingCurvilinearGrid}\textit{. }In the case of spherical and
957     curvilinear grids, the southern boundary is defined through the
958     variable \textbf{phiMin} \textit{\ }which corresponds to the
959     latitude of the southern most cell face (in degrees). The resolution
960     along the x and y directions is controlled by the 1D arrays
961     \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters in
962     the case of a cartesian grid, in degrees otherwise). The vertical
963     grid spacing is set through the 1D array \textbf{delz }for the ocean
964     (in meters) or \textbf{delp}\textit{\ }for the atmosphere (in Pa).
965     The variable \textbf{ Ro\_SeaLevel} represents the standard position
966     of Sea-Level in ''R'' coordinate. This is typically set to 0m for
967     the ocean (default value) and 10$ ^{5}$Pa for the atmosphere. For
968     the atmosphere, also set the logical variable \textbf{groundAtK1} to
969     '.\texttt{TRUE}.'. which put the first level (k=1) at the lower
970     boundary (ground).
971    
972     For the cartesian grid case, the Coriolis parameter $f$ is set
973     through the variables \textbf{f0}\textit{\ }and
974     \textbf{beta}\textit{\ }which correspond to the reference Coriolis
975     parameter (in s$^{-1}$) and $\frac{\partial f}{ \partial y}$(in
976     m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ } is set
977     to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the
978     southern edge of the domain.
979    
980     \item[topography - full and partial cells] \
981    
982     The domain bathymetry is read from a file that contains a 2D (x,y)
983     map of depths (in m) for the ocean or pressures (in Pa) for the
984     atmosphere. The file name is represented by the variable
985     \textbf{bathyFile}\textit{. }The file is assumed to contain binary
986     numbers giving the depth (pressure) of the model at each grid cell,
987     ordered with the x coordinate varying fastest. The points are
988     ordered from low coordinate to high coordinate for both axes. The
989     model code applies without modification to enclosed, periodic, and
990     double periodic domains. Periodicity is assumed by default and is
991     suppressed by setting the depths to 0m for the cells at the limits
992     of the computational domain (note: not sure this is the case for the
993     atmosphere). The precision with which to read the binary data is
994     controlled by the integer variable \textbf{readBinaryPrec }which can
995     take the value \texttt{32} (single precision) or \texttt{64} (double
996     precision). See the matlab program \textit{ gendata.m }in the
997     \textit{input }directories under \textit{verification }to see how
998     the bathymetry files are generated for the case study experiments.
999    
1000     To use the partial cell capability, the variable
1001     \textbf{hFacMin}\textit{\ } needs to be set to a value between 0 and
1002     1 (it is set to 1 by default) corresponding to the minimum
1003     fractional size of the cell. For example if the bottom cell is 500m
1004     thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the actual
1005     thickness of the cell (i.e. used in the code) can cover a range of
1006     discrete values 50m apart from 50m to 500m depending on the value of
1007     the bottom depth (in \textbf{bathyFile}) at this point.
1008    
1009     Note that the bottom depths (or pressures) need not coincide with
1010     the models levels as deduced from \textbf{delz}\textit{\
1011     }or\textit{\ }\textbf{delp} \textit{. }The model will interpolate
1012     the numbers in \textbf{bathyFile} \textit{\ }so that they match the
1013     levels obtained from \textbf{delz}\textit{ \ }or\textit{\
1014     }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }
1015    
1016     (Note: the atmospheric case is a bit more complicated than what is
1017     written here I think. To come soon...)
1018    
1019     \item[time-discretization] \
1020    
1021     The time steps are set through the real variables \textbf{deltaTMom}
1022     and \textbf{deltaTtracer} (in s) which represent the time step for
1023     the momentum and tracer equations, respectively. For synchronous
1024     integrations, simply set the two variables to the same value (or you
1025     can prescribe one time step only through the variable
1026     \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set
1027     through the variable \textbf{abEps} (dimensionless). The stagger
1028     baroclinic time stepping can be activated by setting the logical
1029     variable \textbf{staggerTimeStep} to '.\texttt{TRUE}.'.
