/[MITgcm]/manual/s_examples/text/model_examples.tex
ViewVC logotype

Diff of /manual/s_examples/text/model_examples.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by afe, Tue Jun 22 15:07:37 2004 UTC revision 1.17 by jmc, Tue Jan 15 21:14:34 2008 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
4  \section{Tutorials}  \section[MITgcm Example Experiments]{Example experiments}
5  \label{sect:tutorials}  \label{sect:modelExamples}
6  \label{www:tutorials}  \begin{rawhtml}
7    <!-- CMIREDIR:modelExamples: -->
8    \end{rawhtml}
9    
10    %% a set of pre-configured numerical experiments
11    
12    The full MITgcm distribution comes with a set of pre-configured
13    numerical experiments.  Some of these example experiments are tests of
14    individual parts of the model code, but many are fully fledged
15    numerical simulations. Full tutorials exist for a few of the examples,
16    and are documented in sections \ref{sect:eg-baro} -
17    \ref{sect:eg-tank}. The other examples follow the same general
18    structure as the tutorial examples. However, they only include brief
19    instructions in a text file called {\it README}.  The examples are
20    located in subdirectories under the directory \texttt{verification}.
21    Each example is briefly described below.
22    
23    \subsection{Full list of model examples}
24    
25    \begin{enumerate}
26      
27    \item \texttt{tutorial_advection\_in\_gyre} - test of various
28      advection schemes in a single-layer double-gyre experiment.
29      This experiment is described in detail in section
30      \ref{sect:eg-adv-gyre}.
31    
32    \item \texttt{tutorial\_baroclinic\_gyre} - Four layer, ocean double
33      gyre. This experiment is described in detail in section
34      \ref{sect:eg-fourlayer}.
35    
36    \item \texttt{tutorial\_barotropic\_gyre} - single layer, ocean double
37      gyre (barotropic with free-surface). This experiment is described in
38      detail in section \ref{sect:eg-baro}.
39    
40    \item \texttt{tutorial\_cfc\_offline} Offline form of the MITgcm to
41      study advection of a passive tracer and CFCs.
42    
43    \item \texttt{tutorial\_deep\_convection} - Inhomogenously forced
44      ocean convection in a doubly periodic box. This experiment is
45      described in detail in section \ref{sect:eg-bconv}.
46    
47    \item \texttt{tutorial\_global\_oce\_biogeo} Ocean model coupled to
48      the dissolved inorganic carbon biogeochemistry model. This
49      experiment is described in detail in section
50      \ref{sect:eg-biogeochem_tutorial}.
51    
52    \item \texttt{tutorial\_global\_oce\_in\_p} Global circulation in
53      pressure coordinate (non-Boussinesq ocean model). Described in
54      detail in section \ref{sect:eg-globalpressure}.
55    
56    \item \texttt{tutorial\_global\_oce\_latlon} - 4x4 degree global ocean
57      simulation with steady climatological forcing. This experiment is
58      described in detail in section \ref{sect:eg-global}.
59    
60    \item \texttt{tutorial\_global\_oce\_optim} Global ocean state
61      estimation at $4^\circ$ resolution.  This experiment is described in
62      detail in section \ref{sect:eg-global_state_estimate}.
63    
64    \item \texttt{tutorial\_held\_suarez\_cs} - 3D atmosphere dynamics
65      using Held and Suarez (1994) forcing on the cubed sphere.  This
66      experiment is described in detail in section \ref{sect:eg-hs}.
67      
68    \item \texttt{tutorial\_offline} Offline form of the MITgcm to study
69      advection of a passive tracer.  This experiment is described in
70      detail in section \ref{sect:eg-offline}.
71    
72    \item \texttt{tutorial\_plume\_on\_slope} Gravity Plume on a
73      continental slope.  This experiment is described in detail in
74      section \ref{sect:eg-gravityplume}.
75    
76    \item \texttt{tutorial\_tracer\_adjsens} Simple passive tracer
77      experiment. Includes derivative calculation. This experiment is
78      described in detail in section \ref{sect:eg-simple-tracer}.
79    
80    \item \texttt{adjustment.128x64x1} Barotropic adjustment problem on
81      latitude longitude grid with 128x64 grid points ($2.8^\circ$ resolution).
82      
83    \item \texttt{adjustment.cs-32x32x1} Barotropic adjustment problem on
84      cube sphere grid with 32x32 points per face (roughly $2.8^\circ$
85      resolution).
86      
87    \item \texttt{advect\_cs} Two-dimensional passive advection test on
88      cube sphere grid (32x32 grid points per face, roughly $2.8^\circ$)
89      
90    \item \texttt{advect\_xy} Two-dimensional (horizontal plane) passive
91      advection test on Cartesian grid.
