| 1 | 
molod | 
1.10 | 
% $Header: /u/gcmpack/manual/part3/case_studies/carbon_outgassing_sensitivity/co2sens.tex,v 1.9 2006/04/08 01:50:49 edhill Exp $ | 
| 2 | 
cnh | 
1.2 | 
% $Name:  $ | 
| 3 | 
adcroft | 
1.1 | 
 | 
| 4 | 
cnh | 
1.6 | 
\section{Centennial Time Scale Tracer Injection} | 
| 5 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 6 | 
cnh | 
1.6 | 
\label{sect:eg-simple-tracer} | 
| 7 | 
edhill | 
1.8 | 
\begin{rawhtml} | 
| 8 | 
  | 
  | 
<!-- CMIREDIR:eg-simple-tracer: --> | 
| 9 | 
  | 
  | 
\end{rawhtml} | 
| 10 | 
adcroft | 
1.1 | 
 | 
| 11 | 
  | 
  | 
\bodytext{bgcolor="#FFFFFFFF"} | 
| 12 | 
  | 
  | 
 | 
| 13 | 
  | 
  | 
%\begin{center}  | 
| 14 | 
cnh | 
1.2 | 
%{\Large \bf Using MITgcm to Look at Centennial Time Scale | 
| 15 | 
adcroft | 
1.1 | 
%Sensitivities} | 
| 16 | 
  | 
  | 
% | 
| 17 | 
  | 
  | 
%\vspace*{4mm} | 
| 18 | 
  | 
  | 
% | 
| 19 | 
  | 
  | 
%\vspace*{3mm} | 
| 20 | 
  | 
  | 
%{\large May 2001} | 
| 21 | 
  | 
  | 
%\end{center} | 
| 22 | 
  | 
  | 
 | 
| 23 | 
  | 
  | 
\subsection{Introduction} | 
| 24 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 25 | 
adcroft | 
1.1 | 
 | 
| 26 | 
cnh | 
1.2 | 
This example illustrates the use of | 
| 27 | 
  | 
  | 
the MITgcm to perform sensitivity analysis in a | 
| 28 | 
adcroft | 
1.1 | 
large scale ocean circulation simulation. | 
| 29 | 
molod | 
1.10 | 
The files for this experiment can be found in the | 
| 30 | 
  | 
  | 
verification directory under tutorial\_tracer\_adjsens. | 
| 31 | 
adcroft | 
1.1 | 
 | 
| 32 | 
  | 
  | 
\subsection{Overview} | 
| 33 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 34 | 
adcroft | 
1.1 | 
 | 
| 35 | 
  | 
  | 
This example experiment demonstrates using the MITgcm to simulate | 
| 36 | 
  | 
  | 
the planetary ocean circulation. The simulation is configured | 
| 37 | 
  | 
  | 
with realistic geography and bathymetry on a | 
| 38 | 
  | 
  | 
$4^{\circ} \times 4^{\circ}$ spherical polar grid. | 
| 39 | 
  | 
  | 
Twenty vertical layers are used in the vertical, ranging in thickness | 
| 40 | 
  | 
  | 
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, | 
| 41 | 
  | 
  | 
giving a maximum model depth of $6\,{\rm km}$. | 
| 42 | 
  | 
  | 
At this resolution, the configuration | 
| 43 | 
  | 
  | 
can be integrated forward for thousands of years on a single  | 
| 44 | 
  | 
  | 
processor desktop computer. | 
| 45 | 
  | 
  | 
\\ | 
| 46 | 
  | 
  | 
 | 
| 47 | 
cnh | 
1.2 | 
The model is forced with climatological wind stress data and surface | 
| 48 | 
  | 
  | 
flux data from Da Silva \cite{DaSilva94}. Climatological data | 
| 49 | 
  | 
  | 
from Levitus \cite{Levitus94} is used to initialize the model hydrography. | 
| 50 | 
adcroft | 
1.1 | 
Levitus data is also used throughout the calculation | 
| 51 | 
  | 
  | 
to derive air-sea fluxes of heat at the ocean surface. | 
| 52 | 
cnh | 
1.2 | 
These fluxes are combined with climatological estimates of | 
| 53 | 
adcroft | 
1.1 | 
surface heat flux and fresh water, resulting in a mixed boundary | 
| 54 | 
cnh | 
1.2 | 
condition of the style described in Haney \cite{Haney}. | 
| 55 | 
adcroft | 
1.1 | 
Altogether, this yields the following forcing applied | 
| 56 | 
  | 
  | 
in the model surface layer. | 
| 57 | 
  | 
  | 
 | 
| 58 | 
  | 
  | 
\begin{eqnarray} | 
| 59 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-global_forcing} | 
| 60 | 
  | 
  | 
\label{EQ:eg-simple-tracer-global_forcing_fu} | 
| 61 | 
adcroft | 
1.1 | 
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} | 
| 62 | 
  | 
  | 
\\ | 
| 63 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-global_forcing_fv} | 
| 64 | 
adcroft | 
1.1 | 
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} | 
| 65 | 
  | 
  | 
\\ | 
| 66 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-global_forcing_ft} | 
| 67 | 
adcroft | 
1.1 | 
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )  | 
