1 |
% $Header: /u/gcmpack/manual/part3/case_studies/carbon_outgassing_sensitivity/co2sens.tex,v 1.7 2002/05/16 15:54:37 adcroft Exp $ |
2 |
% $Name: $ |
3 |
|
4 |
\section{Centennial Time Scale Tracer Injection} |
5 |
\label{www:tutorials} |
6 |
\label{sect:eg-simple-tracer} |
7 |
\begin{rawhtml} |
8 |
<!-- CMIREDIR:eg-simple-tracer: --> |
9 |
\end{rawhtml} |
10 |
|
11 |
\bodytext{bgcolor="#FFFFFFFF"} |
12 |
|
13 |
%\begin{center} |
14 |
%{\Large \bf Using MITgcm to Look at Centennial Time Scale |
15 |
%Sensitivities} |
16 |
% |
17 |
%\vspace*{4mm} |
18 |
% |
19 |
%\vspace*{3mm} |
20 |
%{\large May 2001} |
21 |
%\end{center} |
22 |
|
23 |
\subsection{Introduction} |
24 |
\label{www:tutorials} |
25 |
|
26 |
This document describes the fourth example MITgcm experiment. |
27 |
This example illustrates the use of |
28 |
the MITgcm to perform sensitivity analysis in a |
29 |
large scale ocean circulation simulation. |
30 |
|
31 |
\subsection{Overview} |
32 |
\label{www:tutorials} |
33 |
|
34 |
This example experiment demonstrates using the MITgcm to simulate |
35 |
the planetary ocean circulation. The simulation is configured |
36 |
with realistic geography and bathymetry on a |
37 |
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
38 |
Twenty vertical layers are used in the vertical, ranging in thickness |
39 |
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
40 |
giving a maximum model depth of $6\,{\rm km}$. |
41 |
At this resolution, the configuration |
42 |
can be integrated forward for thousands of years on a single |
43 |
processor desktop computer. |
44 |
\\ |
45 |
|
46 |
The model is forced with climatological wind stress data and surface |
47 |
flux data from Da Silva \cite{DaSilva94}. Climatological data |
48 |
from Levitus \cite{Levitus94} is used to initialize the model hydrography. |
49 |
Levitus data is also used throughout the calculation |
50 |
to derive air-sea fluxes of heat at the ocean surface. |
51 |
These fluxes are combined with climatological estimates of |
52 |
surface heat flux and fresh water, resulting in a mixed boundary |
53 |
condition of the style described in Haney \cite{Haney}. |
54 |
Altogether, this yields the following forcing applied |
55 |
in the model surface layer. |
56 |
|
57 |
\begin{eqnarray} |
58 |
\label{EQ:eg-simple-tracer-global_forcing} |
59 |
\label{EQ:eg-simple-tracer-global_forcing_fu} |
60 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
61 |
\\ |
62 |
\label{EQ:eg-simple-tracer-global_forcing_fv} |
63 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
64 |
\\ |
65 |
\label{EQ:eg-simple-tracer-global_forcing_ft} |
66 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
67 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
68 |
\\ |
69 |
\label{EQ:eg-simple-tracer-global_forcing_fs} |
70 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
71 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
72 |
\end{eqnarray} |
73 |
|
74 |
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
75 |
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
76 |
momentum and in the potential temperature and salinity |
77 |
equations respectively. |
78 |
The term $\Delta z_{s}$ represents the top ocean layer thickness. |
79 |
It is used in conjunction with the reference density, $\rho_{0}$ |
80 |
(here set to $999.8\,{\rm kg\,m^{-3}}$), the |
81 |
reference salinity, $S_{0}$ (here set to 35ppt), |
82 |
and a specific heat capacity $C_{p}$ to convert |
83 |
wind-stress fluxes given in ${\rm N}\,m^{-2}$, |
84 |
\\ |
85 |
|
86 |
|
87 |
The configuration is illustrated in figure \ref{simulation_config}. |
88 |
|
89 |
|
90 |
\subsection{Discrete Numerical Configuration} |
91 |
\label{www:tutorials} |
92 |
|
93 |
|
94 |
The model is configured in hydrostatic form. The domain is discretised with |
95 |
a uniform grid spacing in latitude and longitude of |
96 |
$\Delta x=\Delta y=4^{\circ}$, so |
97 |
that there are ninety grid cells in the $x$ and forty in the |
98 |
$y$ direction (Arctic polar regions are not |
99 |
included in this experiment). Vertically the |
100 |
model is configured with twenty layers with the following thicknesses |
101 |
$\Delta z_{1} = 50\,{\rm m},\, |
102 |
\Delta z_{2} = 50\,{\rm m},\, |
103 |
\Delta z_{3} = 55\,{\rm m},\, |
104 |
\Delta z_{4} = 60\,{\rm m},\, |
105 |
\Delta z_{5} = 65\,{\rm m},\, |
