/[MITgcm]/manual/s_examples/text/model_examples.tex
ViewVC logotype

Diff of /manual/s_examples/text/model_examples.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by edhill, Mon Aug 1 23:53:01 2005 UTC revision 1.15 by jahn, Tue Jan 15 16:31:06 2008 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  \section{Tutorials}  \section[MITgcm Example Experiments]{Example experiments}
5  \label{sect:tutorials}  \label{sect:modelExamples}
6  \label{www:tutorials}  \begin{rawhtml}
7    <!-- CMIREDIR:modelExamples: -->
8    \end{rawhtml}
9    
10    %% a set of pre-configured numerical experiments
11    
12    The full MITgcm distribution comes with a set of pre-configured
13    numerical experiments.  Some of these example experiments are tests of
14    individual parts of the model code, but many are fully fledged
15    numerical simulations. Full tutorials exist for a few of the examples,
16    and are documented in sections \ref{sect:eg-baro} -
17    \ref{sect:eg-tank}. The other examples follow the same general
18    structure as the tutorial examples. However, they only include brief
19    instructions in a text file called {\it README}.  The examples are
20    located in subdirectories under the directory \texttt{verification}.
21    Each example is briefly described below.
22    
23    \subsection{Full list of model examples}
24    
25    \begin{enumerate}
26      
27    \item \texttt{advection\_in\_gyre\_circulation} - test of various
28      advection schemes in a single-layer double-gyre experiment.
29      This experiment is described in detail in section
30      \ref{sect:eg-adv-gyre}.
31    
32    \item \texttt{tutorial\_barotropic\_gyre} - single layer, ocean double
33      gyre (barotropic with free-surface). This experiment is described in
34      detail in section \ref{sect:eg-baro}.
35    
36    \item \texttt{tutorial\_baroclinic\_gyre} - Four layer, ocean double
37      gyre. This experiment is described in detail in section
38      \ref{sect:eg-fourlayer}.
39    
40    \item \texttt{tutorial\_global\_oce\_latlon} - 4x4 degree global ocean
41      simulation with steady climatological forcing. This experiment is
42      described in detail in section \ref{sect:eg-global}.
43    
44    \item \texttt{exp4} - Flow over a Gaussian bump in open-water or
45      channel with open boundaries.
46      
47    \item \texttt{tutorial\_deep\_convection} - Inhomogenously forced
48      ocean convection in a doubly periodic box. This experiment is
49      described in detail in section \ref{sect:eg-bconv}.
50    
51    \item \texttt{front\_relax} - Relaxation of an ocean thermal front
52      (test for Gent/McWilliams scheme). 2D (Y-Z).
53    
54    \item \texttt{internal\_wave} - Ocean internal wave forced by open
55      boundary conditions.
56      
57    \item \texttt{natl\_box} - Eastern subtropical North Atlantic with KPP
58      scheme; 1 month integration
59      
60    \item \texttt{hs94.1x64x5} - Zonal averaged atmosphere using Held and
61      Suarez '94 forcing.
62      
63    \item \texttt{hs94.128x64x5} - 3D atmosphere dynamics using Held and
64      Suarez '94 forcing.
65      
66    \item \texttt{tutorial\_held\_suarez\_cs} - 3D atmosphere dynamics
67      using Held and Suarez (1994) forcing on the cubed sphere.  This
68      experiment is described in detail in section \ref{sect:eg-hs}.
69      
70    \item \texttt{aim.5l\_zon-ave} - Intermediate Atmospheric physics.
71      Global Zonal Mean configuration, 1x64x5 resolution.
72      
73    \item \texttt{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate
74      Atmospheric physics, equatorial Slice configuration.  2D (X-Z).
75      
76    \item \texttt{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric
77      physics. 3D Equatorial Channel configuration.
78      
79    \item \texttt{aim.5l\_LatLon} - Intermediate Atmospheric physics.
80      Global configuration, on latitude longitude grid with 128x64x5 grid
81      points ($2.8^\circ$ resolution).
82      
83    \item \texttt{aim.5l\_cs}
84    
85    \item \texttt{adjustment.128x64x1} Barotropic adjustment problem on
86      latitude longitude grid with 128x64 grid points ($2.8^\circ$ resolution).
87      
88    \item \texttt{adjustment.cs-32x32x1} Barotropic adjustment problem on
89      cube sphere grid with 32x32 points per face (roughly $2.8^\circ$
90      resolution).
91      
92    \item \texttt{advect\_cs} Two-dimensional passive advection test on
93      cube sphere grid.
94      
95    \item \texttt{advect\_xy} Two-dimensional (horizontal plane) passive
96      advection test on Cartesian grid.