| 68 | 
  | 
  | 
 - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} | 
| 69 | 
  | 
  | 
\\ | 
| 70 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-global_forcing_fs} | 
| 71 | 
adcroft | 
1.1 | 
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )  | 
| 72 | 
  | 
  | 
 + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) | 
| 73 | 
  | 
  | 
\end{eqnarray} | 
| 74 | 
  | 
  | 
 | 
| 75 | 
  | 
  | 
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, | 
| 76 | 
  | 
  | 
${\cal F}_{s}$ are the forcing terms in the zonal and meridional | 
| 77 | 
  | 
  | 
momentum and in the potential temperature and salinity  | 
| 78 | 
  | 
  | 
equations respectively. | 
| 79 | 
  | 
  | 
The term $\Delta z_{s}$ represents the top ocean layer thickness. | 
| 80 | 
  | 
  | 
It is used in conjunction with the reference density, $\rho_{0}$ | 
| 81 | 
  | 
  | 
(here set to $999.8\,{\rm kg\,m^{-3}}$), the | 
| 82 | 
  | 
  | 
reference salinity, $S_{0}$ (here set to 35ppt), | 
| 83 | 
  | 
  | 
and a specific heat capacity $C_{p}$ to convert | 
| 84 | 
  | 
  | 
wind-stress fluxes given in ${\rm N}\,m^{-2}$,  | 
| 85 | 
  | 
  | 
\\ | 
| 86 | 
  | 
  | 
 | 
| 87 | 
  | 
  | 
 | 
| 88 | 
  | 
  | 
The configuration is illustrated in figure \ref{simulation_config}. | 
| 89 | 
  | 
  | 
 | 
| 90 | 
  | 
  | 
 | 
| 91 | 
  | 
  | 
\subsection{Discrete Numerical Configuration} | 
| 92 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 93 | 
adcroft | 
1.1 | 
 | 
| 94 | 
  | 
  | 
 | 
| 95 | 
  | 
  | 
 The model is configured in hydrostatic form.  The domain is discretised with  | 
| 96 | 
  | 
  | 
a uniform grid spacing in latitude and longitude of | 
| 97 | 
  | 
  | 
 $\Delta x=\Delta y=4^{\circ}$, so  | 
| 98 | 
  | 
  | 
that there are ninety grid cells in the $x$ and forty in the  | 
| 99 | 
  | 
  | 
$y$ direction (Arctic polar regions are not | 
| 100 | 
  | 
  | 
included in this experiment). Vertically the  | 
| 101 | 
  | 
  | 
model is configured with twenty layers with the following thicknesses | 
| 102 | 
  | 
  | 
$\Delta z_{1} = 50\,{\rm m},\, | 
| 103 | 
  | 
  | 
 \Delta z_{2} = 50\,{\rm m},\, | 
| 104 | 
  | 
  | 
 \Delta z_{3} = 55\,{\rm m},\, | 
| 105 | 
  | 
  | 
 \Delta z_{4} = 60\,{\rm m},\, | 
| 106 | 
  | 
  | 
 \Delta z_{5} = 65\,{\rm m},\, | 
| 107 | 
  | 
  | 
$ | 
| 108 | 
  | 
  | 
$ | 
| 109 | 
  | 
  | 
 \Delta z_{6}~=~70\,{\rm m},\, | 
| 110 | 
  | 
  | 
 \Delta z_{7}~=~80\,{\rm m},\, | 
| 111 | 
  | 
  | 
 \Delta z_{8}~=95\,{\rm m},\, | 
| 112 | 
  | 
  | 
 \Delta z_{9}=120\,{\rm m},\, | 
| 113 | 
  | 
  | 
 \Delta z_{10}=155\,{\rm m},\, | 
| 114 | 
  | 
  | 
$ | 
| 115 | 
  | 
  | 
$ | 
| 116 | 
  | 
  | 
 \Delta z_{11}=200\,{\rm m},\, | 
| 117 | 
  | 
  | 
 \Delta z_{12}=260\,{\rm m},\, | 
| 118 | 
  | 
  | 
 \Delta z_{13}=320\,{\rm m},\, | 
| 119 | 
  | 
  | 
 \Delta z_{14}=400\,{\rm m},\, | 
| 120 | 
  | 
  | 
 \Delta z_{15}=480\,{\rm m},\, | 
| 121 | 
  | 
  | 
$ | 
| 122 | 
  | 
  | 
$ | 
| 123 | 
  | 
  | 
 \Delta z_{16}=570\,{\rm m},\, | 
| 124 | 
  | 
  | 
 \Delta z_{17}=655\,{\rm m},\, | 
| 125 | 
  | 
  | 
 \Delta z_{18}=725\,{\rm m},\, | 
| 126 | 
  | 
  | 
 \Delta z_{19}=775\,{\rm m},\, | 
| 127 | 
  | 
  | 
 \Delta z_{20}=815\,{\rm m} | 
| 128 | 
  | 
  | 
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). | 
| 129 | 
  | 
  | 
The implicit free surface form of the pressure equation described in Marshall et. al  | 
| 130 | 
adcroft | 
1.5 | 
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous | 
| 131 | 
cnh | 
1.2 | 
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. | 
| 132 | 
adcroft | 
1.1 | 
\\ | 
| 133 | 
  | 
  | 
 | 
| 134 | 
  | 
  | 
Wind-stress momentum inputs are added to the momentum equations for both | 
| 135 | 
cnh | 
1.2 | 
the zonal flow, $u$ and the meridional flow $v$, according to equations  | 
| 136 | 
cnh | 
1.6 | 
(\ref{EQ:eg-simple-tracer-global_forcing_fu}) and (\ref{EQ:eg-simple-tracer-global_forcing_fv}). | 
