/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Contents of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.15 - (show annotations) (download) (as text)
Tue Jun 27 19:08:23 2006 UTC (17 years, 10 months ago) by molod
Branch: MAIN
Changes since 1.14: +3 -7 lines
File MIME type: application/x-tex
Add cross references between tutorials and verification file system directories

1 % $Header: /u/gcmpack/manual/part3/case_studies/rotating_tank/tank.tex,v 1.14 2006/04/08 01:50:50 edhill Exp $
2 % $Name: $
3
4 \bodytext{bgcolor="#FFFFFFFF"}
5
6 %\begin{center}
7 %{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical
8 %Coordinates}
9 %
10 %\vspace*{4mm}
11 %
12 %\vspace*{3mm}
13 %{\large May 2001}
14 %\end{center}
15
16 \section{A Rotating Tank in Cylindrical Coordinates}
17 \label{sect:eg-tank}
18 \label{www:tutorials}
19 \begin{rawhtml}
20 <!-- CMIREDIR:eg-tank: -->
21 \end{rawhtml}
22
23 \subsection{Overview}
24 \label{www:tutorials}
25
26 This example configuration demonstrates using the MITgcm to simulate a
27 laboratory demonstration using a differentially heated rotating
28 annulus of water. The simulation is configured for a laboratory scale
29 on a $3^{\circ}\times1\mathrm{cm}$ cyclindrical grid with twenty-nine
30 vertical levels of 0.5cm each. This is a typical laboratory setup for
31 illustration principles of GFD, as well as for a laboratory data
32 assimilation project. The files for this experiment can be found in
33 the verification directory under rotating\_tank.
34 \\
35
36 example illustration from GFD lab here
37 \\
38
39
40
41
42
43 \subsection{Equations Solved}
44 \label{www:tutorials}
45
46
47 \subsection{Discrete Numerical Configuration}
48 \label{www:tutorials}
49
50 The domain is discretised with a uniform cylindrical grid spacing in
51 the horizontal set to $\Delta a=1$~cm and $\Delta \phi=3^{\circ}$, so
52 that there are 120 grid cells in the azimuthal direction and
53 thirty-one grid cells in the radial, representing a tank 62cm in
54 diameter. The bathymetry file sets the depth=0 in the nine lowest
55 radial rows to represent the central of the annulus. Vertically the
56 model is configured with twenty-nine layers of uniform 0.5cm
57 thickness.
58 \\
59 something about heat flux
60
61 \subsection{Code Configuration}
62 \label{www:tutorials}
63 \label{SEC:eg-baro-code_config}
64
65 The model configuration for this experiment resides under the
66 directory {\it verification/rotatingi\_tank/}. The experiment files
67 \begin{itemize}
68 \item {\it input/data}
69 \item {\it input/data.pkg}
70 \item {\it input/eedata},
71 \item {\it input/bathyPol.bin},
72 \item {\it input/thetaPol.bin},
73 \item {\it code/CPP\_EEOPTIONS.h}
74 \item {\it code/CPP\_OPTIONS.h},
75 \item {\it code/SIZE.h}.
76 \end{itemize}
77
78 contain the code customizations and parameter settings for this
79 experiments. Below we describe the customizations
80 to these files associated with this experiment.
81
82 \subsubsection{File {\it input/data}}
83 \label{www:tutorials}
84
85 This file, reproduced completely below, specifies the main parameters
86 for the experiment. The parameters that are significant for this configuration
87 are
88
89 \begin{itemize}
90
91 \item Lines 9-10, \begin{verbatim}
92 viscAh=5.0E-6,
93 viscAz=5.0E-6,
94 \end{verbatim}
95
96
97 These lines set the Laplacian friction coefficient in the horizontal
98 and vertical, respectively. Note that they are several orders of
99 magnitude smaller than the other examples due to the small scale of
100 this example.
101
102 \item Lines 13-16, \begin{verbatim}
103 diffKhT=2.5E-6,
104 diffKzT=2.5E-6,
105 diffKhS=1.0E-6,
106 diffKzS=1.0E-6,
107
108 \end{verbatim}
109
110
111 These lines set horizontal and vertical diffusion coefficients for
112 temperature and salinity. Similarly to the friction coefficients, the
113 values are a couple of orders of magnitude less than most
114 configurations.
115
116
117 \item Line 17, \begin{verbatim}f0=0.5 , \end{verbatim} this line sets the
118 coriolis term, and represents a tank spinning at about 2.4 rpm.
119
120 \item Lines 23 and 24
121 \begin{verbatim}
122 rigidLid=.TRUE.,
123 implicitFreeSurface=.FALSE.,
124 \end{verbatim}
125
126 These lines activate the rigid lid formulation of the surface
127 pressure inverter and suppress the implicit free surface form
128 of the pressure inverter.
129
130 \item Line 40,
131 \begin{verbatim}
132 nIter=0,
133 \end{verbatim}
134 This line indicates that the experiment should start from $t=0$ and
135 implicitly suppresses searching for checkpoint files associated with
136 restarting an numerical integration from a previously saved state.
137 Instead, the file thetaPol.bin will be loaded to initialized the
138 temperature fields as indicated below, and other variables will be
139 initialized to their defaults.