106 |
$ |
107 |
$ |
108 |
\Delta z_{6}~=~70\,{\rm m},\, |
109 |
\Delta z_{7}~=~80\,{\rm m},\, |
110 |
\Delta z_{8}~=95\,{\rm m},\, |
111 |
\Delta z_{9}=120\,{\rm m},\, |
112 |
\Delta z_{10}=155\,{\rm m},\, |
113 |
$ |
114 |
$ |
115 |
\Delta z_{11}=200\,{\rm m},\, |
116 |
\Delta z_{12}=260\,{\rm m},\, |
117 |
\Delta z_{13}=320\,{\rm m},\, |
118 |
\Delta z_{14}=400\,{\rm m},\, |
119 |
\Delta z_{15}=480\,{\rm m},\, |
120 |
$ |
121 |
$ |
122 |
\Delta z_{16}=570\,{\rm m},\, |
123 |
\Delta z_{17}=655\,{\rm m},\, |
124 |
\Delta z_{18}=725\,{\rm m},\, |
125 |
\Delta z_{19}=775\,{\rm m},\, |
126 |
\Delta z_{20}=815\,{\rm m} |
127 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
128 |
The implicit free surface form of the pressure equation described in Marshall et. al |
129 |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
130 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
131 |
\\ |
132 |
|
133 |
Wind-stress momentum inputs are added to the momentum equations for both |
134 |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
135 |
(\ref{EQ:eg-simple-tracer-global_forcing_fu}) and (\ref{EQ:eg-simple-tracer-global_forcing_fv}). |
136 |
Thermodynamic forcing inputs are added to the equations for |
137 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
138 |
(\ref{EQ:eg-simple-tracer-global_forcing_ft}) and (\ref{EQ:eg-simple-tracer-global_forcing_fs}). |
139 |
This produces a set of equations solved in this configuration as follows: |
140 |
% {\fracktur} |
141 |
|
142 |
|
143 |
\begin{eqnarray} |
144 |
\label{EQ:eg-simple-tracer-model_equations} |
145 |
\frac{Du}{Dt} - fv + |
146 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
147 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
148 |
& = & |
149 |
{\cal F}_{u} |
150 |
\\ |
151 |
\frac{Dv}{Dt} + fu + |
152 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
153 |
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
154 |
& = & |
155 |
{\cal F}_{v} |
156 |
\\ |
157 |
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
158 |
&=& |
159 |
0 |
160 |
\\ |
161 |
\frac{D\theta}{Dt} - |
162 |
K_{h}\nabla_{h}^2\theta - \Gamma(K_{z})\frac{\partial^{2}\theta}{\partial z^{2}} |
163 |
& = & |
164 |
{\cal F}_{\theta} |
165 |
\\ |
166 |
\frac{D s}{Dt} - |
167 |
K_{h}\nabla_{h}^2 s - \Gamma(K_{z})\frac{\partial^{2} s}{\partial z^{2}} |
168 |
& = & |
169 |
{\cal F}_{s} |
170 |
\\ |
171 |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
172 |
\\ |
173 |
\end{eqnarray} |
174 |
|
175 |
\noindent where $u$ and $v$ are the $x$ and $y$ components of the |
176 |
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and |
177 |
interior model levels respectively. As described in |
178 |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
179 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
180 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
181 |
elevation $\eta$ and the hydrostatic pressure. |
182 |
\\ |
183 |
|
184 |
\subsubsection{Numerical Stability Criteria} |
185 |
\label{www:tutorials} |
186 |
|
187 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
188 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
189 |
|
190 |
\begin{eqnarray} |
191 |
\label{EQ:eg-simple-tracer-munk_layer} |
192 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
193 |
\end{eqnarray} |
194 |
|
195 |
\noindent of $\approx 100$km. This is greater than the model |
196 |
resolution in mid-latitudes $\Delta x$, ensuring that the frictional |
197 |
boundary layer is well resolved. |
198 |
\\ |
199 |
|
200 |
\noindent The model is stepped forward with a |
201 |
time step $\delta t=1200$secs. With this time step the stability |
202 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
203 |
|
204 |
\begin{eqnarray} |
205 |
\label{EQ:eg-simple-tracer-laplacian_stability} |
206 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
207 |
\end{eqnarray} |
208 |
|
209 |
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
210 |
for stability. |
211 |
\\ |
212 |
|
213 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
214 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
215 |
|
216 |
\begin{eqnarray} |
217 |
\label{EQ:eg-simple-tracer-laplacian_stability_z} |
218 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
219 |
\end{eqnarray} |
220 |
|
221 |
\noindent evaluates to $4.8 \times 10^{-5}$ which is again well below |
