/[MITgcm]/manual/s_examples/text/model_examples.tex
ViewVC logotype

Diff of /manual/s_examples/text/model_examples.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by edhill, Mon Aug 1 23:53:01 2005 UTC revision 1.19 by jmc, Tue Jan 15 23:24:59 2008 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  \section{Tutorials}  \section[MITgcm Example Experiments]{Example experiments}
5  \label{sect:tutorials}  \label{sect:modelExamples}
6  \label{www:tutorials}  \begin{rawhtml}
7    <!-- CMIREDIR:modelExamples: -->
8    \end{rawhtml}
9    
10    %% a set of pre-configured numerical experiments
11    
12    The full MITgcm distribution comes with a set of pre-configured
13    numerical experiments.  Some of these example experiments are tests of
14    individual parts of the model code, but many are fully fledged
15    numerical simulations. Full tutorials exist for a few of the examples,
16    and are documented in sections \ref{sect:eg-baro} -
17    \ref{sect:eg-tank}. The other examples follow the same general
18    structure as the tutorial examples. However, they only include brief
19    instructions in a text file called {\it README}.  The examples are
20    located in subdirectories under the directory \texttt{verification}.
21    Each example is briefly described below.
22    
23    \subsection{Full list of model examples}
24    
25    \begin{enumerate}
26      
27    \item \texttt{tutorial\_advection\_in\_gyre} - test of various
28      advection schemes in a single-layer double-gyre experiment.
29      This experiment is described in detail in section
30      \ref{sect:eg-adv-gyre}.
31    
32    \item \texttt{tutorial\_baroclinic\_gyre} - Four layer, ocean double
33      gyre. This experiment is described in detail in section
34      \ref{sect:eg-fourlayer}.
35    
36    \item \texttt{tutorial\_barotropic\_gyre} - single layer, ocean double
37      gyre (barotropic with free-surface).
38      This experiment is described in detail in section \ref{sect:eg-baro}.
39    
40    \item \texttt{tutorial\_cfc\_offline} Offline form of the MITgcm to
41      study advection of a passive tracer and CFCs.
42      This experiment is described in detail in section \ref{sect:eg-offline-cfc}.
43    
44    \item \texttt{tutorial\_deep\_convection} - Inhomogenously forced
45      ocean convection in a doubly periodic box. This experiment is
46      described in detail in section \ref{sect:eg-bconv}.
47    
48    \item \texttt{tutorial\_global\_oce\_biogeo} Ocean model coupled to
49      the dissolved inorganic carbon biogeochemistry model. This
50      experiment is described in detail in section
51      \ref{sect:eg-biogeochem_tutorial}.
52    
53    \item \texttt{tutorial\_global\_oce\_in\_p} Global ocean simulation in
54      pressure coordinate (non-Boussinesq ocean model). Described in
55      detail in section \ref{sect:eg-globalpressure}.
56    
57    \item \texttt{tutorial\_global\_oce\_latlon} - 4x4 degree global ocean
58      simulation with steady climatological forcing. This experiment is
59      described in detail in section \ref{sect:eg-global}.
60    
61    \item \texttt{tutorial\_global\_oce\_optim} Global ocean state
62      estimation at $4^\circ$ resolution.  This experiment is described in
63      detail in section \ref{sect:eg-global_state_estimate}.
64    
65    \item \texttt{tutorial\_held\_suarez\_cs} - 3D atmosphere dynamics
66      using Held and Suarez (1994) forcing on cubed sphere grid.  This
67      experiment is described in detail in section \ref{sect:eg-hs}.
68      
69    \item \texttt{tutorial\_offline} Offline form of the MITgcm to study
70      advection of a passive tracer.  This experiment is described in
71      detail in section \ref{sect:eg-offline}.
72    
73    \item \texttt{tutorial\_plume\_on\_slope} Gravity Plume on a
74      continental slope.  This experiment is described in detail in
75      section \ref{sect:eg-gravityplume}.