| 137 | 
adcroft | 
1.1 | 
Thermodynamic forcing inputs are added to the equations for | 
| 138 | 
  | 
  | 
potential temperature, $\theta$, and salinity, $S$, according to equations  | 
| 139 | 
cnh | 
1.6 | 
(\ref{EQ:eg-simple-tracer-global_forcing_ft}) and (\ref{EQ:eg-simple-tracer-global_forcing_fs}). | 
| 140 | 
adcroft | 
1.1 | 
This produces a set of equations solved in this configuration as follows: | 
| 141 | 
  | 
  | 
% {\fracktur} | 
| 142 | 
  | 
  | 
 | 
| 143 | 
  | 
  | 
 | 
| 144 | 
  | 
  | 
\begin{eqnarray} | 
| 145 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-model_equations} | 
| 146 | 
adcroft | 
1.1 | 
\frac{Du}{Dt} - fv +  | 
| 147 | 
  | 
  | 
  \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -  | 
| 148 | 
  | 
  | 
  A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}}  | 
| 149 | 
  | 
  | 
& = & | 
| 150 | 
  | 
  | 
{\cal F}_{u} | 
| 151 | 
  | 
  | 
\\ | 
| 152 | 
  | 
  | 
\frac{Dv}{Dt} + fu +  | 
| 153 | 
  | 
  | 
  \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -  | 
| 154 | 
  | 
  | 
  A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}}  | 
| 155 | 
  | 
  | 
& = & | 
| 156 | 
  | 
  | 
{\cal F}_{v} | 
| 157 | 
  | 
  | 
\\ | 
| 158 | 
  | 
  | 
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} | 
| 159 | 
  | 
  | 
&=& | 
| 160 | 
  | 
  | 
0 | 
| 161 | 
  | 
  | 
\\ | 
| 162 | 
  | 
  | 
\frac{D\theta}{Dt} - | 
| 163 | 
  | 
  | 
 K_{h}\nabla_{h}^2\theta  - \Gamma(K_{z})\frac{\partial^{2}\theta}{\partial z^{2}}  | 
| 164 | 
  | 
  | 
& = & | 
| 165 | 
  | 
  | 
{\cal F}_{\theta} | 
| 166 | 
  | 
  | 
\\ | 
| 167 | 
  | 
  | 
\frac{D s}{Dt} - | 
| 168 | 
  | 
  | 
 K_{h}\nabla_{h}^2 s  - \Gamma(K_{z})\frac{\partial^{2} s}{\partial z^{2}}  | 
| 169 | 
  | 
  | 
& = & | 
| 170 | 
  | 
  | 
{\cal F}_{s} | 
| 171 | 
  | 
  | 
\\ | 
| 172 | 
  | 
  | 
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} | 
| 173 | 
  | 
  | 
\\ | 
| 174 | 
  | 
  | 
\end{eqnarray} | 
| 175 | 
  | 
  | 
 | 
| 176 | 
  | 
  | 
\noindent where $u$ and $v$ are the $x$ and $y$ components of the | 
| 177 | 
  | 
  | 
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and | 
| 178 | 
  | 
  | 
interior model levels respectively. As described in | 
| 179 | 
adcroft | 
1.4 | 
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time  | 
| 180 | 
adcroft | 
1.1 | 
evolution of potential temperature, $\theta$, equation is solved prognostically. | 
| 181 | 
  | 
  | 
The total pressure, $p$, is diagnosed by summing pressure due to surface  | 
| 182 | 
  | 
  | 
elevation $\eta$ and the hydrostatic pressure. | 
| 183 | 
  | 
  | 
\\ | 
| 184 | 
  | 
  | 
 | 
| 185 | 
  | 
  | 
\subsubsection{Numerical Stability Criteria} | 
| 186 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 187 | 
adcroft | 
1.1 | 
 | 
| 188 | 
cnh | 
1.2 | 
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. | 
| 189 | 
adcroft | 
1.3 | 
This value is chosen to yield a Munk layer width \cite{adcroft:95}, | 
| 190 | 
adcroft | 
1.1 | 
 | 
| 191 | 
  | 
  | 
\begin{eqnarray} | 
| 192 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-munk_layer} | 
| 193 | 
adcroft | 
1.1 | 
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} | 
| 194 | 
  | 
  | 
\end{eqnarray} | 
| 195 | 
  | 
  | 
 | 
| 196 | 
  | 
  | 
\noindent  of $\approx 100$km. This is greater than the model | 
| 197 | 
  | 
  | 
resolution in mid-latitudes $\Delta x$, ensuring that the frictional  | 
| 198 | 
  | 
  | 
boundary layer is well resolved. | 
| 199 | 
  | 
  | 
\\ | 
| 200 | 
  | 
  | 
 | 
| 201 | 
  | 
  | 
\noindent The model is stepped forward with a  | 
| 202 | 
  | 
  | 
time step $\delta t=1200$secs. With this time step the stability  | 
| 203 | 
adcroft | 
1.3 | 
parameter to the horizontal Laplacian friction \cite{adcroft:95} | 
| 204 | 
adcroft | 
1.1 | 
 | 
| 205 | 
  | 
  | 
\begin{eqnarray} | 