222 |
the upper limit. |
223 |
The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$) |
224 |
and vertical ($K_{z}$) diffusion coefficients for temperature respectively. |
225 |
\\ |
226 |
|
227 |
\noindent The numerical stability for inertial oscillations |
228 |
\cite{adcroft:95} |
229 |
|
230 |
\begin{eqnarray} |
231 |
\label{EQ:eg-simple-tracer-inertial_stability} |
232 |
S_{i} = f^{2} {\delta t}^2 |
233 |
\end{eqnarray} |
234 |
|
235 |
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper |
236 |
limit for stability. |
237 |
\\ |
238 |
|
239 |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
240 |
horizontal flow |
241 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
242 |
|
243 |
\begin{eqnarray} |
244 |
\label{EQ:eg-simple-tracer-cfl_stability} |
245 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
246 |
\end{eqnarray} |
247 |
|
248 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
249 |
limit of 0.5. |
250 |
\\ |
251 |
|
252 |
\noindent The stability parameter for internal gravity waves |
253 |
\cite{adcroft:95} |
254 |
|
255 |
\begin{eqnarray} |
256 |
\label{EQ:eg-simple-tracer-igw_stability} |
257 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
258 |
\end{eqnarray} |
259 |
|
260 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear |
261 |
stability limit of 0.25. |
262 |
|
263 |
\subsection{Code Configuration} |
264 |
\label{www:tutorials} |
265 |
\label{SEC:code_config} |
266 |
|
267 |
The model configuration for this experiment resides under the |
268 |
directory {\it verification/exp1/}. The experiment files |
269 |
\begin{itemize} |
270 |
\item {\it input/data} |
271 |
\item {\it input/data.pkg} |
272 |
\item {\it input/eedata}, |
273 |
\item {\it input/windx.sin\_y}, |
274 |
\item {\it input/topog.box}, |
275 |
\item {\it code/CPP\_EEOPTIONS.h} |
276 |
\item {\it code/CPP\_OPTIONS.h}, |
277 |
\item {\it code/SIZE.h}. |
278 |
\end{itemize} |
279 |
contain the code customizations and parameter settings for this |
280 |
experiments. Below we describe the customizations |
281 |
to these files associated with this experiment. |
282 |
|
283 |
\subsubsection{File {\it input/data}} |
284 |
\label{www:tutorials} |
285 |
|
286 |
This file, reproduced completely below, specifies the main parameters |
287 |
for the experiment. The parameters that are significant for this configuration |
288 |
are |
289 |
|
290 |
\begin{itemize} |
291 |
|
292 |
\item Line 4, |
293 |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
294 |
this line sets |
295 |
the initial and reference values of potential temperature at each model |
296 |
level in units of $^{\circ}$C. |
297 |
The entries are ordered from surface to depth. For each |
298 |
depth level the initial and reference profiles will be uniform in |
299 |
$x$ and $y$. |
300 |
|
301 |
\fbox{ |
302 |
\begin{minipage}{5.0in} |
303 |
{\it S/R INI\_THETA}({\it ini\_theta.F}) |
304 |
\end{minipage} |
305 |
} |
306 |
|
307 |
|
308 |
\item Line 6, |
309 |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
310 |
this line sets the vertical Laplacian dissipation coefficient to |
311 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
312 |
for this operator are specified later. This variable is copied into |
313 |
model general vertical coordinate variable {\bf viscAr}. |
314 |
|
315 |
\fbox{ |
316 |
\begin{minipage}{5.0in} |
317 |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
318 |
\end{minipage} |
319 |
} |
320 |
|
321 |
\item Line 7, |
322 |
\begin{verbatim} |
323 |
viscAh=4.E2, |
324 |
\end{verbatim} |
325 |
this line sets the horizontal Laplacian frictional dissipation coefficient to |
326 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
327 |
for this operator are specified later. |
328 |
|
329 |
\item Lines 8, |
330 |
\begin{verbatim} |
331 |
no_slip_sides=.FALSE. |
332 |
\end{verbatim} |
333 |
this line selects a free-slip lateral boundary condition for |
334 |
the horizontal Laplacian friction operator |
335 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
336 |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
337 |
|
338 |
\item Lines 9, |
339 |
\begin{verbatim} |
340 |
no_slip_bottom=.TRUE. |
341 |
\end{verbatim} |
342 |
this line selects a no-slip boundary condition for bottom |
343 |
boundary condition in the vertical Laplacian friction operator |