76    
77    \item \texttt{tutorial\_tracer\_adjsens} Simple passive tracer
78      experiment. Includes derivative calculation. This experiment is
79      described in detail in section \ref{sect:eg-simple-tracer-adjoint}.
80    
81    \item \texttt{adjustment.128x64x1} Barotropic adjustment problem on
82      latitude longitude grid with 128x64 grid points ($2.8^\circ$ resolution).
83      
84    \item \texttt{adjustment.cs-32x32x1} Barotropic adjustment problem on
85      cube sphere grid with 32x32 points per face (roughly $2.8^\circ$
86      resolution).
87      
88    \item \texttt{advect\_cs} Two-dimensional passive advection test on
89      cube sphere grid (32x32 grid points per face, roughly $2.8^\circ$)
90      
91    \item \texttt{advect\_xy} Two-dimensional (horizontal plane) passive
92      advection test on Cartesian grid.\\
93      Also contains an additional set-up iusing Adams-Bashforth 3 (input.ab3\_c4).
94      
95    \item \texttt{advect\_xz} Two-dimensional (vertical plane) passive
96      advection test on Cartesian grid.
97      
98    \item \texttt{aim.5l\_Equatorial\_Channel}
99      - 5-levels Intermediate Atmospheric physics,
100      3D Equatorial Channel configuration.
101      
102    \item \texttt{aim.5l\_LatLon} - 5-levels Intermediate Atmospheric physics,
103      Global configuration, on latitude longitude grid with 128x64x5 grid
104      points ($2.8^\circ$ resolution).
105      
106    \item \texttt{aim.5l\_cs} - 5-levels Intermediate Atmospheric physics,
107      Global configuration on cube sphere grid
108      (32x32 grid points per face, roughly $2.8^\circ$).\\
109      Also contains an additional set-up with an ocean mixed layer and thermodynamics
110      sea-ice (input.thSI).
111    
112    \item \texttt{biogeo} (to be removed)
113    
114    \item \texttt{bottom\_ctrl\_5x5} Adjoint test using the bottom
115      topography as the control parameter.
116    
117    \item \texttt{cfc\_example} Global ocean with online computation and
118      advection of CFC11 and CFC12.
119    
120    \item \texttt{cpl\_aim+ocn}
121    
122    \item \texttt{cpl\_atm2d+ocn}
123    
124    \item \texttt{deep\_anelastic}
125    
126    \item \texttt{dome} Idealized 3D test of a density-driven bottom current.
127    
128    \item \texttt{exp2} Old version of the global ocean experiment (no GM,
129          no partial-cells).\\
130      Also contains an additional set-up with ridid-lid (input.rigidLid).
131    
132    \item \texttt{exp4} - Flow over a Gaussian bump in open-water or
133      channel with open boundaries.
134      
135    \item \texttt{exp5} Deep convection.
136    
137    \item \texttt{fizhi-cs-32x32x40} Global atmospheric simulation with
138      realistic topography, 10 vertical levels, a cubed sphere grid and
139      the full atmospheric physics package.
140    
141    \item \texttt{fizhi-cs-aqualev20} Global atmospheric simulation on an
142      aqua planet with full atmospheric physics. Run is perpetual march
143      with an analytical SST distribution.  This is the configuration for
144      the APE (Aqua Planet Experiment) participation experiment.
145    
146    \item \texttt{fizhi-gridalt-hs} Global atmospheric simulation
147      Held-Suarez (1994) forcing, with the physical forcing and the
148      dynamical forcing running on different vertical grids.
149    
150    \item \texttt{flt\_example} Example of using float package.
151      
152    \item \texttt{front\_relax} - Relaxation of an ocean thermal front
153      (test for Gent/McWilliams scheme). 2D (Y-Z).
