| 1 |
adcroft |
1.1 |
% $Header: $ |
| 2 |
|
|
% $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
\section{Example: Centenial Time Scale Sensitivities} |
| 5 |
|
|
|
| 6 |
|
|
\bodytext{bgcolor="#FFFFFFFF"} |
| 7 |
|
|
|
| 8 |
|
|
%\begin{center} |
| 9 |
|
|
%{\Large \bf Using MITgcm to Look at Centenial Time Scale |
| 10 |
|
|
%Sensitivities} |
| 11 |
|
|
% |
| 12 |
|
|
%\vspace*{4mm} |
| 13 |
|
|
% |
| 14 |
|
|
%\vspace*{3mm} |
| 15 |
|
|
%{\large May 2001} |
| 16 |
|
|
%\end{center} |
| 17 |
|
|
|
| 18 |
|
|
\subsection{Introduction} |
| 19 |
|
|
|
| 20 |
|
|
This document describes the fourth example MITgcm experiment. |
| 21 |
|
|
This example iilustrates the use of |
| 22 |
|
|
the MITgcm to perform sentivity analysis in a |
| 23 |
|
|
large scale ocean circulation simulation. |
| 24 |
|
|
|
| 25 |
|
|
\subsection{Overview} |
| 26 |
|
|
|
| 27 |
|
|
This example experiment demonstrates using the MITgcm to simulate |
| 28 |
|
|
the planetary ocean circulation. The simulation is configured |
| 29 |
|
|
with realistic geography and bathymetry on a |
| 30 |
|
|
$4^{\circ} \times 4^{\circ}$ spherical polar grid. |
| 31 |
|
|
Twenty vertical layers are used in the vertical, ranging in thickness |
| 32 |
|
|
from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth, |
| 33 |
|
|
giving a maximum model depth of $6\,{\rm km}$. |
| 34 |
|
|
At this resolution, the configuration |
| 35 |
|
|
can be integrated forward for thousands of years on a single |
| 36 |
|
|
processor desktop computer. |
| 37 |
|
|
\\ |
| 38 |
|
|
|
| 39 |
|
|
The model is forced with climatalogical wind stress data and surface |
| 40 |
|
|
flux data from Da Silva \cite{DaSilva94}. Climatalogical data |
| 41 |
|
|
from Levitus \cite{Levitus94} is used to initialise the model hydrography. |
| 42 |
|
|
Levitus data is also used throughout the calculation |
| 43 |
|
|
to derive air-sea fluxes of heat at the ocean surface. |
| 44 |
|
|
These fluxes are combined with climatalogical estimates of |
| 45 |
|
|
surface heat flux and fresh water, resulting in a mixed boundary |
| 46 |
|
|
condition of the style decribed in Haney \cite{Haney}. |
| 47 |
|
|
Altogether, this yields the following forcing applied |
| 48 |
|
|
in the model surface layer. |
| 49 |
|
|
|
| 50 |
|
|
\begin{eqnarray} |
| 51 |
|
|
\label{EQ:global_forcing} |
| 52 |
|
|
\label{EQ:global_forcing_fu} |
| 53 |
|
|
{\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}} |
| 54 |
|
|
\\ |
| 55 |
|
|
\label{EQ:global_forcing_fv} |
| 56 |
|
|
{\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}} |
| 57 |
|
|
\\ |
| 58 |
|
|
\label{EQ:global_forcing_ft} |
| 59 |
|
|
{\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} ) |
| 60 |
|
|
- \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q} |
| 61 |
|
|
\\ |
| 62 |
|
|
\label{EQ:global_forcing_fs} |
| 63 |
|
|
{\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} ) |
| 64 |
|
|
+ \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R}) |
| 65 |
|
|
\end{eqnarray} |
| 66 |
|
|
|
| 67 |
|
|
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