| 206 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-laplacian_stability} | 
| 207 | 
adcroft | 
1.1 | 
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} | 
| 208 | 
  | 
  | 
\end{eqnarray} | 
| 209 | 
  | 
  | 
 | 
| 210 | 
  | 
  | 
\noindent evaluates to 0.012, which is well below the 0.3 upper limit | 
| 211 | 
  | 
  | 
for stability.  | 
| 212 | 
  | 
  | 
\\ | 
| 213 | 
  | 
  | 
 | 
| 214 | 
  | 
  | 
\noindent The vertical dissipation coefficient, $A_{z}$, is set to  | 
| 215 | 
  | 
  | 
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit | 
| 216 | 
  | 
  | 
 | 
| 217 | 
  | 
  | 
\begin{eqnarray} | 
| 218 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-laplacian_stability_z} | 
| 219 | 
adcroft | 
1.1 | 
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} | 
| 220 | 
  | 
  | 
\end{eqnarray} | 
| 221 | 
  | 
  | 
 | 
| 222 | 
  | 
  | 
\noindent evaluates to $4.8 \times 10^{-5}$ which is again well below | 
| 223 | 
  | 
  | 
the upper limit. | 
| 224 | 
  | 
  | 
The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$)  | 
| 225 | 
  | 
  | 
and vertical ($K_{z}$) diffusion coefficients for temperature respectively. | 
| 226 | 
  | 
  | 
\\ | 
| 227 | 
  | 
  | 
 | 
| 228 | 
  | 
  | 
\noindent The numerical stability for inertial oscillations | 
| 229 | 
adcroft | 
1.3 | 
\cite{adcroft:95}  | 
| 230 | 
adcroft | 
1.1 | 
 | 
| 231 | 
  | 
  | 
\begin{eqnarray} | 
| 232 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-inertial_stability} | 
| 233 | 
adcroft | 
1.1 | 
S_{i} = f^{2} {\delta t}^2 | 
| 234 | 
  | 
  | 
\end{eqnarray} | 
| 235 | 
  | 
  | 
 | 
| 236 | 
  | 
  | 
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper  | 
| 237 | 
  | 
  | 
limit for stability. | 
| 238 | 
  | 
  | 
\\ | 
| 239 | 
  | 
  | 
 | 
| 240 | 
adcroft | 
1.3 | 
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum  | 
| 241 | 
adcroft | 
1.1 | 
horizontal flow | 
| 242 | 
  | 
  | 
speed of $ | \vec{u} | = 2 ms^{-1}$ | 
| 243 | 
  | 
  | 
 | 
| 244 | 
  | 
  | 
\begin{eqnarray} | 
| 245 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-cfl_stability} | 
| 246 | 
adcroft | 
1.1 | 
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} | 
| 247 | 
  | 
  | 
\end{eqnarray} | 
| 248 | 
  | 
  | 
 | 
| 249 | 
  | 
  | 
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability  | 
| 250 | 
  | 
  | 
limit of 0.5. | 
| 251 | 
  | 
  | 
\\ | 
| 252 | 
  | 
  | 
 | 
| 253 | 
cnh | 
1.2 | 
\noindent The stability parameter for internal gravity waves  | 
| 254 | 
adcroft | 
1.3 | 
\cite{adcroft:95} | 
| 255 | 
adcroft | 
1.1 | 
 | 
| 256 | 
  | 
  | 
\begin{eqnarray} | 
| 257 | 
cnh | 
1.6 | 
\label{EQ:eg-simple-tracer-igw_stability} | 
| 258 | 
adcroft | 
1.1 | 
S_{c} = \frac{c_{g} \delta t}{ \Delta x} | 
| 259 | 
  | 
  | 
\end{eqnarray} | 
| 260 | 
  | 
  | 
 | 
| 261 | 
  | 
  | 
\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear | 
| 262 | 
  | 
  | 
stability limit of 0.25. | 
| 263 | 
  | 
  | 
   | 
| 264 | 
  | 
  | 
\subsection{Code Configuration} | 
| 265 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 266 | 
adcroft | 
1.1 | 
\label{SEC:code_config} | 
| 267 | 
  | 
  | 
 | 
| 268 | 
  | 
  | 
The model configuration for this experiment resides under the  | 
| 269 | 
  | 
  | 
directory {\it verification/exp1/}.  The experiment files  | 
| 270 | 
  | 
  | 
\begin{itemize} | 
| 271 | 
  | 
  | 
\item {\it input/data} | 
| 272 | 
  | 
  | 
\item {\it input/data.pkg} | 
| 273 | 
  | 
  | 
\item {\it input/eedata}, | 
| 274 | 
  | 
  | 
\item {\it input/windx.sin\_y}, | 
| 275 | 
  | 
  | 
\item {\it input/topog.box}, | 
| 276 | 
  | 
  | 
\item {\it code/CPP\_EEOPTIONS.h} | 
| 277 | 
  | 
  | 
\item {\it code/CPP\_OPTIONS.h}, | 
| 278 | 
  | 
  | 
\item {\it code/SIZE.h}.  | 
| 279 | 
  | 
  | 
\end{itemize} | 
| 280 | 
cnh | 
1.2 | 
contain the code customizations and parameter settings for this  | 
| 281 | 
  | 
  | 
