/[MITgcm]/manual/s_examples/text/model_examples.tex
ViewVC logotype

Diff of /manual/s_examples/text/model_examples.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by jmc, Tue Aug 9 17:59:37 2005 UTC revision 1.14 by molod, Wed Jun 28 17:20:51 2006 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  \section{Tutorials}  \section[MITgcm Example Experiments]{Example experiments}
5  \label{sect:tutorials}  \label{sect:modelExamples}
6  \label{www:tutorials}  \begin{rawhtml}
7    <!-- CMIREDIR:modelExamples: -->
8    \end{rawhtml}
9    
10    %% a set of pre-configured numerical experiments
11    
12    The full MITgcm distribution comes with a set of pre-configured
13    numerical experiments.  Some of these example experiments are tests of
14    individual parts of the model code, but many are fully fledged
15    numerical simulations. Full tutorials exist for a few of the examples,
16    and are documented in sections \ref{sect:eg-baro} -
17    \ref{sect:eg-tank}. The other examples follow the same general
18    structure as the tutorial examples. However, they only include brief
19    instructions in a text file called {\it README}.  The examples are
20    located in subdirectories under the directory \texttt{verification}.
21    Each example is briefly described below.
22    
23    \subsection{Full list of model examples}
24    
25    \begin{enumerate}
26      
27    \item \texttt{tutorial\_barotropic\_gyre}
28    
29    \item \texttt{tutorial\_barotropic\_gyre} - single layer, ocean double
30      gyre (barotropic with free-surface). This experiment is described in
31      detail in section \ref{sect:eg-baro}.
32    
33    \item \texttt{tutorial\_baroclinic\_gyre} - Four layer, ocean double
34      gyre. This experiment is described in detail in section
35      \ref{sect:eg-fourlayer}.
36    
37    \item \texttt{tutorial\_global\_oce\_latlon} - 4x4 degree global ocean
38      simulation with steady climatological forcing. This experiment is
39      described in detail in section \ref{sect:eg-global}.
40    
41    \item \texttt{exp4} - Flow over a Gaussian bump in open-water or
42      channel with open boundaries.
43      
44    \item \texttt{tutorial\_deep\_convection} - Inhomogenously forced
45      ocean convection in a doubly periodic box. This experiment is
46      described in detail in section \ref{sect:eg-bconv}.
47    
48    \item \texttt{front\_relax} - Relaxation of an ocean thermal front
49      (test for Gent/McWilliams scheme). 2D (Y-Z).
50    
51    \item \texttt{internal\_wave} - Ocean internal wave forced by open
52      boundary conditions.
53      
54    \item \texttt{natl\_box} - Eastern subtropical North Atlantic with KPP
55      scheme; 1 month integration
56      
57    \item \texttt{hs94.1x64x5} - Zonal averaged atmosphere using Held and
58      Suarez '94 forcing.
59      
60    \item \texttt{hs94.128x64x5} - 3D atmosphere dynamics using Held and
61      Suarez '94 forcing.
62      
63    \item \texttt{tutorial\_held\_suarez\_cs} - 3D atmosphere dynamics
64      using Held and Suarez (1994) forcing on the cubed sphere.  This
65      experiment is described in detail in section \ref{sect:eg-hs}.
66      
67    \item \texttt{aim.5l\_zon-ave} - Intermediate Atmospheric physics.
68      Global Zonal Mean configuration, 1x64x5 resolution.
69      
70    \item \texttt{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate
71      Atmospheric physics, equatorial Slice configuration.  2D (X-Z).
72      
73    \item \texttt{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric
74      physics. 3D Equatorial Channel configuration.
75      
76    \item \texttt{aim.5l\_LatLon} - Intermediate Atmospheric physics.
77      Global configuration, on latitude longitude grid with 128x64x5 grid
78      points ($2.8^\circ$ resolution).
79      
80    \item \texttt{aim.5l\_cs}
81    
82    \item \texttt{adjustment.128x64x1} Barotropic adjustment problem on
83      latitude longitude grid with 128x64 grid points ($2.8^\circ$ resolution).
84      
85    \item \texttt{adjustment.cs-32x32x1} Barotropic adjustment problem on
86      cube sphere grid with 32x32 points per face (roughly $2.8^\circ$
87      resolution).
