/[MITgcm]/manual/s_examples/text/model_examples.tex
ViewVC logotype

Annotation of /manual/s_examples/text/model_examples.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (hide annotations) (download) (as text)
Tue Jun 27 20:47:05 2006 UTC (19 years ago) by molod
Branch: MAIN
Changes since 1.11: +59 -3 lines
File MIME type: application/x-tex
Add cross referencing for packages, verification experiments and tutorials

1 molod 1.12 % $Header: /u/gcmpack/manual/part3/tutorials.tex,v 1.11 2006/06/27 19:08:22 molod Exp $
2 adcroft 1.1 % $Name: $
3    
4 molod 1.11 \section[MITgcm Example Experiments]{Example experiments}
5     \label{sect:modelExamples}
6     \begin{rawhtml}
7     <!-- CMIREDIR:modelExamples: -->
8     \end{rawhtml}
9    
10     %% a set of pre-configured numerical experiments
11    
12     The full MITgcm distribution comes with a set of pre-configured numerical experiments.
13     Some of these example experiments are tests of individual parts of the model code, but many
14     are fully fledged numerical simulations. Full tutorials exist for a few of the examples,
15     and are documented in sections \ref{sect:eg-baro} - \ref{sect:eg-tank}. The other examples
16     follow the same general structure as the tutorial examples. However, they only include brief
17     instructions in a text file called {\it README}. The examples are located in subdirectories
18     under the directory \texttt{verification}. Each example is briefly described below.
19    
20     \subsection{Full list of model examples}
21    
22     \begin{enumerate}
23    
24 molod 1.12 \item \texttt{tutorial\_barotropic\_gyre}
25    
26 molod 1.11 \item \texttt{tutorial\_barotropic\_gyre} - single layer, ocean double gyre
27     (barotropic with free-surface). This experiment is described in detail in section
28     \ref{sect:eg-baro}.
29    
30     \item \texttt{tutorial\_baroclinic\_gyre} - Four layer, ocean double gyre. This experiment
31     is described in detail in section \ref{sect:eg-fourlayer}.
32    
33     \item \texttt{tutorial\_global\_oce\_latlon} - 4x4 degree global ocean simulation with steady
34     climatological forcing. This experiment is described in detail in section \ref{sect:eg-global}.
35    
36     \item \texttt{exp4} - Flow over a Gaussian bump in open-water or channel with open boundaries.
37    
38     \item \texttt{tutorial\_deep\_convection} - Inhomogenously forced ocean convection in a
39     doubly periodic box. This experiment is described in detail in section \ref{sect:eg-bconv}.
40    
41     \item \texttt{front\_relax} - Relaxation of an ocean thermal front (test for
42     Gent/McWilliams scheme). 2D (Y-Z).
43    
44     \item \texttt{internal\_wave} - Ocean internal wave forced by open
45     boundary conditions.
46    
47     \item \texttt{natl\_box} - Eastern subtropical North Atlantic with KPP
48     scheme; 1 month integration
49    
50     \item \texttt{hs94.1x64x5} - Zonal averaged atmosphere using Held and
51     Suarez '94 forcing.
52    
53     \item \texttt{hs94.128x64x5} - 3D atmosphere dynamics using Held and
54     Suarez '94 forcing.
55    
56 molod 1.12 \item \texttt{tutorial\_held\_suarez\_cs} - 3D atmosphere dynamics using Held and Suarez
57 molod 1.11 (1994) forcing on the cubed sphere. This experiment is described in detail in
58     section \ref{sect:eg-hs}.
59    
60     \item \texttt{aim.5l\_zon-ave} - Intermediate Atmospheric physics.
61     Global Zonal Mean configuration, 1x64x5 resolution.
62    
63     \item \texttt{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate
64     Atmospheric physics, equatorial Slice configuration. 2D (X-Z).
65    
66     \item \texttt{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric
67     physics. 3D Equatorial Channel configuration.
68    
69     \item \texttt{aim.5l\_LatLon} - Intermediate Atmospheric physics.
70     Global configuration, on latitude longitude grid with 128x64x5 grid
71     points ($2.8^\circ$ resolution).
72    
73 molod 1.12 \item \texttt{aim.5l_cs}
74    
75 molod 1.11 \item \texttt{adjustment.128x64x1} Barotropic adjustment problem on
76     latitude longitude grid with 128x64 grid points ($2.8^\circ$ resolution).
77    
78     \item \texttt{adjustment.cs-32x32x1} Barotropic adjustment problem on
79     cube sphere grid with 32x32 points per face (roughly $2.8^\circ$
80     resolution).
