/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Diff of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by afe, Wed Oct 13 18:52:17 2004 UTC revision 1.13 by afe, Wed Jun 15 14:54:58 2005 UTC
# Line 16  Line 16 
16  \section{A Rotating Tank in Cylindrical Coordinates}  \section{A Rotating Tank in Cylindrical Coordinates}
17  \label{sect:eg-tank}  \label{sect:eg-tank}
18  \label{www:tutorials}  \label{www:tutorials}
19    \begin{rawhtml}
20    <!-- CMIREDIR:eg-tank: -->
21    \end{rawhtml}
22    
23  This section illustrates an example of MITgcm simulating a laboratory  This section illustrates an example of MITgcm simulating a laboratory
24  experiment on much smaller scales than those commonly considered in    experiment on much smaller scales than those commonly considered in  
# Line 24  fluid dynamics. Line 27  fluid dynamics.
27    
28  \subsection{Overview}  \subsection{Overview}
29  \label{www:tutorials}  \label{www:tutorials}
30                                                                                                                                                              
31                                                                                    This example configuration demonstrates using the MITgcm to simulate a
32  This example configuration demonstrates using the MITgcm to simulate  laboratory demonstration using a differentially heated rotating
33  a laboratory demonstration using a rotating tank of water with an ice  annulus of water.  The simulation is configured for a laboratory scale
34  bucket in the center. The simulation is configured for a laboratory  on a $3^{\circ}$ $\times$ 1cm cyclindrical grid with twenty-nine
35  scale on a  vertical levels of 0.5cm each.  This is a typical laboratory setup for
36  $3^{\circ}$ $\times$ 20cm  illustration principles of GFD, as well as for a laboratory data
37  cyclindrical grid with twenty-nine vertical  assimilation project.
 levels.  
38  \\  \\
39    
40  example illustration from GFD lab here  example illustration from GFD lab here
41  \\  \\
42    
# Line 48  example illustration from GFD lab here Line 51  example illustration from GFD lab here
51  \subsection{Discrete Numerical Configuration}  \subsection{Discrete Numerical Configuration}
52  \label{www:tutorials}  \label{www:tutorials}
53    
54   The domain is discretised with   The domain is discretised with a uniform cylindrical grid spacing in
55  a uniform cylindrical grid spacing in the horizontal set to  the horizontal set to $\Delta a=1$~cm and $\Delta \phi=3^{\circ}$, so
56   $\Delta a=1$~cm and $\Delta \phi=3^{\circ}$, so  that there are 120 grid cells in the azimuthal direction and
57  that there are 120 grid cells in the azimuthal direction and thirty-one grid cells in the radial. Vertically the  thirty-one grid cells in the radial, representing a tank 62cm in
58  model is configured with twenty-nine layers of uniform 0.5cm thickness.  diameter.  The bathymetry file sets the depth=0 in the nine lowest
59    radial rows to represent the central of the annulus.  Vertically the
60    model is configured with twenty-nine layers of uniform 0.5cm
61    thickness.
62  \\  \\
63  something about heat flux  something about heat flux
64    
# Line 86  are Line 92  are
92    
93  \begin{itemize}  \begin{itemize}
94    
95  \item Line 10, \begin{verbatim} viscAh=5.0E-6, \end{verbatim} this line sets  \item Lines 9-10, \begin{verbatim}
96  the Laplacian friction coefficient to $6 \times 10^{-6} m^2s^{-1}$,  viscAh=5.0E-6,
97  which is ususally  viscAz=5.0E-6,
98  low because of the small scale, presumably.... qqq  \end{verbatim}
99    
100  \item Line 19, \begin{verbatim}f0=0.5 , \end{verbatim} this line sets the  
101  coriolis term, and represents a tank spinning at 2/s  These lines set the Laplacian friction coefficient in the horizontal
102  \item Line 20, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets  and vertical, respectively.  Note that they are several orders of
103  $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$  magnitude smaller than the other examples due to the small scale of
104    this example.
105    
106    \item Lines 13-16, \begin{verbatim}
107     diffKhT=2.5E-6,
108     diffKzT=2.5E-6,
109     diffKhS=1.0E-6,
110     diffKzS=1.0E-6,
111    
112    \end{verbatim}
113    
114    
115    These lines set horizontal and vertical diffusion coefficients for
116    temperature and salinity.  Similarly to the friction coefficients, the
117    values are a couple of orders of magnitude less than most
118     configurations.
119    
120    
121  \item Lines 27 and 28  \item Line 17, \begin{verbatim}f0=0.5 , \end{verbatim} this line sets the
122    coriolis term, and represents a tank spinning at about 2.4 rpm.
123    
124    \item Lines 23 and 24
125  \begin{verbatim}  \begin{verbatim}
126  rigidLid=.TRUE.,  rigidLid=.TRUE.,
127  implicitFreeSurface=.FALSE.,  implicitFreeSurface=.FALSE.,
128  \end{verbatim}  \end{verbatim}
129    
130  qqq these lines do the opposite of the following:  These lines activate  the rigid lid formulation of the surface
131  suppress the rigid lid formulation of the surface  pressure inverter and suppress the implicit free surface form
 pressure inverter and activate the implicit free surface form  
132  of the pressure inverter.  of the pressure inverter.
133    
134  \item Line 44,  \item Line 40,
135  \begin{verbatim}  \begin{verbatim}
136  nIter=0,  nIter=0,
137  \end{verbatim}  \end{verbatim}
138  this line indicates that the experiment should start from $t=0$  This line indicates that the experiment should start from $t=0$ and
139  and implicitly suppresses searching for checkpoint files associated  implicitly suppresses searching for checkpoint files associated with
140  with restarting an numerical integration from a previously saved state.  restarting an numerical integration from a previously saved state.
141    Instead, the file thetaPol.bin will be loaded to initialized the
142    temperature fields as indicated below, and other variables will be
143    initialized to their defaults.
144    
145    
146  \item Line 47,  \item Line 43,
147  \begin{verbatim}  \begin{verbatim}
148  deltaT=0.1,  deltaT=0.1,
149  \end{verbatim}  \end{verbatim}
150  This line sets the integration timestep to $0.1s$.  This is an unsually  This line sets the integration timestep to $0.1s$.  This is an
151  small value among the examples due to the small physical scale of the  unsually small value among the examples due to the small physical
152  experiment.  scale of the experiment.  Using the ensemble Kalman filter to produce
153    input fields can necessitate even shorter timesteps.
154    
155  \item Line 58,  \item Line 56,
156  \begin{verbatim}  \begin{verbatim}
157  usingCylindricalGrid=.TRUE.,  usingCylindricalGrid=.TRUE.,
158  \end{verbatim}  \end{verbatim}
159  This line requests that the simulation be performed in a  This line requests that the simulation be performed in a
160  cylindrical coordinate system.  cylindrical coordinate system.
161    
162  \item Line 60,  \item Line 57,
163  \begin{verbatim}  \begin{verbatim}
164  dXspacing=3,  dXspacing=3,
165  \end{verbatim}  \end{verbatim}
166  This line sets the azimuthal grid spacing between each $x$-coordinate line  This line sets the azimuthal grid spacing between each $x$-coordinate line
167  in the discrete grid. The syntax indicates that the discrete grid  in the discrete grid. The syntax indicates that the discrete grid
168  should be comprise of $120$ grid lines each separated by $3^{\circ}$.  should be comprised of $120$ grid lines each separated by $3^{\circ}$.
169                                                                                                                                                                  
   