| 68 |
|
|
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
| 69 |
|
|
momentum and in the potential temperature and salinity |
| 70 |
|
|
equations respectively. |
| 71 |
|
|
The term $\Delta z_{s}$ represents the top ocean layer thickness. |
| 72 |
|
|
It is used in conjunction with the reference density, $\rho_{0}$ |
| 73 |
|
|
(here set to $999.8\,{\rm kg\,m^{-3}}$), the |
| 74 |
|
|
reference salinity, $S_{0}$ (here set to 35ppt), |
| 75 |
|
|
and a specific heat capacity $C_{p}$ to convert |
| 76 |
|
|
wind-stress fluxes given in ${\rm N}\,m^{-2}$, |
| 77 |
|
|
\\ |
| 78 |
|
|
|
| 79 |
|
|
|
| 80 |
|
|
The configuration is illustrated in figure \ref{simulation_config}. |
| 81 |
|
|
|
| 82 |
|
|
|
| 83 |
|
|
\subsection{Discrete Numerical Configuration} |
| 84 |
|
|
|
| 85 |
|
|
|
| 86 |
|
|
The model is configured in hydrostatic form. The domain is discretised with |
| 87 |
|
|
a uniform grid spacing in latitude and longitude of |
| 88 |
|
|
$\Delta x=\Delta y=4^{\circ}$, so |
| 89 |
|
|
that there are ninety grid cells in the $x$ and forty in the |
| 90 |
|
|
$y$ direction (Arctic polar regions are not |
| 91 |
|
|
included in this experiment). Vertically the |
| 92 |
|
|
model is configured with twenty layers with the following thicknesses |
| 93 |
|
|
$\Delta z_{1} = 50\,{\rm m},\, |
| 94 |
|
|
\Delta z_{2} = 50\,{\rm m},\, |
| 95 |
|
|
\Delta z_{3} = 55\,{\rm m},\, |
| 96 |
|
|
\Delta z_{4} = 60\,{\rm m},\, |
| 97 |
|
|
\Delta z_{5} = 65\,{\rm m},\, |
| 98 |
|
|
$ |
| 99 |
|
|
$ |
| 100 |
|
|
\Delta z_{6}~=~70\,{\rm m},\, |
| 101 |
|
|
\Delta z_{7}~=~80\,{\rm m},\, |
| 102 |
|
|
\Delta z_{8}~=95\,{\rm m},\, |
| 103 |
|
|
\Delta z_{9}=120\,{\rm m},\, |
| 104 |
|
|
\Delta z_{10}=155\,{\rm m},\, |
| 105 |
|
|
$ |
| 106 |
|
|
$ |
| 107 |
|
|
\Delta z_{11}=200\,{\rm m},\, |
| 108 |
|
|
\Delta z_{12}=260\,{\rm m},\, |
| 109 |
|
|
\Delta z_{13}=320\,{\rm m},\, |
| 110 |
|
|
\Delta z_{14}=400\,{\rm m},\, |
| 111 |
|
|
\Delta z_{15}=480\,{\rm m},\, |
| 112 |
|
|
$ |
| 113 |
|
|
$ |
| 114 |
|
|
\Delta z_{16}=570\,{\rm m},\, |
| 115 |
|
|
\Delta z_{17}=655\,{\rm m},\, |
| 116 |
|
|
\Delta z_{18}=725\,{\rm m},\, |
| 117 |
|
|
\Delta z_{19}=775\,{\rm m},\, |
| 118 |
|
|
\Delta z_{20}=815\,{\rm m} |
| 119 |
|
|
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
| 120 |
|
|
The implicit free surface form of the pressure equation described in Marshall et. al |
| 121 |
|
|
\cite{Marshall97a} is employed. A laplacian operator, $\nabla^2$, provides viscous |
| 122 |
|
|
dissipation. Thermal and haline diffusion is also represented by a laplacian operator. |
| 123 |
|
|
\\ |
| 124 |
|
|
|
| 125 |
|
|
Wind-stress momentum inputs are added to the momentum equations for both |
| 126 |
|
|
the zonal flow, $u$ and the merdional flow $v$, according to equations |
| 127 |
|
|
(\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}). |
| 128 |
|
|
Thermodynamic forcing inputs are added to the equations for |
| 129 |
|
|
potential temperature, $\theta$, and salinity, $S$, according to equations |
| 130 |
|
|