experiments. Below we describe the customizations | 
| 282 | 
adcroft | 
1.1 | 
to these files associated with this experiment. | 
| 283 | 
  | 
  | 
 | 
| 284 | 
  | 
  | 
\subsubsection{File {\it input/data}} | 
| 285 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 286 | 
adcroft | 
1.1 | 
 | 
| 287 | 
  | 
  | 
This file, reproduced completely below, specifies the main parameters  | 
| 288 | 
  | 
  | 
for the experiment. The parameters that are significant for this configuration | 
| 289 | 
  | 
  | 
are | 
| 290 | 
  | 
  | 
 | 
| 291 | 
  | 
  | 
\begin{itemize} | 
| 292 | 
  | 
  | 
 | 
| 293 | 
  | 
  | 
\item Line 4,  | 
| 294 | 
  | 
  | 
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim}  | 
| 295 | 
  | 
  | 
this line sets | 
| 296 | 
  | 
  | 
the initial and reference values of potential temperature at each model | 
| 297 | 
edhill | 
1.9 | 
level in units of $^{\circ}\mathrm{C}$. | 
| 298 | 
adcroft | 
1.1 | 
The entries are ordered from surface to depth. For each | 
| 299 | 
cnh | 
1.2 | 
depth level the initial and reference profiles will be uniform in | 
| 300 | 
adcroft | 
1.1 | 
$x$ and $y$. | 
| 301 | 
  | 
  | 
 | 
| 302 | 
  | 
  | 
\fbox{ | 
| 303 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 304 | 
  | 
  | 
{\it S/R INI\_THETA}({\it ini\_theta.F}) | 
| 305 | 
  | 
  | 
\end{minipage} | 
| 306 | 
  | 
  | 
} | 
| 307 | 
  | 
  | 
 | 
| 308 | 
  | 
  | 
 | 
| 309 | 
  | 
  | 
\item Line 6,  | 
| 310 | 
  | 
  | 
\begin{verbatim} viscAz=1.E-2, \end{verbatim}  | 
| 311 | 
cnh | 
1.2 | 
this line sets the vertical Laplacian dissipation coefficient to | 
| 312 | 
adcroft | 
1.1 | 
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions | 
| 313 | 
  | 
  | 
for this operator are specified later. This variable is copied into | 
| 314 | 
  | 
  | 
model general vertical coordinate variable {\bf viscAr}. | 
| 315 | 
  | 
  | 
 | 
| 316 | 
  | 
  | 
\fbox{ | 
| 317 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 318 | 
  | 
  | 
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
| 319 | 
  | 
  | 
\end{minipage} | 
| 320 | 
  | 
  | 
} | 
| 321 | 
  | 
  | 
 | 
| 322 | 
  | 
  | 
\item Line 7,  | 
| 323 | 
  | 
  | 
\begin{verbatim} | 
| 324 | 
  | 
  | 
viscAh=4.E2, | 
| 325 | 
  | 
  | 
\end{verbatim}  | 
| 326 | 
cnh | 
1.2 | 
this line sets the horizontal Laplacian frictional dissipation coefficient to | 
| 327 | 
adcroft | 
1.1 | 
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions | 
| 328 | 
  | 
  | 
for this operator are specified later. | 
| 329 | 
  | 
  | 
 | 
| 330 | 
  | 
  | 
\item Lines 8, | 
| 331 | 
  | 
  | 
\begin{verbatim} | 
| 332 | 
  | 
  | 
no_slip_sides=.FALSE. | 
| 333 | 
  | 
  | 
\end{verbatim} | 
| 334 | 
  | 
  | 
this line selects a free-slip lateral boundary condition for | 
| 335 | 
cnh | 
1.2 | 
the horizontal Laplacian friction operator  | 
| 336 | 
adcroft | 
1.1 | 
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and | 
| 337 | 
  | 
  | 
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. | 
| 338 | 
  | 
  | 
 | 
| 339 | 
  | 
  | 
\item Lines 9, | 
| 340 | 
  | 
  | 
\begin{verbatim} | 
| 341 | 
  | 
  | 
no_slip_bottom=.TRUE. | 
| 342 | 
  | 
  | 
\end{verbatim} | 
| 343 | 
  | 
  | 
this line selects a no-slip boundary condition for bottom | 
| 344 | 
cnh | 
1.2 | 
boundary condition in the vertical Laplacian friction operator  | 
| 345 | 
adcroft | 
1.1 | 
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. | 
| 346 | 
  | 
  | 
 | 
| 347 | 
  | 
  | 
\item Line 10, | 
| 348 | 
  | 
  | 
\begin{verbatim} | 
| 349 | 
  | 
  | 
diffKhT=4.E2, | 
| 350 | 
  | 
  | 
\end{verbatim} | 
| 351 | 
  | 
  | 
this line sets the horizontal diffusion coefficient for temperature | 
| 352 | 
  | 
  | 
to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 353 | 
  | 
  | 
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at | 
| 354 | 
  | 
  | 
all boundaries. | 
| 355 | 