97      
98    \item \texttt{advect\_xz} Two-dimensional (vertical plane) passive
99      advection test on Cartesian grid.
100      
101    \item \texttt{tutorial\_tracer\_adjsens} Simple passive tracer
102      experiment. Includes derivative calculation. This experiment is
103      described in detail in section \ref{sect:eg-simple-tracer}.
104    
105    \item \texttt{flt\_example} Example of using float package.
106      
107    \item \texttt{global\_ocean.90x40x15} Global circulation with GM, flux
108      boundary conditions and poles.
109    
110    \item \texttt{tutorial\_global\_oce\_in\_p} Global circulation in
111      pressure coordinate (non-Boussinesq ocean model). Described in
112      detail in section \ref{sect:eg-globalpressure}.
113    
114    \item \texttt{solid-body.cs-32x32x1} Solid body rotation test for cube
115      sphere grid.
116    
117    \item \texttt{tutorial\_plume\_on\_slope} Gravity Plume on a
118      continental slope.  This experiment is described in detail in
119      section \ref{sect:eg-gravityplume}.
120    
121    \item \texttt{tutorial\_global\_oce\_biogeo} Ocean model coupled to
122      the dissolved inorganic carbon biogeochemistry model. This
123      experiment is described in detail in section
124      \ref{sect:eg-biogeochem_tutorial}.
125    
126    \item \texttt{tutorial\_global\_oce\_optim} Global ocean state
127      estimation at $4^\circ$ resolution.  This experiment is described in
128      detail in section \ref{sect:eg-global_state_estimate}.
129    
130    \item \texttt{tutorial\_offline} Offline form of the MITgcm to study
131      advection of a passive tracer.  This experiment is described in
132      detail in section \ref{sect:eg-offline}.
133    
134    \item \texttt{rotating\_tank} Rotating tank simulation in cylindrical
135      coordinates.  This experiment is described in detail in section
136      \ref{sect:eg-tank}.
137    
138    \item \texttt{MLAdjust} Simple test for different viscosity formulations.
139    
140    \item \texttt{bottom\_ctrl\_5x5} Adjoint test using the bottom
141      topography as the control parameter.
142    
143    \item \texttt{cfc\_example} Global ocean with online computation and
144      advection of CFC11 and CFC12.
145    
146    \item \texttt{dome} Idealized 3D test of a density-driven bottom current.
147    
148    \item \texttt{exp2} Old version of the global ocean experiment.
149    
150    \item \texttt{exp5} Deep convection.
151    
152    \item \texttt{fizhi-cs-32x32x10} Global atmospheric simulation with
153      realistic topography, 10 vertical levels, a cubed sphere grid and
154      the full atmospheric physics package.
155    
156    \item \texttt{fizhi-cs-aqualev20} Global atmospheric simulation on an
157      aqua planet with full atmospheric physics. Run is perpetual march
158      with an analytical SST distribution.  This is the configuration for
159      the APE (Aqua Planet Experiment) participation experiment.
160    
161    \item \texttt{fizhi-gridalt-hs} Global atmospheric simulation
162      Held-Suarez (1994) forcing, with the physical forcing and the
163      dynamical forcing running on different vertical grids.
164    
165    \item \texttt{global\_ocean.cs32x15} Global ocean experiment on the
166      cubed sphere grid, using thermodynamic sea ice and bulk force
167      packages.
168    
169    \item \texttt{global\_ocean\_ebm} Global ocean experiment on a lat-lon
170      grid coupled to an atmospheric energy balance model. Similar to
171      global\_ocean.90x40x15 experiment.
172    
173    \item \texttt{global\_with\_exf} Global ocean experiment on a lat-lon
174      grid using the exf package. Similar to global\_ocean.90x40x15
175      experiment.
176    
177    \item \texttt{hs94.cs-32x32x5} 3D atmosphere dynamics using Held and
178      Suarez (1994) forcing on the cubed sphere. 5 vertical levels.
179    
180    \item \texttt{ideal\_2D\_oce} Idealized 2D global ocean simulation on
181      an aqua planet.
182    
183    \item \texttt{inverted\_barometer} Simple test of ocean response to
184      atmospheric pressure loading.
185    
186    \item \texttt{lab\_sea} Regional Labrador Sea simulation on a lat-lon
187      grid. Coupled to the sea ice model.
188    
189    \item \texttt{matrix\_example} Test of experimental method to
190      accelerated convergence towards equillibrium.
191    
192    \item \texttt{tutorial\_cfc\_offline} Offline form of the MITgcm to
193      study advection of a passive tracer and CFCs.