(\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}). |
| 131 |
|
|
This produces a set of equations solved in this configuration as follows: |
| 132 |
|
|
% {\fracktur} |
| 133 |
|
|
|
| 134 |
|
|
|
| 135 |
|
|
\begin{eqnarray} |
| 136 |
|
|
\label{EQ:model_equations} |
| 137 |
|
|
\frac{Du}{Dt} - fv + |
| 138 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
| 139 |
|
|
A_{h}\nabla_{h}^2u - A_{z}\frac{\partial^{2}u}{\partial z^{2}} |
| 140 |
|
|
& = & |
| 141 |
|
|
{\cal F}_{u} |
| 142 |
|
|
\\ |
| 143 |
|
|
\frac{Dv}{Dt} + fu + |
| 144 |
|
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
| 145 |
|
|
A_{h}\nabla_{h}^2v - A_{z}\frac{\partial^{2}v}{\partial z^{2}} |
| 146 |
|
|
& = & |
| 147 |
|
|
{\cal F}_{v} |
| 148 |
|
|
\\ |
| 149 |
|
|
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
| 150 |
|
|
&=& |
| 151 |
|
|
0 |
| 152 |
|
|
\\ |
| 153 |
|
|
\frac{D\theta}{Dt} - |
| 154 |
|
|
K_{h}\nabla_{h}^2\theta - \Gamma(K_{z})\frac{\partial^{2}\theta}{\partial z^{2}} |
| 155 |
|
|
& = & |
| 156 |
|
|
{\cal F}_{\theta} |
| 157 |
|
|
\\ |
| 158 |
|
|
\frac{D s}{Dt} - |
| 159 |
|
|
K_{h}\nabla_{h}^2 s - \Gamma(K_{z})\frac{\partial^{2} s}{\partial z^{2}} |
| 160 |
|
|
& = & |
| 161 |
|
|
{\cal F}_{s} |
| 162 |
|
|
\\ |
| 163 |
|
|
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
| 164 |
|
|
\\ |
| 165 |
|
|
\end{eqnarray} |
| 166 |
|
|
|
| 167 |
|
|
\noindent where $u$ and $v$ are the $x$ and $y$ components of the |
| 168 |
|
|
flow vector $\vec{u}$. The suffices ${s},{i}$ indicate surface and |
| 169 |
|
|
interior model levels respectively. As described in |
| 170 |
|
|
MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time |
| 171 |
|
|
evolution of potential temperature, $\theta$, equation is solved prognostically. |
| 172 |
|
|
The total pressure, $p$, is diagnosed by summing pressure due to surface |
| 173 |
|
|
elevation $\eta$ and the hydrostatic pressure. |
| 174 |
|
|
\\ |
| 175 |
|
|
|
| 176 |
|
|
\subsubsection{Numerical Stability Criteria} |
| 177 |
|
|
|
| 178 |
|
|
The laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
| 179 |
|
|
This value is chosen to yield a Munk layer width \cite{Adcroft_thesis}, |
| 180 |
|
|
|
| 181 |
|
|
\begin{eqnarray} |
| 182 |
|
|
\label{EQ:munk_layer} |
| 183 |
|
|
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
| 184 |
|
|
\end{eqnarray} |
| 185 |
|
|
|
| 186 |
|
|
\noindent of $\approx 100$km. This is greater than the model |
| 187 |
|
|
resolution in mid-latitudes $\Delta x$, ensuring that the frictional |
| 188 |
|
|
boundary layer is well resolved. |
| 189 |
|
|
\\ |
| 190 |
|
|
|
| 191 |
|
|
\noindent The model is stepped forward with a |
| 192 |
|
|
time step $\delta t=1200$secs. With this time step the stability |
| 193 |
|
|
parameter to the horizontal laplacian friction \cite{Adcroft_thesis} |
| 194 |
|
|
|
| 195 |
|
|
\begin{eqnarray} |
| 196 |
|
|
\label{EQ:laplacian_stability} |
| 197 |
|
|
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
| 198 |
|
|
\end{eqnarray} |
| 199 |
|
|
|
| 200 |
|
|
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
