1 |
% $Header: /u/gcmpack/mitgcmdoc/part3/case_studies/carbon_outgassing_sensitivity/co2sens.tex,v 1.6 2002/02/28 19:32:19 cnh Exp $ |
2 |
% $Name: $ |
3 |
|
4 |
\section{Centennial Time Scale Tracer Injection} |
5 |
\label{www:tutorials} |
6 |
\label{sect:eg-simple-tracer} |
7 |
|
8 |
\bodytext{bgcolor="#FFFFFFFF"} |
9 |
|
10 |
%\begin{center} |
11 |
%{\Large \bf Using MITgcm to Look at Centennial Time Scale |
12 |
%Sensitivities} |
13 |
% |
14 |
%\vspace*{4mm} |
15 |
% |
16 |
%\vspace*{3mm} |
17 |
%{\large May 2001} |
18 |
%\end{center} |
19 |
|
20 |
\subsection{Introduction} |
21 |
\label{www:tutorials} |
22 |
|
23 |
This document describes the fourth example MITgcm experiment. |
24 |
This example illustrates the use of |
25 |
the MITgcm to perform sensitivity analysis in a |
26 |
large scale ocean circulation simulation. |
27 |
|
28 |
\subsection{Overview} |
29 |
\label{www:tutorials} |
30 |
|
31 |
This example experiment demonstrates using the MITgcm to simulate |
32 |
the planetary ocean circulation. The simulation is configured |
33 |
with realistic geography and bathymetry on a |
34 |
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
35 |
Twenty vertical layers are used in the vertical, ranging in thickness |
36 |
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
37 |
giving a maximum model depth of $6\,{\rm km}$. |
38 |
At this resolution, the configuration |
39 |
can be integrated forward for thousands of years on a single |
40 |
processor desktop computer. |
41 |
\\ |
42 |
|
43 |
The model is forced with climatological wind stress data and surface |
44 |
flux data from Da Silva \cite{DaSilva94}. Climatological data |
45 |
from Levitus \cite{Levitus94} is used to initialize the model hydrography. |
46 |
Levitus data is also used throughout the calculation |
47 |
to derive air-sea fluxes of heat at the ocean surface. |
48 |
These fluxes are combined with climatological estimates of |
49 |
surface heat flux and fresh water, resulting in a mixed boundary |
50 |
condition of the style described in Haney \cite{Haney}. |
51 |
Altogether, this yields the following forcing applied |
52 |
in the model surface layer. |
53 |
|
54 |
\begin{eqnarray} |
55 |
\label{EQ:eg-simple-tracer-global_forcing} |
56 |
\label{EQ:eg-simple-tracer-global_forcing_fu} |
57 |
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
58 |
\\ |
59 |
\label{EQ:eg-simple-tracer-global_forcing_fv} |
60 |
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
61 |
\\ |
62 |
\label{EQ:eg-simple-tracer-global_forcing_ft} |
63 |
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
64 |
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
65 |
\\ |
66 |
\label{EQ:eg-simple-tracer-global_forcing_fs} |
67 |
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
68 |
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
69 |
\end{eqnarray} |
70 |
|
71 |
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
72 |
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
73 |
momentum and in the potential temperature and salinity |
74 |
equations respectively. |
75 |
The term $\Delta z_{s}$ represents the top ocean layer thickness. |
76 |
It is used in conjunction with the reference density, $\rho_{0}$ |
77 |
(here set to $999.8\,{\rm kg\,m^{-3}}$), the |
78 |
reference salinity, $S_{0}$ (here set to 35ppt), |
79 |
and a specific heat capacity $C_{p}$ to convert |
80 |
wind-stress fluxes given in ${\rm N}\,m^{-2}$, |
81 |
\\ |
82 |
|
83 |
|
84 |
The configuration is illustrated in figure \ref{simulation_config}. |
85 |
|
86 |
|
87 |
\subsection{Discrete Numerical Configuration} |
88 |
\label{www:tutorials} |
89 |
|
90 |
|
91 |
The model is configured in hydrostatic form. The domain is discretised with |
92 |
a uniform grid spacing in latitude and longitude of |
93 |
$\Delta x=\Delta y=4^{\circ}$, so |
94 |
that there are ninety grid cells in the $x$ and forty in the |
95 |
$y$ direction (Arctic polar regions are not |
96 |
included in this experiment). Vertically the |
97 |
model is configured with twenty layers with the following thicknesses |
98 |
$\Delta z_{1} = 50\,{\rm m},\, |
99 |
\Delta z_{2} = 50\,{\rm m},\, |
100 |
\Delta z_{3} = 55\,{\rm m},\, |
101 |
\Delta z_{4} = 60\,{\rm m},\, |
102 |
\Delta z_{5} = 65\,{\rm m},\, |
103 |
$ |
104 |
$ |
105 |
\Delta z_{6}~=~70\,{\rm m},\, |
106 |