194    
195    \item \texttt{vermix} Simple test in a small domain (3 columns) for
196      ocean vertical mixing schemes.
197    
198    \end{enumerate}
199    
200    \subsection{Directory structure of model examples}
201    
202    Each example directory has the following subdirectories:
203    
204    \begin{itemize}
205    \item \texttt{code}: contains the code particular to the example. At a
206      minimum, this directory includes the following files:
207    
208      \begin{itemize}
209      \item \texttt{code/packages.conf}: declares the list of packages or
210        package groups to be used.  If not included, the default version
211        is located in \texttt{pkg/pkg\_default}.  Package groups are
212        simply convenient collections of commonly used packages which are
213        defined in \texttt{pkg/pkg\_default}.  Some packages may require
214        other packages or may require their absence (that is, they are
215        incompatible) and these package dependencies are listed in
216        \texttt{pkg/pkg\_depend}.
217    
218      \item \texttt{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
219        the ``execution environment'' part of the code. The default
220        version is located in \texttt{eesupp/inc}.
221      
222      \item \texttt{code/CPP\_OPTIONS.h}: declares CPP keys relative to
223        the ``numerical model'' part of the code. The default version is
224        located in \texttt{model/inc}.
225      
226      \item \texttt{code/SIZE.h}: declares size of underlying
227        computational grid.  The default version is located in
228        \texttt{model/inc}.
229      \end{itemize}
230      
231      In addition, other include files and subroutines might be present in
232      \texttt{code} depending on the particular experiment. See Section 2
233      for more details.
234      
235    \item \texttt{input}: contains the input data files required to run
236      the example. At a minimum, the \texttt{input} directory contains the
237      following files:
238    
239      \begin{itemize}
240      \item \texttt{input/data}: this file, written as a namelist,
241        specifies the main parameters for the experiment.
242      
243      \item \texttt{input/data.pkg}: contains parameters relative to the
244        packages used in the experiment.
245      
246      \item \texttt{input/eedata}: this file contains ``execution
247        environment'' data. At present, this consists of a specification
248        of the number of threads to use in $X$ and $Y$ under multithreaded
249        execution.
250      \end{itemize}
251      
252      In addition, you will also find in this directory the forcing and
253      topography files as well as the files describing the initial state
254      of the experiment.  This varies from experiment to experiment. See
255      the verification directories refered to in this chapter for more details.
256    
257    \item \texttt{results}: this directory contains the output file
258      \texttt{output.txt} produced by the simulation example. This file is
259      useful for comparison with your own output when you run the
260      experiment.
261    
262    \item \texttt{build}: this directory is where the model is compiled
263      and loaded, and where the executable resides.
264    
265    \end{itemize}
266    
267    Once you have chosen the example you want to run, you are ready to
268    compile the code.
269    
270    
271    \newpage
272    \input{part3/case_studies/advection_in_gyre_circulation/adv_gyre.tex}
273    
274    \newpage
275  \input{part3/case_studies/barotropic_gyre/baro.tex}  \input{part3/case_studies/barotropic_gyre/baro.tex}
276    
277  \newpage  \newpage
# Line 18  Line 284 
284  \input{part3/case_studies/ogcm_in_pressure/ogcm_in_pressure.tex}  \input{part3/case_studies/ogcm_in_pressure/ogcm_in_pressure.tex}
285    
286  \newpage  \newpage
287  \input{part3/case_studies/hs_atmosphere/hs_atmos.tex}  \input{part3/case_studies/held_suarez_cs/held_suarez_cs.tex}
288    
289  \newpage  \newpage
290  \input{part3/case_studies/doubly_periodic_convection/convection.tex}  \input{part3/case_studies/doubly_periodic_convection/convection.tex}
# Line 32  Line 298 
298  \newpage  \newpage
299  \input{part3/case_studies/biogeochem_tutorial/biogeochem.tex}  \input{part3/case_studies/biogeochem_tutorial/biogeochem.tex}
300    
301  \begin{versionprivate}  \newpage
302    \input{part3/case_studies/global_oce_estimation/global_oce_estimation.tex}
303    
304    \newpage
305    \input{part3/case_studies/sens_airsea_tracer/doc_ad_examples.tex}
306    
307    \newpage
308    \input{part3/case_studies/offline/offline_tutorial.tex}
309    
310  \newpage  \newpage
311  \input{part3/case_studies/rotating_tank/tank.tex}  \input{part3/case_studies/rotating_tank/tank.tex}
 \end{versionprivate}  

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.15

  ViewVC Help
Powered by ViewVC 1.1.22