154    
155    \item \texttt{global1x1\_tot} ECCO-GODAE production configuration
156     version 1, 2 \& 3
157    
158    \item \texttt{global2x2\_tot} ECCO production configuration version 0
159    
160    \item \texttt{global\_ocean.90x40x15} Global ocean simulation at 4x4
161      degree resolution. Similar to tutorial\_global\_oce\_latlon, with
162      quasi-non-hydrostatics and non-hydrostatic metric terms.\\
163      Also contains an adjoint set-up (code\_ad, input\_ad).
164    
165    \item \texttt{global\_ocean.cs32x15} Global ocean experiment on the
166      cubed sphere grid.\\
167      Also contains additional set-ups:
168      \begin{enumerate}
169       \item non-hydrostratic with biharmonic viscosity (input.viscA4)
170       \item using thermodynamic sea ice and bulk force (input.thsice)
171       \item using thermodynamic (pkg/thsice) dynamics (pkg/seaice) sea-ice
172             and exf pkg (input.icedyn)
173      \end{enumerate}
174    
175    \item \texttt{global\_ocean\_ebm} Global ocean experiment on a lat-lon
176      grid coupled to an atmospheric energy balance model. Similar to
177      global\_ocean.90x40x15 experiment.
178    
179    \item \texttt{global\_with\_exf} Global ocean experiment on a lat-lon
180      grid using the exf package. Similar to global\_ocean.90x40x15
181      experiment.
182    
183    \item \texttt{hs94.128x64x5} - 3D atmosphere dynamics on lat-lon grid,
184      using Held and Suarez '94 forcing.
185      
186    \item \texttt{hs94.1x64x5} - Zonal averaged atmosphere dynamics
187      using Held and Suarez '94 forcing.
188      
189    \item \texttt{hs94.cs-32x32x5} 3D atmosphere dynamics using Held and
190      Suarez (1994) forcing on the cubed sphere. 5 vertical levels.
191    
192    \item \texttt{ideal\_2D\_oce} Idealized 2D global ocean simulation on
193      an aqua planet.
194    
195    \item \texttt{internal\_wave} - Ocean internal wave forced by open
196      boundary conditions.
197    
198    \item \texttt{inverted\_barometer} Simple test of ocean response to
199      atmospheric pressure loading.
200    
201    \item \texttt{isomip}
202    
203    \item \texttt{lab\_sea} Regional Labrador Sea simulation on a lat-lon
204      grid. Coupled to the sea ice model.
205    
206    \item \texttt{matrix\_example} Test of experimental method to
207      accelerated convergence towards equillibrium.
208    
209    \item \texttt{MLAdjust} Simple test for different viscosity formulations.
210    
211    \item \texttt{natl\_box} - Eastern subtropical North Atlantic with KPP
212      scheme; 1 month integration
213    
214    \item \texttt{natl\_box\_adjoint}
215    
216    \item \texttt{offline\_exf\_seaice}
217      
218    \item \texttt{OpenAD}
219    
220    \item \texttt{rotating\_tank} Rotating tank simulation in cylindrical
221      coordinates.  This experiment is described in detail in section
222      \ref{sect:eg-tank}.
223    
224    \item \texttt{seaice\_obcs}
225    
226    \item \texttt{solid-body.cs-32x32x1} Solid body rotation test for cube
227      sphere grid.
228    
229    \item \texttt{tidal\_basin\_2d}
230    
231    \item \texttt{vermix} Simple test in a small domain (3 columns) for
232      ocean vertical mixing schemes.
233    
234    \end{enumerate}
235    
236    \subsection{Directory structure of model examples}
237    
238    Each example directory has the following subdirectories:
239    
240    \begin{itemize}
241    \item \texttt{code}: contains the code particular to the example. At a
242      minimum, this directory includes the following files:
243    
244      \begin{itemize}
245      \item \texttt{code/packages.conf}: declares the list of packages or
246        package groups to be used.  If not included, the default version
247        is located in \texttt{pkg/pkg\_default}.  Package groups are
248        simply convenient collections of commonly used packages which are
249        defined in \texttt{pkg/pkg\_default}.  Some packages may require
250        other packages or may require their absence (that is, they are
251        incompatible) and these package dependencies are listed in
252        \texttt{pkg/pkg\_depend}.
253    
254      \item \texttt{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
255        the ``execution environment'' part of the code. The default
256        version is located in \texttt{eesupp/inc}.