88      
89    \item \texttt{advect\_cs} Two-dimensional passive advection test on
90      cube sphere grid.
91      
92    \item \texttt{advect\_xy} Two-dimensional (horizontal plane) passive
93      advection test on Cartesian grid.
94      
95    \item \texttt{advect\_xz} Two-dimensional (vertical plane) passive
96      advection test on Cartesian grid.
97      
98    \item \texttt{tutorial\_tracer\_adjsens} Simple passive tracer
99      experiment. Includes derivative calculation. This experiment is
100      described in detail in section \ref{sect:eg-simple-tracer}.
101    
102    \item \texttt{flt\_example} Example of using float package.
103      
104    \item \texttt{global\_ocean.90x40x15} Global circulation with GM, flux
105      boundary conditions and poles.
106    
107    \item \texttt{tutorial\_global\_oce\_in\_p} Global circulation in
108      pressure coordinate (non-Boussinesq ocean model). Described in
109      detail in section \ref{sect:eg-globalpressure}.
110    
111    \item \texttt{solid-body.cs-32x32x1} Solid body rotation test for cube
112      sphere grid.
113    
114    \item \texttt{tutorial\_plume\_on\_slope} Gravity Plume on a
115      continental slope.  This experiment is described in detail in
116      section \ref{sect:eg-gravityplume}.
117    
118    \item \texttt{tutorial\_global\_oce\_biogeo} Ocean model coupled to
119      the dissolved inorganic carbon biogeochemistry model. This
120      experiment is described in detail in section
121      \ref{sect:eg-biogeochem_tutorial}.
122    
123    \item \texttt{tutorial\_global\_oce\_optim} Global ocean state
124      estimation at $4^\circ$ resolution.  This experiment is described in
125      detail in section \ref{sect:eg-global_state_estimate}.
126    
127    \item \texttt{tutorial\_offline} Offline form of the MITgcm to study
128      advection of a passive tracer.  This experiment is described in
129      detail in section \ref{sect:eg-offline}.
130    
131    \item \texttt{rotating\_tank} Rotating tank simulation in cylindrical
132      coordinates.  This experiment is described in detail in section
133      \ref{sect:eg-tank}.
134    
135    \item \texttt{MLAdjust} Simple test for different viscosity formulations.
136    
137    \item \texttt{bottom\_ctrl\_5x5} Adjoint test using the bottom
138      topography as the control parameter.
139    
140    \item \texttt{cfc\_example} Global ocean with online computation and
141      advection of CFC11 and CFC12.
142    
143    \item \texttt{dome} Idealized 3D test of a density-driven bottom current.
144    
145    \item \texttt{exp2} Old version of the global ocean experiment.
146    
147    \item \texttt{exp5} Deep convection.
148    
149    \item \texttt{fizhi-cs-32x32x10} Global atmospheric simulation with
150      realistic topography, 10 vertical levels, a cubed sphere grid and
151      the full atmospheric physics package.
152    
153    \item \texttt{fizhi-cs-aqualev20} Global atmospheric simulation on an
154      aqua planet with full atmospheric physics. Run is perpetual march
155      with an analytical SST distribution.  This is the configuration for
156      the APE (Aqua Planet Experiment) participation experiment.
157    
158    \item \texttt{fizhi-gridalt-hs} Global atmospheric simulation
159      Held-Suarez (1994) forcing, with the physical forcing and the
160      dynamical forcing running on different vertical grids.
161    
162    \item \texttt{global\_ocean.cs32x15} Global ocean experiment on the
163      cubed sphere grid, using thermodynamic sea ice and bulk force
164      packages.
165    
166    \item \texttt{global\_ocean\_ebm} Global ocean experiment on a lat-lon
167      grid coupled to an atmospheric energy balance model. Similar to
168      global\_ocean.90x40x15 experiment.
169    
170    \item \texttt{global\_with\_exf} Global ocean experiment on a lat-lon
171      grid using the exf package. Similar to global\_ocean.90x40x15
172      experiment.
173    
174    \item \texttt{hs94.cs-32x32x5} 3D atmosphere dynamics using Held and
175      Suarez (1994) forcing on the cubed sphere. 5 vertical levels.
176    
177    \item \texttt{ideal\_2D\_oce} Idealized 2D global ocean simulation on
178      an aqua planet.