170    
171  \item Line 61,  \item Line 58,
172  \begin{verbatim}  \begin{verbatim}
173  dYspacing=0.01,  dYspacing=0.01,
174  \end{verbatim}  \end{verbatim}
 This line sets the radial cylindrical grid spacing between each $a$-coordinate line  
 in the discrete grid to $1cm$.  
175    
176  \item Line 62,  This line sets the radial cylindrical grid spacing between each
177    $a$-coordinate line in the discrete grid to $1cm$.
178    
179    \item Line 59,
180  \begin{verbatim}  \begin{verbatim}
181  delZ=29*0.005,  delZ=29*0.005,
182  \end{verbatim}  \end{verbatim}
 This line sets the vertical grid spacing between each z-coordinate line  
 in the discrete grid to $5000m$ ($5$~km).  
183    
184  \item Line 68,  This line sets the vertical grid spacing between each of 29
185    z-coordinate lines in the discrete grid to $0.005m$ ($5$~mm).
186    
187    \item Line 64,
188  \begin{verbatim}  \begin{verbatim}
189  bathyFile='bathyPol.bin',  bathyFile='bathyPol.bin',
190  \end{verbatim}  \end{verbatim}
# Line 170  experiment, a depth of $0m$ indicates an Line 200  experiment, a depth of $0m$ indicates an
200  and a depth  and a depth
201  f $-0.145m$ indicates the tank itself.  f $-0.145m$ indicates the tank itself.
202    
203  \item Line 67,  \item Line 65,
204  \begin{verbatim}  \begin{verbatim}
205  hydrogThetaFile='thetaPol.bin',  hydrogThetaFile='thetaPol.bin',
206  \end{verbatim}  \end{verbatim}
# Line 180  are read. This file is a three-dimension Line 210  are read. This file is a three-dimension
210  ($x,y,z$) map and is enumerated and formatted in the same manner as the  ($x,y,z$) map and is enumerated and formatted in the same manner as the
211  bathymetry file.  bathymetry file.
212    
213  \item Line qqq  \item Lines 66 and 67
214  \begin{verbatim}  \begin{verbatim}
215   tCyl  = 0   tCylIn  = 0
216     tCylOut  = 20
217  \end{verbatim}  \end{verbatim}
218  This line specifies the temperature in degrees Celsius of the interior  These line specify the temperatures in degrees Celsius of the interior
219  wall of the tank -- usually a bucket of ice water.  and exterior walls of the tank -- typically taken to be icewater on
220    the inside and room temperature on the outside.
221    
222    
223  \end{itemize}  \end{itemize}
224    
225  \noindent other lines in the file {\it input/data} are standard values  \noindent Other lines in the file {\it input/data} are standard values
226  that are described in the MITgcm Getting Started and MITgcm Parameters  that are described in the MITgcm Getting Started and MITgcm Parameters
227  notes.  notes.
228    

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.13

  ViewVC Help
Powered by ViewVC 1.1.22