92      
93    \item \texttt{advect\_xz} Two-dimensional (vertical plane) passive
94      advection test on Cartesian grid.
95      
96    \item \texttt{aim.5l\_Equatorial\_Channel}
97      - 5-levels Intermediate Atmospheric physics,
98      3D Equatorial Channel configuration.
99      
100    \item \texttt{aim.5l\_LatLon} - 5-levels Intermediate Atmospheric physics,
101      Global configuration, on latitude longitude grid with 128x64x5 grid
102      points ($2.8^\circ$ resolution).
103      
104    \item \texttt{aim.5l\_cs} - 5-levels Intermediate Atmospheric physics,
105      Global configuration on cube sphere grid
106      (32x32 grid points per face, roughly $2.8^\circ$).
107    
108    \item \texttt{bottom\_ctrl\_5x5} Adjoint test using the bottom
109      topography as the control parameter.
110    
111    \item \texttt{cfc\_example} Global ocean with online computation and
112      advection of CFC11 and CFC12.
113    
114    \item \texttt{dome} Idealized 3D test of a density-driven bottom current.
115    
116    \item \texttt{exp2} Old version of the global ocean experiment.
117    
118    \item \texttt{exp4} - Flow over a Gaussian bump in open-water or
119      channel with open boundaries.
120      
121    \item \texttt{exp5} Deep convection.
122    
123    \item \texttt{fizhi-cs-32x32x40} Global atmospheric simulation with
124      realistic topography, 10 vertical levels, a cubed sphere grid and
125      the full atmospheric physics package.
126    
127    \item \texttt{fizhi-cs-aqualev20} Global atmospheric simulation on an
128      aqua planet with full atmospheric physics. Run is perpetual march
129      with an analytical SST distribution.  This is the configuration for
130      the APE (Aqua Planet Experiment) participation experiment.
131    
132    \item \texttt{fizhi-gridalt-hs} Global atmospheric simulation
133      Held-Suarez (1994) forcing, with the physical forcing and the
134      dynamical forcing running on different vertical grids.
135    
136    \item \texttt{flt\_example} Example of using float package.
137      
138    \item \texttt{front\_relax} - Relaxation of an ocean thermal front
139      (test for Gent/McWilliams scheme). 2D (Y-Z).
140    
141    \item \texttt{global\_ocean.90x40x15} Global circulation with GM, flux
142      boundary conditions and poles.
143    
144    \item \texttt{global\_ocean.cs32x15} Global ocean experiment on the
145      cubed sphere grid, using thermodynamic sea ice and bulk force
146      packages.
147    
148    \item \texttt{global\_ocean\_ebm} Global ocean experiment on a lat-lon
149      grid coupled to an atmospheric energy balance model. Similar to
150      global\_ocean.90x40x15 experiment.
151    
152    \item \texttt{global\_with\_exf} Global ocean experiment on a lat-lon
153      grid using the exf package. Similar to global\_ocean.90x40x15
154      experiment.
155    
156    \item \texttt{hs94.128x64x5} - 3D atmosphere dynamics using Held and
157      Suarez '94 forcing.
158      
159    \item \texttt{hs94.1x64x5} - Zonal averaged atmosphere using Held and
160      Suarez '94 forcing.
161      
162    \item \texttt{hs94.cs-32x32x5} 3D atmosphere dynamics using Held and
163      Suarez (1994) forcing on the cubed sphere. 5 vertical levels.
164    
165    \item \texttt{ideal\_2D\_oce} Idealized 2D global ocean simulation on
166      an aqua planet.
167    
168    \item \texttt{internal\_wave} - Ocean internal wave forced by open
169      boundary conditions.
170    
171    \item \texttt{inverted\_barometer} Simple test of ocean response to
172      atmospheric pressure loading.
173    
174    \item \texttt{lab\_sea} Regional Labrador Sea simulation on a lat-lon
175      grid. Coupled to the sea ice model.
176    
177    \item \texttt{matrix\_example} Test of experimental method to
178      accelerated convergence towards equillibrium.
179    
180    \item \texttt{MLAdjust} Simple test for different viscosity formulations.
181    
182    \item \texttt{natl\_box} - Eastern subtropical North Atlantic with KPP
183      scheme; 1 month integration
184      
185    \item \texttt{rotating\_tank} Rotating tank simulation in cylindrical
186      coordinates.  This experiment is described in detail in section
187      \ref{sect:eg-tank}.
188    
189    \item \texttt{solid-body.cs-32x32x1} Solid body rotation test for cube
190      sphere grid.
191    
192    \item \texttt{vermix} Simple test in a small domain (3 columns) for
193      ocean vertical mixing schemes.