1030 adcroft 1.1
1031 edhill 1.17 \end{description}
1032 adcroft 1.1
1033    
1034 adcroft 1.4 \subsection{Equation of state}
1035 adcroft 1.1
1036 mlosch 1.13 First, because the model equations are written in terms of
1037     perturbations, a reference thermodynamic state needs to be specified.
1038     This is done through the 1D arrays \textbf{tRef} and \textbf{sRef}.
1039     \textbf{tRef} specifies the reference potential temperature profile
1040     (in $^{o}$C for the ocean and $^{o}$K for the atmosphere) starting
1041     from the level k=1. Similarly, \textbf{sRef} specifies the reference
1042     salinity profile (in ppt) for the ocean or the reference specific
1043     humidity profile (in g/kg) for the atmosphere.
1044    
1045     The form of the equation of state is controlled by the character
1046     variables \textbf{buoyancyRelation} and \textbf{eosType}.
1047     \textbf{buoyancyRelation} is set to '\texttt{OCEANIC}' by default and
1048     needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations.
1049     In this case, \textbf{eosType} must be set to '\texttt{IDEALGAS}'.
1050     For the ocean, two forms of the equation of state are available:
1051     linear (set \textbf{eosType} to '\texttt{LINEAR}') and a polynomial
1052     approximation to the full nonlinear equation ( set
1053     \textbf{eosType}\textit{\ }to '\texttt{POLYNOMIAL}'). In the linear
1054     case, you need to specify the thermal and haline expansion
1055     coefficients represented by the variables \textbf{tAlpha}\textit{\
1056     }(in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For the nonlinear
1057     case, you need to generate a file of polynomial coefficients called
1058     \textit{POLY3.COEFFS}. To do this, use the program
1059     \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is
1060     available in the same directory and you will need to edit the number
1061     and the values of the vertical levels in \textit{knudsen2.f} so that
1062     they match those of your configuration).
1063    
1064     There there are also higher polynomials for the equation of state:
1065     \begin{description}
1066     \item['\texttt{UNESCO}':] The UNESCO equation of state formula of
1067     Fofonoff and Millard \cite{fofonoff83}. This equation of state
1068     assumes in-situ temperature, which is not a model variable; \emph{its use
1069     is therefore discouraged, and it is only listed for completeness}.
1070     \item['\texttt{JMD95Z}':] A modified UNESCO formula by Jackett and
1071     McDougall \cite{jackett95}, which uses the model variable potential
1072     temperature as input. The '\texttt{Z}' indicates that this equation
1073     of state uses a horizontally and temporally constant pressure
1074     $p_{0}=-g\rho_{0}z$.
1075     \item['\texttt{JMD95P}':] A modified UNESCO formula by Jackett and
1076     McDougall \cite{jackett95}, which uses the model variable potential
1077     temperature as input. The '\texttt{P}' indicates that this equation
1078     of state uses the actual hydrostatic pressure of the last time
1079     step. Lagging the pressure in this way requires an additional pickup
1080     file for restarts.
1081     \item['\texttt{MDJWF}':] The new, more accurate and less expensive
1082     equation of state by McDougall et~al. \cite{mcdougall03}. It also
1083     requires lagging the pressure and therefore an additional pickup
1084     file for restarts.
1085     \end{description}
1086     For none of these options an reference profile of temperature or
1087     salinity is required.
1088 adcroft 1.1
1089 adcroft 1.4 \subsection{Momentum equations}
1090 adcroft 1.1
1091     In this section, we only focus for now on the parameters that you are likely
1092     to change, i.e. the ones relative to forcing and dissipation for example.
1093     The details relevant to the vector-invariant form of the equations and the
1094     various advection schemes are not covered for the moment. We assume that you
1095     use the standard form of the momentum equations (i.e. the flux-form) with
1096     the default advection scheme. Also, there are a few logical variables that
1097     allow you to turn on/off various terms in the momentum equation. These
1098     variables are called \textbf{momViscosity, momAdvection, momForcing,
1099     useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%
1100     \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.