| 201 |
|
|
for stability. |
| 202 |
|
|
\\ |
| 203 |
|
|
|
| 204 |
|
|
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
| 205 |
|
|
$1\times10^{-2} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
| 206 |
|
|
|
| 207 |
|
|
\begin{eqnarray} |
| 208 |
|
|
\label{EQ:laplacian_stability_z} |
| 209 |
|
|
S_{l} = 4 \frac{A_{z} \delta t}{{\Delta z}^2} |
| 210 |
|
|
\end{eqnarray} |
| 211 |
|
|
|
| 212 |
|
|
\noindent evaluates to $4.8 \times 10^{-5}$ which is again well below |
| 213 |
|
|
the upper limit. |
| 214 |
|
|
The values of $A_{h}$ and $A_{z}$ are also used for the horizontal ($K_{h}$) |
| 215 |
|
|
and vertical ($K_{z}$) diffusion coefficients for temperature respectively. |
| 216 |
|
|
\\ |
| 217 |
|
|
|
| 218 |
|
|
\noindent The numerical stability for inertial oscillations |
| 219 |
|
|
\cite{Adcroft_thesis} |
| 220 |
|
|
|
| 221 |
|
|
\begin{eqnarray} |
| 222 |
|
|
\label{EQ:inertial_stability} |
| 223 |
|
|
S_{i} = f^{2} {\delta t}^2 |
| 224 |
|
|
\end{eqnarray} |
| 225 |
|
|
|
| 226 |
|
|
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper |
| 227 |
|
|
limit for stability. |
| 228 |
|
|
\\ |
| 229 |
|
|
|
| 230 |
|
|
\noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum |
| 231 |
|
|
horizontal flow |
| 232 |
|
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
| 233 |
|
|
|
| 234 |
|
|
\begin{eqnarray} |
| 235 |
|
|
\label{EQ:cfl_stability} |
| 236 |
|
|
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
| 237 |
|
|
\end{eqnarray} |
| 238 |
|
|
|
| 239 |
|
|
\noindent evaluates to $5 \times 10^{-2}$. This is well below the stability |
| 240 |
|
|
limit of 0.5. |
| 241 |
|
|
\\ |
| 242 |
|
|
|
| 243 |
|
|
\noindent The stbility parameter for internal gravity waves |
| 244 |
|
|
\cite{Adcroft_thesis} |
| 245 |
|
|
|
| 246 |
|
|
\begin{eqnarray} |
| 247 |
|
|
\label{EQ:cfl_stability} |
| 248 |
|
|
S_{c} = \frac{c_{g} \delta t}{ \Delta x} |
| 249 |
|
|
\end{eqnarray} |
| 250 |
|
|
|
| 251 |
|
|
\noindent evaluates to $5 \times 10^{-2}$. This is well below the linear |
| 252 |
|
|
stability limit of 0.25. |
| 253 |
|
|
|
| 254 |
|
|
\subsection{Code Configuration} |
| 255 |
|
|
\label{SEC:code_config} |
| 256 |
|
|
|
| 257 |
|
|
The model configuration for this experiment resides under the |
| 258 |
|
|
directory {\it verification/exp1/}. The experiment files |
| 259 |
|
|
\begin{itemize} |
| 260 |
|
|
\item {\it input/data} |
| 261 |
|
|
\item {\it input/data.pkg} |
| 262 |
|
|
\item {\it input/eedata}, |
| 263 |
|
|
\item {\it input/windx.sin\_y}, |
| 264 |
|
|
\item {\it input/topog.box}, |
| 265 |
|
|
\item {\it code/CPP\_EEOPTIONS.h} |
| 266 |
|
|
\item {\it code/CPP\_OPTIONS.h}, |
| 267 |
|
|
\item {\it code/SIZE.h}. |
| 268 |
|
|
\end{itemize} |
| 269 |
|
|
contain the code customisations and parameter settings for this |
| 270 |
|
|
experiements. Below we describe the customisations |
| 271 |
|
|
to these files associated with this experiment. |
| 272 |
|
|
|
| 273 |
|
|
\subsubsection{File {\it input/data}} |
| 274 |
|
|
|
| 275 |
|
|
This file, reproduced completely below, specifies the main parameters |
