1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
\section{Example: Centennial Time Scale Sensitivities} |
\section{Centennial Time Scale Tracer Injection} |
5 |
|
\label{sect:eg-simple-tracer} |
6 |
|
|
7 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
8 |
|
|
49 |
in the model surface layer. |
in the model surface layer. |
50 |
|
|
51 |
\begin{eqnarray} |
\begin{eqnarray} |
52 |
\label{EQ:global_forcing} |
\label{EQ:eg-simple-tracer-global_forcing} |
53 |
\label{EQ:global_forcing_fu} |
\label{EQ:eg-simple-tracer-global_forcing_fu} |
54 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
55 |
\\ |
\\ |
56 |
\label{EQ:global_forcing_fv} |
\label{EQ:eg-simple-tracer-global_forcing_fv} |
57 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
58 |
\\ |
\\ |
59 |
\label{EQ:global_forcing_ft} |
\label{EQ:eg-simple-tracer-global_forcing_ft} |
60 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
61 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
62 |
\\ |
\\ |
63 |
\label{EQ:global_forcing_fs} |
\label{EQ:eg-simple-tracer-global_forcing_fs} |
64 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
65 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
66 |
\end{eqnarray} |
\end{eqnarray} |
125 |
|
|
126 |
Wind-stress momentum inputs are added to the momentum equations for both |
Wind-stress momentum inputs are added to the momentum equations for both |
127 |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
128 |
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
(\ref{EQ:eg-simple-tracer-global_forcing_fu}) and (\ref{EQ:eg-simple-tracer-global_forcing_fv}). |
129 |
Thermodynamic forcing inputs are added to the equations for |
Thermodynamic forcing inputs are added to the equations for |
130 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
potential temperature, $\theta$, and salinity, $S$, according to equations |
131 |
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
(\ref{EQ:eg-simple-tracer-global_forcing_ft}) and (\ref{EQ:eg-simple-tracer-global_forcing_fs}). |
132 |
This produces a set of equations solved in this configuration as follows: |
This produces a set of equations solved in this configuration as follows: |
133 |
% {\fracktur} |
% {\fracktur} |
134 |
|
|
135 |
|
|
136 |
\begin{eqnarray} |
\begin{eqnarray} |
137 |
\label{EQ:model_equations} |
\label{EQ:eg-simple-tracer-model_equations} |
138 |
\frac{Du}{Dt} - fv + |
\frac{Du}{Dt} - fv + |
139 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
140 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
180 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
181 |
|
|
182 |
\begin{eqnarray} |
\begin{eqnarray} |
183 |
\label{EQ:munk_layer} |
\label{EQ:eg-simple-tracer-munk_layer} |
184 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
185 |
\end{eqnarray} |
\end{eqnarray} |
186 |
|
|
194 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
195 |
|
|
196 |
\begin{eqnarray} |
\begin{eqnarray} |
197 |
\label{EQ:laplacian_stability} |
\label{EQ:eg-simple-tracer-laplacian_stability} |
198 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
199 |
\end{eqnarray} |
\end{eqnarray} |
200 |
|
|
206 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
207 |
|
|
208 |
\begin{eqnarray} |
\begin{eqnarray} |
209 |
\label{EQ:laplacian_stability_z} |
\label{EQ:eg-simple-tracer-laplacian_stability_z} |
210 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
211 |
\end{eqnarray} |
\end{eqnarray} |
212 |
|
|
220 |
\cite{adcroft:95} |
\cite{adcroft:95} |
221 |
|
|
222 |
\begin{eqnarray} |
\begin{eqnarray} |
223 |
\label{EQ:inertial_stability} |
\label{EQ:eg-simple-tracer-inertial_stability} |
224 |
S_{i} = f^{2} {\delta t}^2 |
S_{i} = f^{2} {\delta t}^2 |
225 |
\end{eqnarray} |
\end{eqnarray} |
226 |
|
|
233 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
234 |
|
|
235 |
\begin{eqnarray} |
\begin{eqnarray} |
236 |
\label{EQ:cfl_stability} |
\label{EQ:eg-simple-tracer-cfl_stability} |
237 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
238 |
\end{eqnarray} |
\end{eqnarray} |
239 |
|
|
245 |
\cite{adcroft:95} |
\cite{adcroft:95} |
246 |
|
|
247 |
\begin{eqnarray} |
\begin{eqnarray} |
248 |
\label{EQ:cfl_stability} |
\label{EQ:eg-simple-tracer-igw_stability} |
249 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
250 |
\end{eqnarray} |
\end{eqnarray} |
251 |
|
|