81    
82     \item \texttt{advect\_cs} Two-dimensional passive advection test on
83     cube sphere grid.
84    
85     \item \texttt{advect\_xy} Two-dimensional (horizontal plane) passive
86     advection test on Cartesian grid.
87    
88 molod 1.12 \item \texttt{advect\_xz} Two-dimensional (vertical plane) passive
89 molod 1.11 advection test on Cartesian grid.
90    
91     \item \texttt{tutorial\_tracer\_adjsens} Simple passive tracer experiment. Includes
92     derivative calculation. This experiment is described in detail in section
93     \ref{sect:eg-simple-tracer}.
94    
95     \item \texttt{flt\_example} Example of using float package.
96    
97     \item \texttt{global\_ocean.90x40x15} Global circulation with GM, flux
98     boundary conditions and poles.
99    
100     \item \texttt{tutorial\_global\_oce\_in\_p} Global circulation in pressure
101     coordinate (non-Boussinesq ocean model). Described in detail in
102     section \ref{sect:eg-globalpressure}.
103    
104     \item \texttt{solid-body.cs-32x32x1} Solid body rotation test for cube
105     sphere grid.
106    
107     \item \texttt{tutorial\_plume\_on\_slope} Gravity Plume on a continental slope.
108     This experiment is described in detail in section \ref{sect:eg-gravityplume}.
109    
110     \item \texttt{tutorial\_global\_oce\_biogeo} Ocean model coupled to the dissolved
111     inorganic carbon biogeochemistry model. This experiment is described in detail in section
112     \ref{sect:eg-biogeochem\_tutorial}.
113    
114     \item \texttt{tutorial\_global\_oce\_optim} Global ocean state estimation at $4^\circ$ resolution.
115     This experiment is described in detail in section \ref{sect:eg-global\_state\_estimate}.
116    
117     \item \texttt{tutorial\_offline} Offline form of the MITgcm to study advection of a passive
118     tracer. This experiment is described in detail in section \ref{sect:eg-offline}.
119    
120     \item \texttt{rotating\_tank} Rotating tank simulation in cylindrical coordinates.
121     This experiment is described in detail in section \ref{sect:eg-tank}.
122    
123 molod 1.12 \item \texttt{MLAdjust} Simple test for different viscosity formulations.
124    
125     \item \texttt{bottom_ctrl_5x5} Adjoint test using the bottom topography as the
126     control parameter.
127    
128     \item \texttt{cfc_example} Global ocean with online computation and advection of
129     CFC11 and CFC12.
130    
131     \item \texttt{dome} Idealized 3D test of a density-driven bottom current.
132    
133     \item \texttt{exp2} Old version of the global ocean experiment.
134    
135     \item \texttt{exp5} Deep convection.
136    
137     \item \texttt{fizhi-cs-32x32x10} Global atmospheric simulation with realistic topography,
138     10 vertical levels, a cubed sphere grid and the full atmospheric physics package.
139    
140     \item \texttt{fizhi-cs-aqualev20} Global atmospheric simulation on an aqua planet with
141     full atmospheric physics. Run is perpetual march with an analytical SST distribution.
142     This is the configuration for the APE (Aqua Planet Experiment) participation experiment.
143    
144     \item \texttt{fizhi-gridalt-hs} Global atmospheric simulation Held-Suarez (1994) forcing,
145     with the physical forcing and the dynamical forcing running on different vertical grids.
146    
147     \item \texttt{global_ocean.cs32x15} Global ocean experiment on the cubed sphere grid, using
148     thermodynamic sea ice and bulk force packages.
149    
150     \item \texttt{global_ocean_ebm} Global ocean experiment on a lat-lon grid coupled to an
151     atmospheric energy balance model. Similar to global_ocean.90x40x15 experiment.
152    
153     \item \texttt{global_with_exf} Global ocean experiment on a lat-lon grid using the exf
154     package. Similar to global_ocean.90x40x15 experiment.
155    
156     \item \texttt{hs94.cs-32x32x5} 3D atmosphere dynamics using Held and Suarez
157     (1994) forcing on the cubed sphere. 5 vertical levels.
158    
159     \item \texttt{ideal_2D_oce} Idealized 2D global ocean simulation on an aqua planet.
160    
161     \item \texttt{inverted_barometer} Simple test of ocean response to atmospheric pressure
162     loading.
163    
164     \item \texttt{lab_sea} Regional Labrador Sea simulation on a lat-lon grid. Coupled to
165     the sea ice model.