| 276 |
|
|
for the experiment. The parameters that are significant for this configuration |
| 277 |
|
|
are |
| 278 |
|
|
|
| 279 |
|
|
\begin{itemize} |
| 280 |
|
|
|
| 281 |
|
|
\item Line 4, |
| 282 |
|
|
\begin{verbatim} tRef=20.,10.,8.,6., \end{verbatim} |
| 283 |
|
|
this line sets |
| 284 |
|
|
the initial and reference values of potential temperature at each model |
| 285 |
|
|
level in units of $^{\circ}$C. |
| 286 |
|
|
The entries are ordered from surface to depth. For each |
| 287 |
|
|
depth level the inital and reference profiles will be uniform in |
| 288 |
|
|
$x$ and $y$. |
| 289 |
|
|
|
| 290 |
|
|
\fbox{ |
| 291 |
|
|
\begin{minipage}{5.0in} |
| 292 |
|
|
{\it S/R INI\_THETA}({\it ini\_theta.F}) |
| 293 |
|
|
\end{minipage} |
| 294 |
|
|
} |
| 295 |
|
|
|
| 296 |
|
|
|
| 297 |
|
|
\item Line 6, |
| 298 |
|
|
\begin{verbatim} viscAz=1.E-2, \end{verbatim} |
| 299 |
|
|
this line sets the vertical laplacian dissipation coefficient to |
| 300 |
|
|
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
| 301 |
|
|
for this operator are specified later. This variable is copied into |
| 302 |
|
|
model general vertical coordinate variable {\bf viscAr}. |
| 303 |
|
|
|
| 304 |
|
|
\fbox{ |
| 305 |
|
|
\begin{minipage}{5.0in} |
| 306 |
|
|
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
| 307 |
|
|
\end{minipage} |
| 308 |
|
|
} |
| 309 |
|
|
|
| 310 |
|
|
\item Line 7, |
| 311 |
|
|
\begin{verbatim} |
| 312 |
|
|
viscAh=4.E2, |
| 313 |
|
|
\end{verbatim} |
| 314 |
|
|
this line sets the horizontal laplacian frictional dissipation coefficient to |
| 315 |
|
|
$1 \times 10^{-2} {\rm m^{2}s^{-1}}$. Boundary conditions |
| 316 |
|
|
for this operator are specified later. |
| 317 |
|
|
|
| 318 |
|
|
\item Lines 8, |
| 319 |
|
|
\begin{verbatim} |
| 320 |
|
|
no_slip_sides=.FALSE. |
| 321 |
|
|
\end{verbatim} |
| 322 |
|
|
this line selects a free-slip lateral boundary condition for |
| 323 |
|
|
the horizontal laplacian friction operator |
| 324 |
|
|
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
| 325 |
|
|
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
| 326 |
|
|
|
| 327 |
|
|
\item Lines 9, |
| 328 |
|
|
\begin{verbatim} |
| 329 |
|
|
no_slip_bottom=.TRUE. |
| 330 |
|
|
\end{verbatim} |
| 331 |
|
|
this line selects a no-slip boundary condition for bottom |
| 332 |
|
|
boundary condition in the vertical laplacian friction operator |
| 333 |
|
|
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
| 334 |
|
|
|
| 335 |
|
|
\item Line 10, |
| 336 |
|
|
\begin{verbatim} |
| 337 |
|
|
diffKhT=4.E2, |
| 338 |
|
|
\end{verbatim} |
| 339 |
|
|
this line sets the horizontal diffusion coefficient for temperature |
| 340 |
|
|
to $400\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
| 341 |
|
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ at |
| 342 |
|
|
all boundaries. |
| 343 |
|
|
|
| 344 |
|
|
\item Line 11, |
| 345 |
|
|
\begin{verbatim} |
| 346 |
|
|
diffKzT=1.E-2, |
| 347 |
|
|
\end{verbatim} |
| 348 |
|
|
this line sets the vertical diffusion coefficient for temperature |