1101     Look at the file \textit{model/inc/PARAMS.h }for a precise definition of
1102     these variables.
1103    
1104 edhill 1.17 \begin{description}
1105     \item[initialization] \
1106    
1107     The velocity components are initialized to 0 unless the simulation
1108     is starting from a pickup file (see section on simulation control
1109     parameters).
1110    
1111     \item[forcing] \
1112    
1113     This section only applies to the ocean. You need to generate
1114     wind-stress data into two files \textbf{zonalWindFile}\textit{\ }and
1115     \textbf{ meridWindFile }corresponding to the zonal and meridional
1116     components of the wind stress, respectively (if you want the stress
1117     to be along the direction of only one of the model horizontal axes,
1118     you only need to generate one file). The format of the files is
1119     similar to the bathymetry file. The zonal (meridional) stress data
1120     are assumed to be in Pa and located at U-points (V-points). As for
1121     the bathymetry, the precision with which to read the binary data is
1122     controlled by the variable \textbf{readBinaryPrec}.\textbf{\ } See
1123     the matlab program \textit{gendata.m }in the \textit{input
1124     }directories under \textit{verification }to see how simple
1125     analytical wind forcing data are generated for the case study
1126     experiments.
1127    
1128     There is also the possibility of prescribing time-dependent periodic
1129     forcing. To do this, concatenate the successive time records into a
1130     single file (for each stress component) ordered in a (x, y, t)
1131     fashion and set the following variables:
1132     \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',
1133     \textbf{externForcingPeriod }to the period (in s) of which the
1134     forcing varies (typically 1 month), and \textbf{externForcingCycle
1135     }to the repeat time (in s) of the forcing (typically 1 year -- note:
1136     \textbf{ externForcingCycle }must be a multiple of
1137     \textbf{externForcingPeriod}). With these variables set up, the
1138     model will interpolate the forcing linearly at each iteration.
1139    
1140     \item[dissipation] \
1141    
1142     The lateral eddy viscosity coefficient is specified through the
1143     variable \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The
1144     vertical eddy viscosity coefficient is specified through the
1145     variable \textbf{viscAz }(in m$^{2}$s$ ^{-1}$) for the ocean and
1146     \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$) for the atmosphere.
1147     The vertical diffusive fluxes can be computed implicitly by setting
1148     the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}
1149     .'. In addition, biharmonic mixing can be added as well through the
1150     variable \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a
1151     spherical polar grid, you might also need to set the variable
1152     \textbf{cosPower} which is set to 0 by default and which represents
1153     the power of cosine of latitude to multiply viscosity. Slip or
1154     no-slip conditions at lateral and bottom boundaries are specified
1155     through the logical variables \textbf{no\_slip\_sides}\textit{\ }
1156     and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}',
1157     free-slip boundary conditions are applied. If no-slip boundary
1158     conditions are applied at the bottom, a bottom drag can be applied
1159     as well. Two forms are available: linear (set the variable
1160     \textbf{bottomDragLinear}\textit{\ }in s$ ^{-1}$) and quadratic (set
1161     the variable \textbf{bottomDragQuadratic}\textit{ \ }in m$^{-1}$).
1162    
1163     The Fourier and Shapiro filters are described elsewhere.
1164    
1165     \item[C-D scheme] \
1166    
1167     If you run at a sufficiently coarse resolution, you will need the
1168     C-D scheme for the computation of the Coriolis terms. The
1169     variable\textbf{\ tauCD}, which represents the C-D scheme coupling
1170     timescale (in s) needs to be set.