194    
195    \end{enumerate}
196    
197    \subsection{Directory structure of model examples}
198    
199    Each example directory has the following subdirectories:
200    
201    \begin{itemize}
202    \item \texttt{code}: contains the code particular to the example. At a
203      minimum, this directory includes the following files:
204    
205      \begin{itemize}
206      \item \texttt{code/packages.conf}: declares the list of packages or
207        package groups to be used.  If not included, the default version
208        is located in \texttt{pkg/pkg\_default}.  Package groups are
209        simply convenient collections of commonly used packages which are
210        defined in \texttt{pkg/pkg\_default}.  Some packages may require
211        other packages or may require their absence (that is, they are
212        incompatible) and these package dependencies are listed in
213        \texttt{pkg/pkg\_depend}.
214    
215      \item \texttt{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
216        the ``execution environment'' part of the code. The default
217        version is located in \texttt{eesupp/inc}.
218      
219      \item \texttt{code/CPP\_OPTIONS.h}: declares CPP keys relative to
220        the ``numerical model'' part of the code. The default version is
221        located in \texttt{model/inc}.
222      
223      \item \texttt{code/SIZE.h}: declares size of underlying
224        computational grid.  The default version is located in
225        \texttt{model/inc}.
226      \end{itemize}
227      
228      In addition, other include files and subroutines might be present in
229      \texttt{code} depending on the particular experiment. See Section 2
230      for more details.
231      
232    \item \texttt{input}: contains the input data files required to run
233      the example. At a minimum, the \texttt{input} directory contains the
234      following files:
235    
236      \begin{itemize}
237      \item \texttt{input/data}: this file, written as a namelist,
238        specifies the main parameters for the experiment.
239      
240      \item \texttt{input/data.pkg}: contains parameters relative to the
241        packages used in the experiment.
242      
243      \item \texttt{input/eedata}: this file contains ``execution
244        environment'' data. At present, this consists of a specification
245        of the number of threads to use in $X$ and $Y$ under multithreaded
246        execution.
247      \end{itemize}
248      
249      In addition, you will also find in this directory the forcing and
250      topography files as well as the files describing the initial state
251      of the experiment.  This varies from experiment to experiment. See
252      the verification directories refered to in this chapter for more details.
253    
254    \item \texttt{results}: this directory contains the output file
255      \texttt{output.txt} produced by the simulation example. This file is
256      useful for comparison with your own output when you run the
257      experiment.
258    
259    \item \texttt{build}: this directory is where the model is compiled
260      and loaded, and where the executable resides.
261    
262    \end{itemize}
263    
264    Once you have chosen the example you want to run, you are ready to
265    compile the code.
266    
267    
268    \newpage
269  \input{part3/case_studies/barotropic_gyre/baro.tex}  \input{part3/case_studies/barotropic_gyre/baro.tex}
270    
271  \newpage  \newpage
272  \input{part3/case_studies/fourlayer_gyre/fourlayer.tex}  \input{part3/case_studies/fourlayer_gyre/fourlayer.tex}
273    
274  \newpage  \newpage
275    \input{part3/case_studies/advection_in_gyre_circulation/adv_gyre.tex}
276    
277    \newpage
278  \input{part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex}  \input{part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex}
279    
280  \newpage  \newpage
281  \input{part3/case_studies/ogcm_in_pressure/ogcm_in_pressure.tex}  \input{part3/case_studies/ogcm_in_pressure/ogcm_in_pressure.tex}
282    
283  \newpage  \newpage
284  \input{part3/case_studies/hs_atmosphere/hs_atmos.tex}  \input{part3/case_studies/held_suarez_cs/held_suarez_cs.tex}
285    
286  \newpage  \newpage
287  \input{part3/case_studies/doubly_periodic_convection/convection.tex}  \input{part3/case_studies/doubly_periodic_convection/convection.tex}
# Line 27  Line 290 
290  \input{part3/case_studies/plume_on_slope/plume_on_slope.tex}  \input{part3/case_studies/plume_on_slope/plume_on_slope.tex}
291    
292  \newpage  \newpage
293  \input{part3/case_studies/carbon_outgassing_sensitivity/co2sens.tex}  \input{part3/case_studies/biogeochem_tutorial/biogeochem.tex}
294    
295    \newpage
296    \input{part3/case_studies/global_oce_estimation/global_oce_estimation.tex}
297    
298    \newpage
299    \input{part3/case_studies/sens_airsea_tracer/doc_ad_examples.tex}
300    
301    \newpage
302    \input{part3/case_studies/offline/offline_tutorial.tex}
303    
 \begin{versionprivate}  
304  \newpage  \newpage
305  \input{part3/case_studies/rotating_tank/tank.tex}  \input{part3/case_studies/rotating_tank/tank.tex}
 \end{versionprivate}  

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.17

  ViewVC Help
Powered by ViewVC 1.1.22