179    
180    \item \texttt{inverted\_barometer} Simple test of ocean response to
181      atmospheric pressure loading.
182    
183    \item \texttt{lab\_sea} Regional Labrador Sea simulation on a lat-lon
184      grid. Coupled to the sea ice model.
185    
186    \item \texttt{matrix\_example} Test of experimental method to
187      accelerated convergence towards equillibrium.
188    
189    \item \texttt{tutorial\_cfc\_offline} Offline form of the MITgcm to
190      study advection of a passive tracer and CFCs.
191    
192    \item \texttt{vermix} Simple test in a small domain (3 columns) for
193      ocean vertical mixing schemes.
194    
195    \end{enumerate}
196    
197    \subsection{Directory structure of model examples}
198    
199    Each example directory has the following subdirectories:
200    
201    \begin{itemize}
202    \item \texttt{code}: contains the code particular to the example. At a
203      minimum, this directory includes the following files:
204    
205      \begin{itemize}
206      \item \texttt{code/packages.conf}: declares the list of packages or
207        package groups to be used.  If not included, the default version
208        is located in \texttt{pkg/pkg\_default}.  Package groups are
209        simply convenient collections of commonly used packages which are
210        defined in \texttt{pkg/pkg\_default}.  Some packages may require
211        other packages or may require their absence (that is, they are
212        incompatible) and these package dependencies are listed in
213        \texttt{pkg/pkg\_depend}.
214    
215      \item \texttt{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
216        the ``execution environment'' part of the code. The default
217        version is located in \texttt{eesupp/inc}.
218      
219      \item \texttt{code/CPP\_OPTIONS.h}: declares CPP keys relative to
220        the ``numerical model'' part of the code. The default version is
221        located in \texttt{model/inc}.
222      
223      \item \texttt{code/SIZE.h}: declares size of underlying
224        computational grid.  The default version is located in
225        \texttt{model/inc}.
226      \end{itemize}
227      
228      In addition, other include files and subroutines might be present in
229      \texttt{code} depending on the particular experiment. See Section 2
230      for more details.
231      
232    \item \texttt{input}: contains the input data files required to run
233      the example. At a minimum, the \texttt{input} directory contains the
234      following files:
235    
236      \begin{itemize}
237      \item \texttt{input/data}: this file, written as a namelist,
238        specifies the main parameters for the experiment.
239      
240      \item \texttt{input/data.pkg}: contains parameters relative to the
241        packages used in the experiment.
242      
243      \item \texttt{input/eedata}: this file contains ``execution
244        environment'' data. At present, this consists of a specification
245        of the number of threads to use in $X$ and $Y$ under multithreaded
246        execution.
247      \end{itemize}
248      
249      In addition, you will also find in this directory the forcing and
250      topography files as well as the files describing the initial state
251      of the experiment.  This varies from experiment to experiment. See
252      the verification directories refered to in this chapter for more details.
253    
254    \item \texttt{results}: this directory contains the output file
255      \texttt{output.txt} produced by the simulation example. This file is
256      useful for comparison with your own output when you run the
257      experiment.
258    
259    \item \texttt{build}: this directory is where the model is compiled
260      and loaded, and where the executable resides.
261    
262    \end{itemize}
263    
264    Once you have chosen the example you want to run, you are ready to
265    compile the code.
266    
267    
268    \newpage
269  \input{part3/case_studies/barotropic_gyre/baro.tex}  \input{part3/case_studies/barotropic_gyre/baro.tex}
270    
271  \newpage  \newpage
# Line 35  Line 295 
295  \newpage  \newpage
296  \input{part3/case_studies/global_oce_estimation/global_oce_estimation.tex}  \input{part3/case_studies/global_oce_estimation/global_oce_estimation.tex}
297    
298  \begin{versionprivate}  \newpage
299    \input{part3/case_studies/sens_airsea_tracer/doc_ad_examples.tex}
300    
301    \newpage
302    \input{part3/case_studies/offline/offline_tutorial.tex}
303    
304  \newpage  \newpage
305  \input{part3/case_studies/rotating_tank/tank.tex}  \input{part3/case_studies/rotating_tank/tank.tex}
 \end{versionprivate}  

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.14

  ViewVC Help
Powered by ViewVC 1.1.22