140
141
142 \item Line 43,
143 \begin{verbatim}
144 deltaT=0.1,
145 \end{verbatim}
146 This line sets the integration timestep to $0.1s$. This is an
147 unsually small value among the examples due to the small physical
148 scale of the experiment. Using the ensemble Kalman filter to produce
149 input fields can necessitate even shorter timesteps.
150
151 \item Line 56,
152 \begin{verbatim}
153 usingCylindricalGrid=.TRUE.,
154 \end{verbatim}
155 This line requests that the simulation be performed in a
156 cylindrical coordinate system.
157
158 \item Line 57,
159 \begin{verbatim}
160 dXspacing=3,
161 \end{verbatim}
162 This line sets the azimuthal grid spacing between each $x$-coordinate line
163 in the discrete grid. The syntax indicates that the discrete grid
164 should be comprised of $120$ grid lines each separated by $3^{\circ}$.
165
166
167 \item Line 58,
168 \begin{verbatim}
169 dYspacing=0.01,
170 \end{verbatim}
171
172 This line sets the radial cylindrical grid spacing between each
173 $a$-coordinate line in the discrete grid to $1cm$.
174
175 \item Line 59,
176 \begin{verbatim}
177 delZ=29*0.005,
178 \end{verbatim}
179
180 This line sets the vertical grid spacing between each of 29
181 z-coordinate lines in the discrete grid to $0.005m$ ($5$~mm).
182
183 \item Line 64,
184 \begin{verbatim}
185 bathyFile='bathyPol.bin',
186 \end{verbatim}
187 This line specifies the name of the file from which the domain
188 ``bathymetry'' (tank depth) is read. This file is a two-dimensional
189 ($a,\phi$) map of
190 depths. This file is assumed to contain 64-bit binary numbers
191 giving the depth of the model at each grid cell, ordered with the $\phi$
192 coordinate varying fastest. The points are ordered from low coordinate
193 to high coordinate for both axes. The units and orientation of the
194 depths in this file are the same as used in the MITgcm code. In this
195 experiment, a depth of $0m$ indicates an area outside of the tank
196 and a depth
197 f $-0.145m$ indicates the tank itself.
198
199 \item Line 65,
200 \begin{verbatim}
201 hydrogThetaFile='thetaPol.bin',
202 \end{verbatim}
203 This line specifies the name of the file from which the initial values
204 of temperature
205 are read. This file is a three-dimensional
206 ($x,y,z$) map and is enumerated and formatted in the same manner as the
207 bathymetry file.
208
209 \item Lines 66 and 67
210 \begin{verbatim}
211 tCylIn = 0
212 tCylOut = 20
213 \end{verbatim}
214 These line specify the temperatures in degrees Celsius of the interior
215 and exterior walls of the tank -- typically taken to be icewater on
216 the inside and room temperature on the outside.
217
218
219 \end{itemize}
220
221 \noindent Other lines in the file {\it input/data} are standard values
222 that are described in the MITgcm Getting Started and MITgcm Parameters
223 notes.
224
225 \begin{small}
226 \input{part3/case_studies/rotating_tank/input/data}
227 \end{small}
228
229 \subsubsection{File {\it input/data.pkg}}
230 \label{www:tutorials}
231
232 This file uses standard default values and does not contain
233 customizations for this experiment.
234
235 \subsubsection{File {\it input/eedata}}
236 \label{www:tutorials}
237
238 This file uses standard default values and does not contain
239 customizations for this experiment.
240
241 \subsubsection{File {\it input/thetaPol.bin}}
242 \label{www:tutorials}
243
244 The {\it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$)
245 map of initial values of $\theta$ in degrees Celsius. This particular
246 experiment is set to random values x around 20C to provide initial
247 perturbations.
248
249 \subsubsection{File {\it input/bathyPol.bin}}
250 \label{www:tutorials}
251
252
253 The {\it input/bathyPol.bin} file specifies a two-dimensional ($x,y$)
254 map of depth values. For this experiment values are either
255 $0m$ or {\bf -delZ}m, corresponding respectively to outside or inside of
256 the tank. The file contains a raw binary stream of data that is enumerated
257 in the same way as standard MITgcm two-dimensional, horizontal arrays.
258
259 \subsubsection{File {\it code/SIZE.h}}
260 \label{www:tutorials}
261
262 Two lines are customized in this file for the current experiment
263
264 \begin{itemize}
265
266 \item Line 39,
267 \begin{verbatim} sNx=120, \end{verbatim} this line sets
268 the lateral domain extent in grid points for the
269 axis aligned with the x-coordinate.
270
271 \item Line 40,
272 \begin{verbatim} sNy=31, \end{verbatim} this line sets
273 the lateral domain extent in grid points for the
274 axis aligned with the y-coordinate.
275
276 \end{itemize}
277
278 \begin{small}
279 \input{part3/case_studies/rotating_tank/code/SIZE.h}
280 \end{small}
281
282 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
283 \label{www:tutorials}
284
285 This file uses standard default values and does not contain
286 customizations for this experiment.
287
288
289 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
290 \label{www:tutorials}
291
292 This file uses standard default values and does not contain
293 customizations for this experiment.
294

  ViewVC Help
Powered by ViewVC 1.1.22