166    
167     \item \texttt{matrix_example} Test of experimental method to accelerated convergence towards
168     equillibrium.
169    
170     \item \texttt{tutorial_cfc_offline} Offline form of the MITgcm to study advection of a passive
171     tracer and CFCs.
172    
173     \item \texttt{vermix} Simple test in a small domain (3 columns) for ocean vertical mixing schemes.
174    
175 molod 1.11 \end{enumerate}
176    
177     \subsection{Directory structure of model examples}
178    
179     Each example directory has the following subdirectories:
180    
181     \begin{itemize}
182     \item \texttt{code}: contains the code particular to the example. At a
183     minimum, this directory includes the following files:
184    
185     \begin{itemize}
186     \item \texttt{code/packages.conf}: declares the list of packages or
187     package groups to be used. If not included, the default version
188     is located in \texttt{pkg/pkg\_default}. Package groups are
189     simply convenient collections of commonly used packages which are
190     defined in \texttt{pkg/pkg\_default}. Some packages may require
191     other packages or may require their absence (that is, they are
192     incompatible) and these package dependencies are listed in
193     \texttt{pkg/pkg\_depend}.
194    
195     \item \texttt{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
196     the ``execution environment'' part of the code. The default
197     version is located in \texttt{eesupp/inc}.
198    
199     \item \texttt{code/CPP\_OPTIONS.h}: declares CPP keys relative to
200     the ``numerical model'' part of the code. The default version is
201     located in \texttt{model/inc}.
202    
203     \item \texttt{code/SIZE.h}: declares size of underlying
204     computational grid. The default version is located in
205     \texttt{model/inc}.
206     \end{itemize}
207    
208     In addition, other include files and subroutines might be present in
209     \texttt{code} depending on the particular experiment. See Section 2
210     for more details.
211    
212     \item \texttt{input}: contains the input data files required to run
213     the example. At a minimum, the \texttt{input} directory contains the
214     following files:
215    
216     \begin{itemize}
217     \item \texttt{input/data}: this file, written as a namelist,
218     specifies the main parameters for the experiment.
219    
220     \item \texttt{input/data.pkg}: contains parameters relative to the
221     packages used in the experiment.
222    
223     \item \texttt{input/eedata}: this file contains ``execution
224     environment'' data. At present, this consists of a specification
225     of the number of threads to use in $X$ and $Y$ under multithreaded
226     execution.
227     \end{itemize}
228    
229     In addition, you will also find in this directory the forcing and
230     topography files as well as the files describing the initial state
231     of the experiment. This varies from experiment to experiment. See
232     section 2 for more details.
233    
234     \item \texttt{results}: this directory contains the output file
235     \texttt{output.txt} produced by the simulation example. This file is
236     useful for comparison with your own output when you run the
237     experiment.
238     \end{itemize}
239    
240     Once you have chosen the example you want to run, you are ready to
241     compile the code.
242    
243    
244     \newpage
245 adcroft 1.1 \input{part3/case_studies/barotropic_gyre/baro.tex}
246    
247     \newpage
248     \input{part3/case_studies/fourlayer_gyre/fourlayer.tex}
249    
250     \newpage
251     \input{part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex}
252 mlosch 1.3
253     \newpage
254     \input{part3/case_studies/ogcm_in_pressure/ogcm_in_pressure.tex}
255 adcroft 1.1
256     \newpage
257 jmc 1.8 \input{part3/case_studies/held_suarez_cs/held_suarez_cs.tex}
258 adcroft 1.1
259     \newpage
260     \input{part3/case_studies/doubly_periodic_convection/convection.tex}
261    
262     \newpage
263     \input{part3/case_studies/plume_on_slope/plume_on_slope.tex}
264    
265     \newpage
266     \input{part3/case_studies/carbon_outgassing_sensitivity/co2sens.tex}
267 afe 1.5
268 edhill 1.6 \newpage
269     \input{part3/case_studies/biogeochem_tutorial/biogeochem.tex}
270    
271 dfer 1.7 \newpage
272     \input{part3/case_studies/global_oce_estimation/global_oce_estimation.tex}
273    
274 edhill 1.9 \newpage
275 molod 1.11 \input{part3/case_studies/sens_airsea_tracer/doc_ad_examples.tex}
276    
277     \newpage
278 edhill 1.9 \input{part3/case_studies/offline/offline_tutorial.tex}
279    
280 afe 1.5 \newpage
281     \input{part3/case_studies/rotating_tank/tank.tex}

  ViewVC Help
Powered by ViewVC 1.1.22