257      
258      \item \texttt{code/CPP\_OPTIONS.h}: declares CPP keys relative to
259        the ``numerical model'' part of the code. The default version is
260        located in \texttt{model/inc}.
261      
262      \item \texttt{code/SIZE.h}: declares size of underlying
263        computational grid.  The default version is located in
264        \texttt{model/inc}.
265      \end{itemize}
266      
267      In addition, other include files and subroutines might be present in
268      \texttt{code} depending on the particular experiment. See Section 2
269      for more details.
270      
271    \item \texttt{input}: contains the input data files required to run
272      the example. At a minimum, the \texttt{input} directory contains the
273      following files:
274    
275      \begin{itemize}
276      \item \texttt{input/data}: this file, written as a namelist,
277        specifies the main parameters for the experiment.
278      
279      \item \texttt{input/data.pkg}: contains parameters relative to the
280        packages used in the experiment.
281      
282      \item \texttt{input/eedata}: this file contains ``execution
283        environment'' data. At present, this consists of a specification
284        of the number of threads to use in $X$ and $Y$ under multithreaded
285        execution.
286      \end{itemize}
287      
288      In addition, you will also find in this directory the forcing and
289      topography files as well as the files describing the initial state
290      of the experiment.  This varies from experiment to experiment. See
291      the verification directories refered to in this chapter for more details.
292    
293    \item \texttt{results}: this directory contains the output file
294      \texttt{output.txt} produced by the simulation example. This file is
295      useful for comparison with your own output when you run the
296      experiment.
297    
298    \item \texttt{build}: this directory is where the model is compiled
299      and loaded, and where the executable resides.
300    
301    \end{itemize}
302    
303    Once you have chosen the example you want to run, you are ready to
304    compile the code.
305    
306    
307    \newpage
308  \input{part3/case_studies/barotropic_gyre/baro.tex}  \input{part3/case_studies/barotropic_gyre/baro.tex}
309    
310  \newpage  \newpage
311  \input{part3/case_studies/fourlayer_gyre/fourlayer.tex}  \input{part3/case_studies/fourlayer_gyre/fourlayer.tex}
312    
313  \newpage  \newpage
314    \input{part3/case_studies/advection_in_gyre_circulation/adv_gyre.tex}
315    
316    \newpage
317  \input{part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex}  \input{part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex}
318    
319  \newpage  \newpage
320  \input{part3/case_studies/ogcm_in_pressure/ogcm_in_pressure.tex}  \input{part3/case_studies/ogcm_in_pressure/ogcm_in_pressure.tex}
321    
322  \newpage  \newpage
323  \input{part3/case_studies/hs_atmosphere/hs_atmos.tex}  \input{part3/case_studies/held_suarez_cs/held_suarez_cs.tex}
324    
325  \newpage  \newpage
326  \input{part3/case_studies/doubly_periodic_convection/convection.tex}  \input{part3/case_studies/doubly_periodic_convection/convection.tex}
# Line 27  Line 329 
329  \input{part3/case_studies/plume_on_slope/plume_on_slope.tex}  \input{part3/case_studies/plume_on_slope/plume_on_slope.tex}
330    
331  \newpage  \newpage
332  \input{part3/case_studies/carbon_outgassing_sensitivity/co2sens.tex}  \input{part3/case_studies/biogeochem_tutorial/biogeochem.tex}
333    
334  \newpage  \newpage
335  \input{part3/case_studies/biogeochem_tutorial/biogeochem.tex}  \input{part3/case_studies/global_oce_estimation/global_oce_estimation.tex}
336    
337    \newpage
338    \input{part3/case_studies/sens_airsea_tracer/doc_ad_examples.tex}
339    
340    \newpage
341    \input{part3/case_studies/offline/offline_tutorial.tex}
342    
 \begin{versionprivate}  
343  \newpage  \newpage
344  \input{part3/case_studies/rotating_tank/tank.tex}  \input{part3/case_studies/rotating_tank/tank.tex}
 \end{versionprivate}  

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.19

  ViewVC Help
Powered by ViewVC 1.1.22