--- manual/s_examples/rotating_tank/tank.tex 2005/06/15 14:54:58 1.13 +++ manual/s_examples/rotating_tank/tank.tex 2010/08/27 13:25:32 1.17 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/rotating_tank/tank.tex,v 1.13 2005/06/15 14:54:58 afe Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/rotating_tank/tank.tex,v 1.17 2010/08/27 13:25:32 jmc Exp $ % $Name: $ \bodytext{bgcolor="#FFFFFFFF"} @@ -19,11 +19,9 @@ \begin{rawhtml} \end{rawhtml} - -This section illustrates an example of MITgcm simulating a laboratory -experiment on much smaller scales than those commonly considered in -geophysical -fluid dynamics. +\begin{center} +(in directory: {\it verification/rotating\_tank/}) +\end{center} \subsection{Overview} \label{www:tutorials} @@ -31,10 +29,11 @@ This example configuration demonstrates using the MITgcm to simulate a laboratory demonstration using a differentially heated rotating annulus of water. The simulation is configured for a laboratory scale -on a $3^{\circ}$ $\times$ 1cm cyclindrical grid with twenty-nine +on a $3^{\circ}\times1\mathrm{cm}$ cyclindrical grid with twenty-nine vertical levels of 0.5cm each. This is a typical laboratory setup for illustration principles of GFD, as well as for a laboratory data -assimilation project. +assimilation project. The files for this experiment can be found in +the verification directory under rotating\_tank. \\ example illustration from GFD lab here @@ -227,7 +226,7 @@ notes. \begin{small} -\input{part3/case_studies/rotating_tank/input/data} +\input{s_examples/rotating_tank/input/data} \end{small} \subsubsection{File {\it input/data.pkg}} @@ -280,7 +279,7 @@ \end{itemize} \begin{small} -\input{part3/case_studies/rotating_tank/code/SIZE.h} +\input{s_examples/rotating_tank/code/SIZE.h} \end{small} \subsubsection{File {\it code/CPP\_OPTIONS.h}}