  | 
  | 
 | 
| 356 | 
  | 
  | 
\item Line 11, | 
| 357 | 
  | 
  | 
\begin{verbatim} | 
| 358 | 
  | 
  | 
diffKzT=1.E-2, | 
| 359 | 
  | 
  | 
\end{verbatim} | 
| 360 | 
  | 
  | 
this line sets the vertical diffusion coefficient for temperature | 
| 361 | 
  | 
  | 
to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this | 
| 362 | 
  | 
  | 
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. | 
| 363 | 
  | 
  | 
 | 
| 364 | 
  | 
  | 
\item Line 13, | 
| 365 | 
  | 
  | 
\begin{verbatim} | 
| 366 | 
  | 
  | 
tAlpha=2.E-4, | 
| 367 | 
  | 
  | 
\end{verbatim} | 
| 368 | 
  | 
  | 
This line sets the thermal expansion coefficient for the fluid | 
| 369 | 
  | 
  | 
to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ | 
| 370 | 
  | 
  | 
 | 
| 371 | 
  | 
  | 
\fbox{ | 
| 372 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 373 | 
  | 
  | 
{\it S/R FIND\_RHO}({\it find\_rho.F}) | 
| 374 | 
  | 
  | 
\end{minipage} | 
| 375 | 
  | 
  | 
} | 
| 376 | 
  | 
  | 
 | 
| 377 | 
  | 
  | 
\item Line 18, | 
| 378 | 
  | 
  | 
\begin{verbatim} | 
| 379 | 
  | 
  | 
eosType='LINEAR' | 
| 380 | 
  | 
  | 
\end{verbatim} | 
| 381 | 
  | 
  | 
This line selects the linear form of the equation of state. | 
| 382 | 
  | 
  | 
 | 
| 383 | 
  | 
  | 
\fbox{ | 
| 384 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 385 | 
  | 
  | 
{\it S/R FIND\_RHO}({\it find\_rho.F}) | 
| 386 | 
  | 
  | 
\end{minipage} | 
| 387 | 
  | 
  | 
} | 
| 388 | 
  | 
  | 
 | 
| 389 | 
  | 
  | 
 | 
| 390 | 
  | 
  | 
 | 
| 391 | 
  | 
  | 
\item Line 40, | 
| 392 | 
  | 
  | 
\begin{verbatim} | 
| 393 | 
  | 
  | 
usingSphericalPolarGrid=.TRUE., | 
| 394 | 
  | 
  | 
\end{verbatim} | 
| 395 | 
  | 
  | 
This line requests that the simulation be performed in a  | 
| 396 | 
  | 
  | 
spherical polar coordinate system. It affects the interpretation of | 
| 397 | 
cnh | 
1.2 | 
grid input parameters, for example {\bf delX} and {\bf delY} and | 
| 398 | 
  | 
  | 
causes the grid generation routines to initialize an internal grid based | 
| 399 | 
adcroft | 
1.1 | 
on spherical polar geometry. | 
| 400 | 
  | 
  | 
 | 
| 401 | 
  | 
  | 
\fbox{ | 
| 402 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 403 | 
  | 
  | 
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) | 
| 404 | 
  | 
  | 
\end{minipage} | 
| 405 | 
  | 
  | 
} | 
| 406 | 
  | 
  | 
 | 
| 407 | 
  | 
  | 
\item Line 41, | 
| 408 | 
  | 
  | 
\begin{verbatim} | 
| 409 | 
  | 
  | 
phiMin=0., | 
| 410 | 
  | 
  | 
\end{verbatim} | 
| 411 | 
  | 
  | 
This line sets the southern boundary of the modeled | 
| 412 | 
  | 
  | 
domain to $0^{\circ}$ latitude. This value affects both the | 
| 413 | 
  | 
  | 
generation of the locally orthogonal grid that the model | 
| 414 | 
cnh | 
1.2 | 
uses internally and affects the initialization of the coriolis force. | 
| 415 | 
adcroft | 
1.1 | 
Note - it is not required to set | 
| 416 | 
  | 
  | 
a longitude boundary, since the absolute longitude does | 
| 417 | 
  | 
  | 
not alter the kernel equation discretisation. | 
| 418 | 
  | 
  | 
 | 
| 419 | 
  | 
  | 
\item Line 42, | 
| 420 | 
  | 
  | 
\begin{verbatim} | 
| 421 | 
  | 
  | 
delX=60*1., | 
| 422 | 
  | 
  | 
\end{verbatim} | 
| 423 | 
  | 
  | 
This line sets the horizontal grid spacing between each y-coordinate line | 
| 424 | 
  | 
  | 
in the discrete grid to $1^{\circ}$ in longitude. | 
| 425 | 
  | 
  | 
 | 
| 426 | 
  | 
  | 
\item Line 43, | 
| 427 | 
  | 
  | 
\begin{verbatim} | 
| 428 | 
  | 
  | 
delY=60*1., | 
| 429 | 
  | 
  | 
\end{verbatim} | 
| 430 | 
  | 
  | 
This line sets the horizontal grid spacing between each y-coordinate line | 
| 431 | 
  | 
  | 
in the discrete grid to $1^{\circ}$ in latitude. | 
| 432 | 
  | 
  | 
 | 
| 433 | 
  | 
  | 
\item Line 44, | 
| 434 | 
  | 
  | 
\begin{verbatim} | 
| 435 | 
  | 
  | 
delZ=500.,500.,500.,500., | 
| 436 | 
  | 
  | 
\end{verbatim} | 