344 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
345 |
|
346 |
\item Line 10, |
347 |
\begin{verbatim} |
348 |
diffKhT=4.E2, |
349 |
\end{verbatim} |
350 |
this line sets the horizontal diffusion coefficient for temperature |
351 |
to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
352 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
353 |
all boundaries. |
354 |
|
355 |
\item Line 11, |
356 |
\begin{verbatim} |
357 |
diffKzT=1.E-2, |
358 |
\end{verbatim} |
359 |
this line sets the vertical diffusion coefficient for temperature |
360 |
to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
361 |
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
362 |
|
363 |
\item Line 13, |
364 |
\begin{verbatim} |
365 |
tAlpha=2.E-4, |
366 |
\end{verbatim} |
367 |
This line sets the thermal expansion coefficient for the fluid |
368 |
to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ |
369 |
|
370 |
\fbox{ |
371 |
\begin{minipage}{5.0in} |
372 |
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
373 |
\end{minipage} |
374 |
} |
375 |
|
376 |
\item Line 18, |
377 |
\begin{verbatim} |
378 |
eosType='LINEAR' |
379 |
\end{verbatim} |
380 |
This line selects the linear form of the equation of state. |
381 |
|
382 |
\fbox{ |
383 |
\begin{minipage}{5.0in} |
384 |
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
385 |
\end{minipage} |
386 |
} |
387 |
|
388 |
|
389 |
|
390 |
\item Line 40, |
391 |
\begin{verbatim} |
392 |
usingSphericalPolarGrid=.TRUE., |
393 |
\end{verbatim} |
394 |
This line requests that the simulation be performed in a |
395 |
spherical polar coordinate system. It affects the interpretation of |
396 |
grid input parameters, for example {\bf delX} and {\bf delY} and |
397 |
causes the grid generation routines to initialize an internal grid based |
398 |
on spherical polar geometry. |
399 |
|
400 |
\fbox{ |
401 |
\begin{minipage}{5.0in} |
402 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
403 |
\end{minipage} |
404 |
} |
405 |
|
406 |
\item Line 41, |
407 |
\begin{verbatim} |
408 |
phiMin=0., |
409 |
\end{verbatim} |
410 |
This line sets the southern boundary of the modeled |
411 |
domain to $0^{\circ}$ latitude. This value affects both the |
412 |
generation of the locally orthogonal grid that the model |
413 |
uses internally and affects the initialization of the coriolis force. |
414 |
Note - it is not required to set |
415 |
a longitude boundary, since the absolute longitude does |
416 |
not alter the kernel equation discretisation. |
417 |
|
418 |
\item Line 42, |
419 |
\begin{verbatim} |
420 |
delX=60*1., |
421 |
\end{verbatim} |
422 |
This line sets the horizontal grid spacing between each y-coordinate line |
423 |
in the discrete grid to $1^{\circ}$ in longitude. |
424 |
|
425 |
\item Line 43, |
426 |
\begin{verbatim} |
427 |
delY=60*1., |
428 |
\end{verbatim} |
429 |
This line sets the horizontal grid spacing between each y-coordinate line |
430 |
in the discrete grid to $1^{\circ}$ in latitude. |
431 |
|
432 |
\item Line 44, |
433 |
\begin{verbatim} |
434 |
delZ=500.,500.,500.,500., |
435 |
\end{verbatim} |
436 |
This line sets the vertical grid spacing between each z-coordinate line |
437 |
in the discrete grid to $500\,{\rm m}$, so that the total model depth |
438 |
is $2\,{\rm km}$. The variable {\bf delZ} is copied into the internal |
439 |
model coordinate variable {\bf delR} |
440 |
|
441 |
\fbox{ |
442 |
\begin{minipage}{5.0in} |
443 |
{\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) |
444 |
\end{minipage} |
445 |
} |
446 |
|
447 |
\item Line 47, |
448 |
\begin{verbatim} |
449 |
bathyFile='topog.box' |
450 |
\end{verbatim} |
451 |
This line specifies the name of the file from which the domain |
452 |
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
453 |
depths. This file is assumed to contain 64-bit binary numbers |
454 |
giving the depth of the model at each grid cell, ordered with the x |
455 |
coordinate varying fastest. The points are ordered from low coordinate |
456 |
to high coordinate for both axes. The units and orientation of the |
457 |
depths in this file are the same as used in the MITgcm code. In this |
458 |
experiment, a depth of $0m$ indicates a solid wall and a depth |
459 |
of $-2000m$ indicates open ocean. The matlab program |
460 |