\Delta z_{7}~=~80\,{\rm m},\, |
107 |
\Delta z_{8}~=95\,{\rm m},\, |
108 |
\Delta z_{9}=120\,{\rm m},\, |
109 |
\Delta z_{10}=155\,{\rm m},\, |
110 |
$ |
111 |
$ |
112 |
\Delta z_{11}=200\,{\rm m},\, |
113 |
\Delta z_{12}=260\,{\rm m},\, |
114 |
\Delta z_{13}=320\,{\rm m},\, |
115 |
\Delta z_{14}=400\,{\rm m},\, |
116 |
\Delta z_{15}=480\,{\rm m},\, |
117 |
$ |
118 |
$ |
119 |
\Delta z_{16}=570\,{\rm m},\, |
120 |
\Delta z_{17}=655\,{\rm m},\, |
121 |
\Delta z_{18}=725\,{\rm m},\, |
122 |
\Delta z_{19}=775\,{\rm m},\, |
123 |
\Delta z_{20}=815\,{\rm m} |
124 |
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
125 |
The implicit free surface form of the pressure equation described in Marshall et. al |
126 |
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
127 |
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
128 |
\\ |
129 |
|
130 |
Wind-stress momentum inputs are added to the momentum equations for both |
131 |
the zonal flow, $u$ and the meridional flow $v$, according to equations |
132 |
(\ref{EQ:eg-simple-tracer-global_forcing_fu}) and (\ref{EQ:eg-simple-tracer-global_forcing_fv}). |
133 |
Thermodynamic forcing inputs are added to the equations for |
134 |
potential temperature, $\theta$, and salinity, $S$, according to equations |
135 |
(\ref{EQ:eg-simple-tracer-global_forcing_ft}) and (\ref{EQ:eg-simple-tracer-global_forcing_fs}). |
136 |
This produces a set of equations solved in this configuration as follows: |
137 |
% {\fracktur} |
138 |
|
139 |
|
140 |
\begin{eqnarray} |
141 |
\label{EQ:eg-simple-tracer-model_equations} |
142 |
\frac{Du}{Dt} - fv + |
143 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
144 |
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
145 |
& = & |
146 |
{\cal F}_{u} |
147 |
\\ |
148 |
\frac{Dv}{Dt} + fu + |
149 |
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
150 |
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
151 |
& = & |
152 |
{\cal F}_{v} |
153 |
\\ |
154 |
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
155 |
&=& |
156 |
0 |
157 |
\\ |
158 |
\frac{D\theta}{Dt} - |
159 |
K_{h}\nabla_{h}^2\theta - \Gamma(K_{z})\frac{\partial^{2}\theta}{\partial z^{2}} |
160 |
& = & |
161 |
{\cal F}_{\theta} |
162 |
\\ |
163 |
\frac{D s}{Dt} - |
164 |
K_{h}\nabla_{h}^2 s - \Gamma(K_{z})\frac{\partial^{2} s}{\partial z^{2}} |
165 |
& = & |
166 |
{\cal F}_{s} |
167 |
\\ |
168 |
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
169 |
\\ |
170 |
\end{eqnarray} |
171 |
|
172 |
\noindent where $u$ and $v$ are the $x$ and $y$ components of the |
173 |
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and |
174 |
interior model levels respectively. As described in |
175 |
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
176 |
evolution of potential temperature, $\theta$, equation is solved prognostically. |
177 |
The total pressure, $p$, is diagnosed by summing pressure due to surface |
178 |
elevation $\eta$ and the hydrostatic pressure. |
179 |
\\ |
180 |
|
181 |
\subsubsection{Numerical Stability Criteria} |
182 |
\label{www:tutorials} |
183 |
|
184 |
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
185 |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
186 |
|
187 |
\begin{eqnarray} |
188 |
\label{EQ:eg-simple-tracer-munk_layer} |
189 |
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
190 |
\end{eqnarray} |
191 |
|
192 |
\noindent of $\approx 100$km. This is greater than the model |
193 |
resolution in mid-latitudes $\Delta x$, ensuring that the frictional |
194 |
boundary layer is well resolved. |
195 |
\\ |
196 |
|
197 |
\noindent The model is stepped forward with a |
198 |
time step $\delta t=1200$secs. With this time step the stability |
199 |
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
200 |
|
201 |
\begin{eqnarray} |
202 |
\label{EQ:eg-simple-tracer-laplacian_stability} |
203 |
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
204 |
\end{eqnarray} |
205 |
|
206 |
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
207 |
for stability. |
208 |
\\ |
209 |
|
210 |
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
211 |
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
212 |
|
213 |
\begin{eqnarray} |
214 |
\label{EQ:eg-simple-tracer-laplacian_stability_z} |
215 |
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
216 |
\end{eqnarray} |
217 |
|
218 |