| 437 | 
  | 
  | 
This line sets the vertical grid spacing between each z-coordinate line | 
| 438 | 
  | 
  | 
in the discrete grid to $500\,{\rm m}$, so that the total model depth  | 
| 439 | 
  | 
  | 
is $2\,{\rm km}$. The variable {\bf delZ} is copied into the internal | 
| 440 | 
  | 
  | 
model coordinate variable {\bf delR} | 
| 441 | 
  | 
  | 
 | 
| 442 | 
  | 
  | 
\fbox{ | 
| 443 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 444 | 
  | 
  | 
{\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) | 
| 445 | 
  | 
  | 
\end{minipage} | 
| 446 | 
  | 
  | 
} | 
| 447 | 
  | 
  | 
 | 
| 448 | 
  | 
  | 
\item Line 47, | 
| 449 | 
  | 
  | 
\begin{verbatim} | 
| 450 | 
  | 
  | 
bathyFile='topog.box' | 
| 451 | 
  | 
  | 
\end{verbatim} | 
| 452 | 
  | 
  | 
This line specifies the name of the file from which the domain | 
| 453 | 
  | 
  | 
bathymetry is read. This file is a two-dimensional ($x,y$) map of | 
| 454 | 
  | 
  | 
depths. This file is assumed to contain 64-bit binary numbers  | 
| 455 | 
  | 
  | 
giving the depth of the model at each grid cell, ordered with the x  | 
| 456 | 
  | 
  | 
coordinate varying fastest. The points are ordered from low coordinate | 
| 457 | 
  | 
  | 
to high coordinate for both axes. The units and orientation of the | 
| 458 | 
  | 
  | 
depths in this file are the same as used in the MITgcm code. In this | 
| 459 | 
  | 
  | 
experiment, a depth of $0m$ indicates a solid wall and a depth | 
| 460 | 
  | 
  | 
of $-2000m$ indicates open ocean. The matlab program | 
| 461 | 
  | 
  | 
{\it input/gendata.m} shows an example of how to generate a | 
| 462 | 
  | 
  | 
bathymetry file. | 
| 463 | 
  | 
  | 
 | 
| 464 | 
  | 
  | 
 | 
| 465 | 
  | 
  | 
\item Line 50, | 
| 466 | 
  | 
  | 
\begin{verbatim} | 
| 467 | 
  | 
  | 
zonalWindFile='windx.sin_y' | 
| 468 | 
  | 
  | 
\end{verbatim} | 
| 469 | 
  | 
  | 
This line specifies the name of the file from which the x-direction | 
| 470 | 
  | 
  | 
surface wind stress is read. This file is also a two-dimensional | 
| 471 | 
  | 
  | 
($x,y$) map and is enumerated and formatted in the same manner as the  | 
| 472 | 
  | 
  | 
bathymetry file. The matlab program {\it input/gendata.m} includes example  | 
| 473 | 
  | 
  | 
code to generate a valid  | 
| 474 | 
  | 
  | 
{\bf zonalWindFile}  | 
| 475 | 
  | 
  | 
file.   | 
| 476 | 
  | 
  | 
 | 
| 477 | 
  | 
  | 
\end{itemize} | 
| 478 | 
  | 
  | 
 | 
| 479 | 
  | 
  | 
\noindent other lines in the file {\it input/data} are standard values | 
| 480 | 
  | 
  | 
that are described in the MITgcm Getting Started and MITgcm Parameters | 
| 481 | 
  | 
  | 
notes. | 
| 482 | 
  | 
  | 
 | 
| 483 | 
  | 
  | 
\begin{small} | 
| 484 | 
  | 
  | 
% \input{part3/case_studies/carbon_outgassing_sensitivity/input/data} | 
| 485 | 
  | 
  | 
\end{small} | 
| 486 | 
  | 
  | 
 | 
| 487 | 
  | 
  | 
\subsubsection{File {\it input/data.pkg}} | 
| 488 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 489 | 
adcroft | 
1.1 | 
 | 
| 490 | 
  | 
  | 
This file uses standard default values and does not contain | 
| 491 | 
cnh | 
1.2 | 
customizations for this experiment. | 
| 492 | 
adcroft | 
1.1 | 
 | 
| 493 | 
  | 
  | 
\subsubsection{File {\it input/eedata}} | 
| 494 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 495 | 
adcroft | 
1.1 | 
 | 
| 496 | 
  | 
  | 
This file uses standard default values and does not contain | 
| 497 | 
cnh | 
1.2 | 
customizations for this experiment. | 
| 498 | 
adcroft | 
1.1 | 
 | 
| 499 | 
  | 
  | 
\subsubsection{File {\it input/windx.sin\_y}} | 
| 500 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 501 | 
adcroft | 
1.1 | 
 | 
| 502 | 
  | 
  | 
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)  | 
| 503 | 
  | 
  | 
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. | 
| 504 | 
  | 
  | 
Although $\tau_{x}$ is only a function of $y$n in this experiment | 