1171    
1172     \item[calculation of pressure/geopotential] \
1173    
1174     First, to run a non-hydrostatic ocean simulation, set the logical
1175     variable \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure
1176     field is then inverted through a 3D elliptic equation. (Note: this
1177     capability is not available for the atmosphere yet.) By default, a
1178     hydrostatic simulation is assumed and a 2D elliptic equation is used
1179     to invert the pressure field. The parameters controlling the
1180     behaviour of the elliptic solvers are the variables
1181     \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual } for
1182     the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{
1183     cg3dTargetResidual }for the 3D case. You probably won't need to
1184     alter the default values (are we sure of this?).
1185    
1186     For the calculation of the surface pressure (for the ocean) or
1187     surface geopotential (for the atmosphere) you need to set the
1188     logical variables \textbf{rigidLid} and
1189     \textbf{implicitFreeSurface}\textit{\ }(set one to '.
1190     \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how
1191     you want to deal with the ocean upper or atmosphere lower boundary).
1192 adcroft 1.1
1193 edhill 1.17 \end{description}
1194 adcroft 1.1
1195 adcroft 1.4 \subsection{Tracer equations}
1196 adcroft 1.1
1197     This section covers the tracer equations i.e. the potential temperature
1198     equation and the salinity (for the ocean) or specific humidity (for the
1199     atmosphere) equation. As for the momentum equations, we only describe for
1200     now the parameters that you are likely to change. The logical variables
1201 edhill 1.17 \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{
1202 adcroft 1.1 tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off
1203     terms in the temperature equation (same thing for salinity or specific
1204 edhill 1.17 humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{
1205 adcroft 1.1 saltAdvection}\textit{\ }etc). These variables are all assumed here to be
1206     set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a
1207     precise definition.
1208    
1209 edhill 1.17 \begin{description}
1210     \item[initialization] \
1211    
1212     The initial tracer data can be contained in the binary files
1213     \textbf{ hydrogThetaFile }and \textbf{hydrogSaltFile}. These files
1214     should contain 3D data ordered in an (x, y, r) fashion with k=1 as
1215     the first vertical level. If no file names are provided, the
1216     tracers are then initialized with the values of \textbf{tRef }and
1217     \textbf{sRef }mentioned above (in the equation of state section). In
1218     this case, the initial tracer data are uniform in x and y for each
1219     depth level.
1220    
1221     \item[forcing] \
1222    
1223     This part is more relevant for the ocean, the procedure for the
1224     atmosphere not being completely stabilized at the moment.
1225    
1226     A combination of fluxes data and relaxation terms can be used for
1227     driving the tracer equations. \ For potential temperature, heat flux
1228     data (in W/m$ ^{2}$) can be stored in the 2D binary file
1229     \textbf{surfQfile}\textit{. } Alternatively or in addition, the
1230     forcing can be specified through a relaxation term. The SST data to
1231     which the model surface temperatures are restored to are supposed to
1232     be stored in the 2D binary file \textbf{ thetaClimFile}\textit{.
1233     }The corresponding relaxation time scale coefficient is set through
1234     the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The same
1235     procedure applies for salinity with the variable names
1236     \textbf{EmPmRfile }\textit{, }\textbf{saltClimFile}\textit{, }and
1237     \textbf{tauSaltClimRelax} \textit{\ }for freshwater flux (in m/s)
1238     and surface salinity (in ppt) data files and relaxation time scale
1239     coefficient (in s), respectively. Also for salinity, if the CPP key
1240     \textbf{USE\_NATURAL\_BCS} is turned on, natural boundary conditions
1241     are applied i.e. when computing the surface salinity tendency, the
1242     freshwater flux is multiplied by the model surface salinity instead
1243     of a constant salinity value.
1244    
1245     As for the other input files, the precision with which to read the
1246     data is controlled by the variable \textbf{readBinaryPrec}.
1247     Time-dependent, periodic forcing can be applied as well following
1248     the same procedure used for the wind forcing data (see above).