\noindent evaluates to $4.8 \times 10^{-5}$ which is again well below |
219 |
the upper limit. |
220 |
The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$) |
221 |
and vertical ($K_{z}$) diffusion coefficients for temperature respectively. |
222 |
\\ |
223 |
|
224 |
\noindent The numerical stability for inertial oscillations |
225 |
\cite{adcroft:95} |
226 |
|
227 |
\begin{eqnarray} |
228 |
\label{EQ:eg-simple-tracer-inertial_stability} |
229 |
S_{i} = f^{2} {\delta t}^2 |
230 |
\end{eqnarray} |
231 |
|
232 |
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper |
233 |
limit for stability. |
234 |
\\ |
235 |
|
236 |
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
237 |
horizontal flow |
238 |
speed of $ | \vec{u} | = 2 ms^{-1}$ |
239 |
|
240 |
\begin{eqnarray} |
241 |
\label{EQ:eg-simple-tracer-cfl_stability} |
242 |
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
243 |
\end{eqnarray} |
244 |
|
245 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
246 |
limit of 0.5. |
247 |
\\ |
248 |
|
249 |
\noindent The stability parameter for internal gravity waves |
250 |
\cite{adcroft:95} |
251 |
|
252 |
\begin{eqnarray} |
253 |
\label{EQ:eg-simple-tracer-igw_stability} |
254 |
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
255 |
\end{eqnarray} |
256 |
|
257 |
\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear |
258 |
stability limit of 0.25. |
259 |
|
260 |
\subsection{Code Configuration} |
261 |
\label{www:tutorials} |
262 |
\label{SEC:code_config} |
263 |
|
264 |
The model configuration for this experiment resides under the |
265 |
directory {\it verification/exp1/}. The experiment files |
266 |
\begin{itemize} |
267 |
\item {\it input/data} |
268 |
\item {\it input/data.pkg} |
269 |
\item {\it input/eedata}, |
270 |
\item {\it input/windx.sin\_y}, |
271 |
\item {\it input/topog.box}, |
272 |
\item {\it code/CPP\_EEOPTIONS.h} |
273 |
\item {\it code/CPP\_OPTIONS.h}, |
274 |
\item {\it code/SIZE.h}. |
275 |
\end{itemize} |
276 |
contain the code customizations and parameter settings for this |
277 |
experiments. Below we describe the customizations |
278 |
to these files associated with this experiment. |
279 |
|
280 |
\subsubsection{File {\it input/data}} |
281 |
\label{www:tutorials} |
282 |
|
283 |
This file, reproduced completely below, specifies the main parameters |
284 |
for the experiment. The parameters that are significant for this configuration |
285 |
are |
286 |
|
287 |
\begin{itemize} |
288 |
|
289 |
\item Line 4, |
290 |
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
291 |
this line sets |
292 |
the initial and reference values of potential temperature at each model |
293 |
level in units of $^{\circ}$C. |
294 |
The entries are ordered from surface to depth. For each |
295 |
depth level the initial and reference profiles will be uniform in |
296 |
$x$ and $y$. |
297 |
|
298 |
\fbox{ |
299 |
\begin{minipage}{5.0in} |
300 |
{\it S/R INI\_THETA}({\it ini\_theta.F}) |
301 |
\end{minipage} |
302 |
} |
303 |
|
304 |
|
305 |
\item Line 6, |
306 |
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
307 |
this line sets the vertical Laplacian dissipation coefficient to |
308 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
309 |
for this operator are specified later. This variable is copied into |
310 |
model general vertical coordinate variable {\bf viscAr}. |
311 |
|
312 |
\fbox{ |
313 |
\begin{minipage}{5.0in} |
314 |
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
315 |
\end{minipage} |
316 |
} |
317 |
|
318 |
\item Line 7, |
319 |
\begin{verbatim} |
320 |
viscAh=4.E2, |
321 |
\end{verbatim} |
322 |
this line sets the horizontal Laplacian frictional dissipation coefficient to |
323 |
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
324 |
for this operator are specified later. |
325 |
|
326 |
\item Lines 8, |
327 |
\begin{verbatim} |
328 |
no_slip_sides=.FALSE. |
329 |
\end{verbatim} |
330 |
this line selects a free-slip lateral boundary condition for |
331 |
the horizontal Laplacian friction operator |
332 |
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
333 |
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
334 |
|
335 |
\item Lines 9, |
336 |
\begin{verbatim} |
337 |
no_slip_bottom=.TRUE. |
338 |
\end{verbatim} |
339 |
this line selects a no-slip boundary condition for bottom |
340 |