| 349 |
|
|
to $10^{-2}\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
| 350 |
|
|
operator is $\frac{\partial}{\partial z}$ = 0 on all boundaries. |
| 351 |
|
|
|
| 352 |
|
|
\item Line 13, |
| 353 |
|
|
\begin{verbatim} |
| 354 |
|
|
tAlpha=2.E-4, |
| 355 |
|
|
\end{verbatim} |
| 356 |
|
|
This line sets the thermal expansion coefficient for the fluid |
| 357 |
|
|
to $2 \times 10^{-4}\,{\rm degrees}^{-1}$ |
| 358 |
|
|
|
| 359 |
|
|
\fbox{ |
| 360 |
|
|
\begin{minipage}{5.0in} |
| 361 |
|
|
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
| 362 |
|
|
\end{minipage} |
| 363 |
|
|
} |
| 364 |
|
|
|
| 365 |
|
|
\item Line 18, |
| 366 |
|
|
\begin{verbatim} |
| 367 |
|
|
eosType='LINEAR' |
| 368 |
|
|
\end{verbatim} |
| 369 |
|
|
This line selects the linear form of the equation of state. |
| 370 |
|
|
|
| 371 |
|
|
\fbox{ |
| 372 |
|
|
\begin{minipage}{5.0in} |
| 373 |
|
|
{\it S/R FIND\_RHO}({\it find\_rho.F}) |
| 374 |
|
|
\end{minipage} |
| 375 |
|
|
} |
| 376 |
|
|
|
| 377 |
|
|
|
| 378 |
|
|
|
| 379 |
|
|
\item Line 40, |
| 380 |
|
|
\begin{verbatim} |
| 381 |
|
|
usingSphericalPolarGrid=.TRUE., |
| 382 |
|
|
\end{verbatim} |
| 383 |
|
|
This line requests that the simulation be performed in a |
| 384 |
|
|
spherical polar coordinate system. It affects the interpretation of |
| 385 |
|
|
grid inoput parameters, for exampl {\bf delX} and {\bf delY} and |
| 386 |
|
|
causes the grid generation routines to initialise an internal grid based |
| 387 |
|
|
on spherical polar geometry. |
| 388 |
|
|
|
| 389 |
|
|
\fbox{ |
| 390 |
|
|
\begin{minipage}{5.0in} |
| 391 |
|
|
{\it S/R INI\_SPEHRICAL\_POLAR\_GRID}({\it ini\_spherical\_polar\_grid.F}) |
| 392 |
|
|
\end{minipage} |
| 393 |
|
|
} |
| 394 |
|
|
|
| 395 |
|
|
\item Line 41, |
| 396 |
|
|
\begin{verbatim} |
| 397 |
|
|
phiMin=0., |
| 398 |
|
|
\end{verbatim} |
| 399 |
|
|
This line sets the southern boundary of the modeled |
| 400 |
|
|
domain to $0^{\circ}$ latitude. This value affects both the |
| 401 |
|
|
generation of the locally orthogonal grid that the model |
| 402 |
|
|
uses internally and affects the initialisation of the coriolis force. |
| 403 |
|
|
Note - it is not required to set |
| 404 |
|
|
a longitude boundary, since the absolute longitude does |
| 405 |
|
|
not alter the kernel equation discretisation. |
| 406 |
|
|
|
| 407 |
|
|
\item Line 42, |
| 408 |
|
|
\begin{verbatim} |
| 409 |
|
|
delX=60*1., |
| 410 |
|
|
\end{verbatim} |
| 411 |
|
|
This line sets the horizontal grid spacing between each y-coordinate line |
| 412 |
|
|
in the discrete grid to $1^{\circ}$ in longitude. |
| 413 |
|
|
|
| 414 |
|
|
\item Line 43, |
| 415 |
|
|
\begin{verbatim} |
| 416 |
|
|
delY=60*1., |
| 417 |
|
|
\end{verbatim} |
| 418 |
|
|
This line sets the horizontal grid spacing between each y-coordinate line |
| 419 |
|
|
in the discrete grid to $1^{\circ}$ in latitude. |
| 420 |
|
|
|
| 421 |
|
|
\item Line 44, |
| 422 |
|
|
\begin{verbatim} |
| 423 |
|
|
delZ=500.,500.,500.,500., |
| 424 |
|
|
\end{verbatim} |
| 425 |
|
|