| 505 | 
  | 
  | 
this file must still define a complete two-dimensional map in order | 
| 506 | 
  | 
  | 
to be compatible with the standard code for loading forcing fields  | 
| 507 | 
  | 
  | 
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete | 
| 508 | 
  | 
  | 
code for creating the {\it input/windx.sin\_y} file. | 
| 509 | 
  | 
  | 
 | 
| 510 | 
  | 
  | 
\subsubsection{File {\it input/topog.box}} | 
| 511 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 512 | 
adcroft | 
1.1 | 
 | 
| 513 | 
  | 
  | 
 | 
| 514 | 
  | 
  | 
The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  | 
| 515 | 
  | 
  | 
map of depth values. For this experiment values are either | 
| 516 | 
  | 
  | 
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep | 
| 517 | 
  | 
  | 
ocean. The file contains a raw binary stream of data that is enumerated | 
| 518 | 
  | 
  | 
in the same way as standard MITgcm two-dimensional, horizontal arrays. | 
| 519 | 
  | 
  | 
The included matlab program {\it input/gendata.m} gives a complete | 
| 520 | 
  | 
  | 
code for creating the {\it input/topog.box} file. | 
| 521 | 
  | 
  | 
 | 
| 522 | 
  | 
  | 
\subsubsection{File {\it code/SIZE.h}} | 
| 523 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 524 | 
adcroft | 
1.1 | 
 | 
| 525 | 
  | 
  | 
Two lines are customized in this file for the current experiment | 
| 526 | 
  | 
  | 
 | 
| 527 | 
  | 
  | 
\begin{itemize} | 
| 528 | 
  | 
  | 
 | 
| 529 | 
  | 
  | 
\item Line 39,  | 
| 530 | 
  | 
  | 
\begin{verbatim} sNx=60, \end{verbatim} this line sets | 
| 531 | 
  | 
  | 
the lateral domain extent in grid points for the | 
| 532 | 
  | 
  | 
axis aligned with the x-coordinate. | 
| 533 | 
  | 
  | 
 | 
| 534 | 
  | 
  | 
\item Line 40,  | 
| 535 | 
  | 
  | 
\begin{verbatim} sNy=60, \end{verbatim} this line sets | 
| 536 | 
  | 
  | 
the lateral domain extent in grid points for the | 
| 537 | 
  | 
  | 
axis aligned with the y-coordinate. | 
| 538 | 
  | 
  | 
 | 
| 539 | 
  | 
  | 
\item Line 49,  | 
| 540 | 
  | 
  | 
\begin{verbatim} Nr=4,   \end{verbatim} this line sets | 
| 541 | 
  | 
  | 
the vertical domain extent in grid points. | 
| 542 | 
  | 
  | 
 | 
| 543 | 
  | 
  | 
\end{itemize} | 
| 544 | 
  | 
  | 
 | 
| 545 | 
  | 
  | 
\begin{small} | 
| 546 | 
  | 
  | 
% \include{code/SIZE.h} | 
| 547 | 
  | 
  | 
\end{small} | 
| 548 | 
  | 
  | 
 | 
| 549 | 
  | 
  | 
\subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 550 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 551 | 
adcroft | 
1.1 | 
 | 
| 552 | 
  | 
  | 
This file uses standard default values and does not contain | 
| 553 | 
cnh | 
1.2 | 
customizations for this experiment. | 
| 554 | 
adcroft | 
1.1 | 
 | 
| 555 | 
  | 
  | 
 | 
| 556 | 
  | 
  | 
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 557 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 558 | 
adcroft | 
1.1 | 
 | 
| 559 | 
  | 
  | 
This file uses standard default values and does not contain | 
| 560 | 
cnh | 
1.2 | 
customizations for this experiment. | 
| 561 | 
adcroft | 
1.1 | 
 | 
| 562 | 
  | 
  | 
\subsubsection{Other Files } | 
| 563 | 
adcroft | 
1.7 | 
\label{www:tutorials} | 
| 564 | 
adcroft | 
1.1 | 
 | 
| 565 | 
  | 
  | 
Other files relevant to this experiment are | 
| 566 | 
  | 
  | 
\begin{itemize} | 
| 567 | 
  | 
  | 
\item {\it model/src/ini\_cori.F}. This file initializes the model | 
| 568 | 
  | 
  | 
coriolis variables {\bf fCorU}. | 
| 569 | 
  | 
  | 
\item {\it model/src/ini\_spherical\_polar\_grid.F} | 
| 570 | 
  | 
  | 
\item {\it model/src/ini\_parms.F}, | 
| 571 | 
  | 
  | 
\item {\it input/windx.sin\_y}, | 
| 572 | 
  | 
  | 
\end{itemize} | 
| 573 | 
cnh | 
1.2 | 
contain the code customizations and parameter settings for this  | 
| 574 | 
  | 
  | 
experiments. Below we describe the customizations | 
| 575 | 
adcroft | 
1.1 | 
to these files associated with this experiment. |