{\it input/gendata.m} shows an example of how to generate a |
461 |
bathymetry file. |
462 |
|
463 |
|
464 |
\item Line 50, |
465 |
\begin{verbatim} |
466 |
zonalWindFile='windx.sin_y' |
467 |
\end{verbatim} |
468 |
This line specifies the name of the file from which the x-direction |
469 |
surface wind stress is read. This file is also a two-dimensional |
470 |
($x,y$) map and is enumerated and formatted in the same manner as the |
471 |
bathymetry file. The matlab program {\it input/gendata.m} includes example |
472 |
code to generate a valid |
473 |
{\bf zonalWindFile} |
474 |
file. |
475 |
|
476 |
\end{itemize} |
477 |
|
478 |
\noindent other lines in the file {\it input/data} are standard values |
479 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
480 |
notes. |
481 |
|
482 |
\begin{small} |
483 |
% \input{part3/case_studies/carbon_outgassing_sensitivity/input/data} |
484 |
\end{small} |
485 |
|
486 |
\subsubsection{File {\it input/data.pkg}} |
487 |
\label{www:tutorials} |
488 |
|
489 |
This file uses standard default values and does not contain |
490 |
customizations for this experiment. |
491 |
|
492 |
\subsubsection{File {\it input/eedata}} |
493 |
\label{www:tutorials} |
494 |
|
495 |
This file uses standard default values and does not contain |
496 |
customizations for this experiment. |
497 |
|
498 |
\subsubsection{File {\it input/windx.sin\_y}} |
499 |
\label{www:tutorials} |
500 |
|
501 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
502 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
503 |
Although $\tau_{x}$ is only a function of $y$n in this experiment |
504 |
this file must still define a complete two-dimensional map in order |
505 |
to be compatible with the standard code for loading forcing fields |
506 |
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
507 |
code for creating the {\it input/windx.sin\_y} file. |
508 |
|
509 |
\subsubsection{File {\it input/topog.box}} |
510 |
\label{www:tutorials} |
511 |
|
512 |
|
513 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
514 |
map of depth values. For this experiment values are either |
515 |
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
516 |
ocean. The file contains a raw binary stream of data that is enumerated |
517 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
518 |
The included matlab program {\it input/gendata.m} gives a complete |
519 |
code for creating the {\it input/topog.box} file. |
520 |
|
521 |
\subsubsection{File {\it code/SIZE.h}} |
522 |
\label{www:tutorials} |
523 |
|
524 |
Two lines are customized in this file for the current experiment |
525 |
|
526 |
\begin{itemize} |
527 |
|
528 |
\item Line 39, |
529 |
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
530 |
the lateral domain extent in grid points for the |
531 |
axis aligned with the x-coordinate. |
532 |
|
533 |
\item Line 40, |
534 |
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
535 |
the lateral domain extent in grid points for the |
536 |
axis aligned with the y-coordinate. |
537 |
|
538 |
\item Line 49, |
539 |
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
540 |
the vertical domain extent in grid points. |
541 |
|
542 |
\end{itemize} |
543 |
|
544 |
\begin{small} |
545 |
% \include{code/SIZE.h} |
546 |
\end{small} |
547 |
|
548 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
549 |
\label{www:tutorials} |
550 |
|
551 |
This file uses standard default values and does not contain |
552 |
customizations for this experiment. |
553 |
|
554 |
|
555 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
556 |
\label{www:tutorials} |
557 |
|
558 |
This file uses standard default values and does not contain |
559 |
customizations for this experiment. |
560 |
|
561 |
\subsubsection{Other Files } |
562 |
\label{www:tutorials} |
563 |
|
564 |
Other files relevant to this experiment are |
565 |
\begin{itemize} |
566 |
\item {\it model/src/ini\_cori.F}. This file initializes the model |
567 |
coriolis variables {\bf fCorU}. |
568 |
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
569 |
\item {\it model/src/ini\_parms.F}, |
570 |
\item {\it input/windx.sin\_y}, |
571 |
\end{itemize} |
572 |
contain the code customizations and parameter settings for this |
573 |
experiments. Below we describe the customizations |
574 |
to these files associated with this experiment. |