boundary condition in the vertical Laplacian friction operator |
341 |
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
342 |
|
343 |
\item Line 10, |
344 |
\begin{verbatim} |
345 |
diffKhT=4.E2, |
346 |
\end{verbatim} |
347 |
this line sets the horizontal diffusion coefficient for temperature |
348 |
to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
349 |
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
350 |
all boundaries. |
351 |
|
352 |
\item Line 11, |
353 |
\begin{verbatim} |
354 |
diffKzT=1.E-2, |
355 |
\end{verbatim} |
356 |
this line sets the vertical diffusion coefficient for temperature |
357 |
to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
358 |
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
359 |
|
360 |
\item Line 13, |
361 |
\begin{verbatim} |
362 |
tAlpha=2.E-4, |
363 |
\end{verbatim} |
364 |
This line sets the thermal expansion coefficient for the fluid |
365 |
to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ |
366 |
|
367 |
\fbox{ |
368 |
\begin{minipage}{5.0in} |
369 |
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
370 |
\end{minipage} |
371 |
} |
372 |
|
373 |
\item Line 18, |
374 |
\begin{verbatim} |
375 |
eosType='LINEAR' |
376 |
\end{verbatim} |
377 |
This line selects the linear form of the equation of state. |
378 |
|
379 |
\fbox{ |
380 |
\begin{minipage}{5.0in} |
381 |
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
382 |
\end{minipage} |
383 |
} |
384 |
|
385 |
|
386 |
|
387 |
\item Line 40, |
388 |
\begin{verbatim} |
389 |
usingSphericalPolarGrid=.TRUE., |
390 |
\end{verbatim} |
391 |
This line requests that the simulation be performed in a |
392 |
spherical polar coordinate system. It affects the interpretation of |
393 |
grid input parameters, for example {\bf delX} and {\bf delY} and |
394 |
causes the grid generation routines to initialize an internal grid based |
395 |
on spherical polar geometry. |
396 |
|
397 |
\fbox{ |
398 |
\begin{minipage}{5.0in} |
399 |
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
400 |
\end{minipage} |
401 |
} |
402 |
|
403 |
\item Line 41, |
404 |
\begin{verbatim} |
405 |
phiMin=0., |
406 |
\end{verbatim} |
407 |
This line sets the southern boundary of the modeled |
408 |
domain to $0^{\circ}$ latitude. This value affects both the |
409 |
generation of the locally orthogonal grid that the model |
410 |
uses internally and affects the initialization of the coriolis force. |
411 |
Note - it is not required to set |
412 |
a longitude boundary, since the absolute longitude does |
413 |
not alter the kernel equation discretisation. |
414 |
|
415 |
\item Line 42, |
416 |
\begin{verbatim} |
417 |
delX=60*1., |
418 |
\end{verbatim} |
419 |
This line sets the horizontal grid spacing between each y-coordinate line |
420 |
in the discrete grid to $1^{\circ}$ in longitude. |
421 |
|
422 |
\item Line 43, |
423 |
\begin{verbatim} |
424 |
delY=60*1., |
425 |
\end{verbatim} |
426 |
This line sets the horizontal grid spacing between each y-coordinate line |
427 |
in the discrete grid to $1^{\circ}$ in latitude. |
428 |
|
429 |
\item Line 44, |
430 |
\begin{verbatim} |
431 |
delZ=500.,500.,500.,500., |
432 |
\end{verbatim} |
433 |
This line sets the vertical grid spacing between each z-coordinate line |
434 |
in the discrete grid to $500\,{\rm m}$, so that the total model depth |
435 |
is $2\,{\rm km}$. The variable {\bf delZ} is copied into the internal |
436 |
model coordinate variable {\bf delR} |
437 |
|
438 |
\fbox{ |
439 |
\begin{minipage}{5.0in} |
440 |
{\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) |
441 |
\end{minipage} |
442 |
} |
443 |
|
444 |
\item Line 47, |
445 |
\begin{verbatim} |
446 |
bathyFile='topog.box' |
447 |
\end{verbatim} |
448 |
This line specifies the name of the file from which the domain |
449 |
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
450 |
depths. This file is assumed to contain 64-bit binary numbers |
451 |
giving the depth of the model at each grid cell, ordered with the x |
452 |
coordinate varying fastest. The points are ordered from low coordinate |
453 |
to high coordinate for both axes. The units and orientation of the |
454 |
depths in this file are the same as used in the MITgcm code. In this |
455 |
experiment, a depth of $0m$ indicates a solid wall and a depth |
456 |
of $-2000m$ indicates open ocean. The matlab program |
457 |