1249    
1250     \item[dissipation] \
1251    
1252     Lateral eddy diffusivities for temperature and salinity/specific
1253     humidity are specified through the variables \textbf{diffKhT }and
1254     \textbf{diffKhS } (in m$^{2}$/s). Vertical eddy diffusivities are
1255     specified through the variables \textbf{diffKzT }and \textbf{diffKzS
1256     }(in m$^{2}$/s) for the ocean and \textbf{diffKpT }and
1257     \textbf{diffKpS }(in Pa$^{2}$/s) for the atmosphere. The vertical
1258     diffusive fluxes can be computed implicitly by setting the logical
1259     variable \textbf{implicitDiffusion }to '.\texttt{TRUE} .'. In
1260     addition, biharmonic diffusivities can be specified as well through
1261     the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in
1262     m$^{4}$/s). Note that the cosine power scaling (specified through
1263     \textbf{cosPower }- see the momentum equations section) is applied
1264     to the tracer diffusivities (Laplacian and biharmonic) as well. The
1265     Gent and McWilliams parameterization for oceanic tracers is
1266     described in the package section. Finally, note that tracers can be
1267     also subject to Fourier and Shapiro filtering (see the corresponding
1268     section on these filters).
1269    
1270     \item[ocean convection] \
1271    
1272     Two options are available to parameterize ocean convection: one is
1273     to use the convective adjustment scheme. In this case, you need to
1274     set the variable \textbf{cadjFreq}, which represents the frequency
1275     (in s) with which the adjustment algorithm is called, to a non-zero
1276     value (if set to a negative value by the user, the model will set it
1277     to the tracer time step). The other option is to parameterize
1278     convection with implicit vertical diffusion. To do this, set the
1279     logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE} .'
1280     and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s)
1281     you wish the tracer vertical diffusivities to have when mixing
1282     tracers vertically due to static instabilities. Note that
1283     \textbf{cadjFreq }and \textbf{ivdc\_kappa }can not both have
1284     non-zero value.
1285 adcroft 1.1
1286 edhill 1.17 \end{description}
1287 adcroft 1.1
1288 adcroft 1.4 \subsection{Simulation controls}
1289 adcroft 1.1
1290     The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)
1291     which determines the IO frequencies and is used in tagging output.
1292     Typically, you will set it to the tracer time step for accelerated runs
1293     (otherwise it is simply set to the default time step \textbf{deltaT}).
1294     Frequency of checkpointing and dumping of the model state are referenced to
1295     this clock (see below).
1296    
1297 edhill 1.17 \begin{description}
1298     \item[run duration] \
1299    
1300     The beginning of a simulation is set by specifying a start time (in
1301     s) through the real variable \textbf{startTime }or by specifying an
1302     initial iteration number through the integer variable
1303     \textbf{nIter0}. If these variables are set to nonzero values, the
1304     model will look for a ''pickup'' file \textit{pickup.0000nIter0 }to
1305     restart the integration\textit{. }The end of a simulation is set
1306     through the real variable \textbf{endTime }(in s). Alternatively,
1307     you can specify instead the number of time steps to execute through
1308     the integer variable \textbf{nTimeSteps}.
1309    
1310     \item[frequency of output] \
1311    
1312     Real variables defining frequencies (in s) with which output files
1313     are written on disk need to be set up. \textbf{dumpFreq }controls
1314     the frequency with which the instantaneous state of the model is
1315     saved. \textbf{chkPtFreq } and \textbf{pchkPtFreq }control the
1316     output frequency of rolling and permanent checkpoint files,
1317     respectively. See section 1.5.1 Output files for the definition of
1318     model state and checkpoint files. In addition, time-averaged fields
1319     can be written out by setting the variable \textbf{taveFreq} (in s).
1320     The precision with which to write the binary data is controlled by
1321     the integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32}
1322     or \texttt{ 64}).
1323 adcroft 1.1
1324 edhill 1.17 \end{description}
1325 adcroft 1.1
1326 mlosch 1.13
1327     %%% Local Variables:
1328     %%% mode: latex
1329     %%% TeX-master: t
1330     %%% End:

  ViewVC Help
Powered by ViewVC 1.1.22