This line sets the vertical grid spacing between each z-coordinate line |
| 426 |
|
|
in the discrete grid to $500\,{\rm m}$, so that the total model depth |
| 427 |
|
|
is $2\,{\rm km}$. The variable {\bf delZ} is copied into the internal |
| 428 |
|
|
model coordinate variable {\bf delR} |
| 429 |
|
|
|
| 430 |
|
|
\fbox{ |
| 431 |
|
|
\begin{minipage}{5.0in} |
| 432 |
|
|
{\it S/R INI\_VERTICAL\_GRID}({\it ini\_vertical\_grid.F}) |
| 433 |
|
|
\end{minipage} |
| 434 |
|
|
} |
| 435 |
|
|
|
| 436 |
|
|
\item Line 47, |
| 437 |
|
|
\begin{verbatim} |
| 438 |
|
|
bathyFile='topog.box' |
| 439 |
|
|
\end{verbatim} |
| 440 |
|
|
This line specifies the name of the file from which the domain |
| 441 |
|
|
bathymetry is read. This file is a two-dimensional ($x,y$) map of |
| 442 |
|
|
depths. This file is assumed to contain 64-bit binary numbers |
| 443 |
|
|
giving the depth of the model at each grid cell, ordered with the x |
| 444 |
|
|
coordinate varying fastest. The points are ordered from low coordinate |
| 445 |
|
|
to high coordinate for both axes. The units and orientation of the |
| 446 |
|
|
depths in this file are the same as used in the MITgcm code. In this |
| 447 |
|
|
experiment, a depth of $0m$ indicates a solid wall and a depth |
| 448 |
|
|
of $-2000m$ indicates open ocean. The matlab program |
| 449 |
|
|
{\it input/gendata.m} shows an example of how to generate a |
| 450 |
|
|
bathymetry file. |
| 451 |
|
|
|
| 452 |
|
|
|
| 453 |
|
|
\item Line 50, |
| 454 |
|
|
\begin{verbatim} |
| 455 |
|
|
zonalWindFile='windx.sin_y' |
| 456 |
|
|
\end{verbatim} |
| 457 |
|
|
This line specifies the name of the file from which the x-direction |
| 458 |
|
|
surface wind stress is read. This file is also a two-dimensional |
| 459 |
|
|
($x,y$) map and is enumerated and formatted in the same manner as the |
| 460 |
|
|
bathymetry file. The matlab program {\it input/gendata.m} includes example |
| 461 |
|
|
code to generate a valid |
| 462 |
|
|
{\bf zonalWindFile} |
| 463 |
|
|
file. |
| 464 |
|
|
|
| 465 |
|
|
\end{itemize} |
| 466 |
|
|
|
| 467 |
|
|
\noindent other lines in the file {\it input/data} are standard values |
| 468 |
|
|
that are described in the MITgcm Getting Started and MITgcm Parameters |
| 469 |
|
|
notes. |
| 470 |
|
|
|
| 471 |
|
|
\begin{small} |
| 472 |
|
|
% \input{part3/case_studies/carbon_outgassing_sensitivity/input/data} |
| 473 |
|
|
\end{small} |
| 474 |
|
|
|
| 475 |
|
|
\subsubsection{File {\it input/data.pkg}} |
| 476 |
|
|
|
| 477 |
|
|
This file uses standard default values and does not contain |
| 478 |
|
|
customisations for this experiment. |
| 479 |
|
|
|
| 480 |
|
|
\subsubsection{File {\it input/eedata}} |
| 481 |
|
|
|
| 482 |
|
|
This file uses standard default values and does not contain |
| 483 |
|
|
customisations for this experiment. |
| 484 |
|
|
|
| 485 |
|
|
\subsubsection{File {\it input/windx.sin\_y}} |
| 486 |
|
|
|
| 487 |
|
|
The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$) |
| 488 |
|
|
map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$. |
| 489 |
|
|