{\it input/gendata.m} shows an example of how to generate a |
458 |
bathymetry file. |
459 |
|
460 |
|
461 |
\item Line 50, |
462 |
\begin{verbatim} |
463 |
zonalWindFile='windx.sin_y' |
464 |
\end{verbatim} |
465 |
This line specifies the name of the file from which the x-direction |
466 |
surface wind stress is read. This file is also a two-dimensional |
467 |
($x,y$) map and is enumerated and formatted in the same manner as the |
468 |
bathymetry file. The matlab program {\it input/gendata.m} includes example |
469 |
code to generate a valid |
470 |
{\bf zonalWindFile} |
471 |
file. |
472 |
|
473 |
\end{itemize} |
474 |
|
475 |
\noindent other lines in the file {\it input/data} are standard values |
476 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
477 |
notes. |
478 |
|
479 |
\begin{small} |
480 |
% \input{part3/case_studies/carbon_outgassing_sensitivity/input/data} |
481 |
\end{small} |
482 |
|
483 |
\subsubsection{File {\it input/data.pkg}} |
484 |
\label{www:tutorials} |
485 |
|
486 |
This file uses standard default values and does not contain |
487 |
customizations for this experiment. |
488 |
|
489 |
\subsubsection{File {\it input/eedata}} |
490 |
\label{www:tutorials} |
491 |
|
492 |
This file uses standard default values and does not contain |
493 |
customizations for this experiment. |
494 |
|
495 |
\subsubsection{File {\it input/windx.sin\_y}} |
496 |
\label{www:tutorials} |
497 |
|
498 |
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
499 |
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
500 |
Although $\tau_{x}$ is only a function of $y$n in this experiment |
501 |
this file must still define a complete two-dimensional map in order |
502 |
to be compatible with the standard code for loading forcing fields |
503 |
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
504 |
code for creating the {\it input/windx.sin\_y} file. |
505 |
|
506 |
\subsubsection{File {\it input/topog.box}} |
507 |
\label{www:tutorials} |
508 |
|
509 |
|
510 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
511 |
map of depth values. For this experiment values are either |
512 |
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
513 |
ocean. The file contains a raw binary stream of data that is enumerated |
514 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
515 |
The included matlab program {\it input/gendata.m} gives a complete |
516 |
code for creating the {\it input/topog.box} file. |
517 |
|
518 |
\subsubsection{File {\it code/SIZE.h}} |
519 |
\label{www:tutorials} |
520 |
|
521 |
Two lines are customized in this file for the current experiment |
522 |
|
523 |
\begin{itemize} |
524 |
|
525 |
\item Line 39, |
526 |
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
527 |
the lateral domain extent in grid points for the |
528 |
axis aligned with the x-coordinate. |
529 |
|
530 |
\item Line 40, |
531 |
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
532 |
the lateral domain extent in grid points for the |
533 |
axis aligned with the y-coordinate. |
534 |
|
535 |
\item Line 49, |
536 |
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
537 |
the vertical domain extent in grid points. |
538 |
|
539 |
\end{itemize} |
540 |
|
541 |
\begin{small} |
542 |
% \include{code/SIZE.h} |
543 |
\end{small} |
544 |
|
545 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
546 |
\label{www:tutorials} |
547 |
|
548 |
This file uses standard default values and does not contain |
549 |
customizations for this experiment. |
550 |
|
551 |
|
552 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
553 |
\label{www:tutorials} |
554 |
|
555 |
This file uses standard default values and does not contain |
556 |
customizations for this experiment. |
557 |
|
558 |
\subsubsection{Other Files } |
559 |
\label{www:tutorials} |
560 |
|
561 |
Other files relevant to this experiment are |
562 |
\begin{itemize} |
563 |
\item {\it model/src/ini\_cori.F}. This file initializes the model |
564 |
coriolis variables {\bf fCorU}. |
565 |
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
566 |
\item {\it model/src/ini\_parms.F}, |
567 |
\item {\it input/windx.sin\_y}, |
568 |
\end{itemize} |
569 |
contain the code customizations and parameter settings for this |
570 |
experiments. Below we describe the customizations |
571 |
to these files associated with this experiment. |