Although $\tau_{x}$ is only a function of $y$n in this experiment |
| 490 |
|
|
this file must still define a complete two-dimensional map in order |
| 491 |
|
|
to be compatible with the standard code for loading forcing fields |
| 492 |
|
|
in MITgcm. The included matlab program {\it input/gendata.m} gives a complete |
| 493 |
|
|
code for creating the {\it input/windx.sin\_y} file. |
| 494 |
|
|
|
| 495 |
|
|
\subsubsection{File {\it input/topog.box}} |
| 496 |
|
|
|
| 497 |
|
|
|
| 498 |
|
|
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
| 499 |
|
|
map of depth values. For this experiment values are either |
| 500 |
|
|
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
| 501 |
|
|
ocean. The file contains a raw binary stream of data that is enumerated |
| 502 |
|
|
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
| 503 |
|
|
The included matlab program {\it input/gendata.m} gives a complete |
| 504 |
|
|
code for creating the {\it input/topog.box} file. |
| 505 |
|
|
|
| 506 |
|
|
\subsubsection{File {\it code/SIZE.h}} |
| 507 |
|
|
|
| 508 |
|
|
Two lines are customized in this file for the current experiment |
| 509 |
|
|
|
| 510 |
|
|
\begin{itemize} |
| 511 |
|
|
|
| 512 |
|
|
\item Line 39, |
| 513 |
|
|
\begin{verbatim} sNx=60, \end{verbatim} this line sets |
| 514 |
|
|
the lateral domain extent in grid points for the |
| 515 |
|
|
axis aligned with the x-coordinate. |
| 516 |
|
|
|
| 517 |
|
|
\item Line 40, |
| 518 |
|
|
\begin{verbatim} sNy=60, \end{verbatim} this line sets |
| 519 |
|
|
the lateral domain extent in grid points for the |
| 520 |
|
|
axis aligned with the y-coordinate. |
| 521 |
|
|
|
| 522 |
|
|
\item Line 49, |
| 523 |
|
|
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
| 524 |
|
|
the vertical domain extent in grid points. |
| 525 |
|
|
|
| 526 |
|
|
\end{itemize} |
| 527 |
|
|
|
| 528 |
|
|
\begin{small} |
| 529 |
|
|
% \include{code/SIZE.h} |
| 530 |
|
|
\end{small} |
| 531 |
|
|
|
| 532 |
|
|
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
| 533 |
|
|
|
| 534 |
|
|
This file uses standard default values and does not contain |
| 535 |
|
|
customisations for this experiment. |
| 536 |
|
|
|
| 537 |
|
|
|
| 538 |
|
|
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
| 539 |
|
|
|
| 540 |
|
|
This file uses standard default values and does not contain |
| 541 |
|
|
customisations for this experiment. |
| 542 |
|
|
|
| 543 |
|
|
\subsubsection{Other Files } |
| 544 |
|
|
|
| 545 |
|
|
Other files relevant to this experiment are |
| 546 |
|
|
\begin{itemize} |
| 547 |
|
|
\item {\it model/src/ini\_cori.F}. This file initializes the model |
| 548 |
|
|
coriolis variables {\bf fCorU}. |
| 549 |
|
|
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
| 550 |
|
|
\item {\it model/src/ini\_parms.F}, |
| 551 |
|
|
\item {\it input/windx.sin\_y}, |
| 552 |
|
|
\end{itemize} |
| 553 |
|
|
contain the code customisations and parameter settings for this |
| 554 |
|
|
experiements. Below we describe the customisations |
| 555 |
|
|
to these files associated with this experiment. |