/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Contents of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download) (as text)
Tue Jun 22 16:56:31 2004 UTC (21 years ago) by afe
Branch: MAIN
Changes since 1.1: +534 -86 lines
File MIME type: application/x-tex
better template

1 % $Header: /u/gcmpack/manual/part3/case_studies/hs_atmosphere/hs_atmos.tex,v 1.3 2003/08/07 18:27:52 edhill Exp $
2 % $Name: $
3
4 \section{Simulating a Rotating Tank in Cylindrical Coordinates}
5 \label{www:tutorials}
6 \label{sect:eg-tank}
7
8 \bodytext{bgcolor="#FFFFFFFF"}
9
10 %\begin{center}
11 %{\Large \bf Simulating a Rotating Tank in Cylindrical Coordinates}
12 %
13 %
14 %\vspace*{4mm}
15 %
16 %\vspace*{3mm}
17 %{\large June 2004}
18 %\end{center}
19
20 \subsection{Introduction}
21 \label{www:tutorials}
22
23 This section illustrates an example of MITgcm simulating a laboratory
24 experiment on much smaller scales than those common to geophysical
25 fluid dynamics.
26
27 \subsection{Overview}
28 \label{www:tutorials}
29
30
31 This example experiment demonstrates using the MITgcm to simulate
32 a laboratory experiment with a rotating tank of water with an ice
33 bucket in the center. The simulation is configured for a laboratory
34 scale on a 3^{\circ} \times 20cm cyclindrical grid with twenty-nine vertical
35 levels.
36 \\
37
38 The model is forced with climatological wind stress data and surface
39 flux data from DaSilva \cite{DaSilva94}. Climatological data
40 from Levitus \cite{Levitus94} is used to initialize the model hydrography.
41 Levitus seasonal climatology data is also used throughout the calculation
42 to provide additional air-sea fluxes.
43 These fluxes are combined with the DaSilva climatological estimates of
44 surface heat flux and fresh water, resulting in a mixed boundary
45 condition of the style described in Haney \cite{Haney}.
46 Altogether, this yields the following forcing applied
47 in the model surface layer.
48
49
50 \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
51 ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
52 momentum and in the potential temperature and salinity
53 equations respectively.
54 The term $\Delta z_{s}$ represents the top ocean layer thickness in
55 meters.
56 It is used in conjunction with a reference density, $\rho_{0}$
57 (here set to $999.8\,{\rm kg\,m^{-3}}$), a
58 reference salinity, $S_{0}$ (here set to 35~ppt),
59 and a specific heat capacity, $C_{p}$ (here set to
60 $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
61 input dataset values into time tendencies of
62 potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
63 salinity (with units ${\rm ppt}~s^{-1}$) and
64 velocity (with units ${\rm m}~{\rm s}^{-2}$).
65 The externally supplied forcing fields used in this
66 experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
67 $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
68 have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
69 ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
70 respectively. The salinity forcing fields ($S^{\ast}$ and
71 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
72 respectively.
73 \\
74
75
76 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
77 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
78 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
79 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
80 in equations \ref{EQ:eg-hs-global_forcing_fu}-\ref{EQ:eg-hs-global_forcing_fs}. The figures
81 also indicate the lateral extent and coastline used in the experiment.
82 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
83 domain.
84
85
86 \subsection{Discrete Numerical Configuration}
87 \label{www:tutorials}
88
89
90 The model is configured in hydrostatic form. The domain is discretised with
91 a uniform grid spacing in latitude and longitude on the sphere
92 $\Delta \phi=\Delta \lambda=4^{\circ}$, so
93 that there are ninety grid cells in the zonal and forty in the
94 meridional direction. The internal model coordinate variables
95 $x$ and $y$ are initialized according to
96 \begin{eqnarray}
97 x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
98 y=r\lambda,~\Delta x &= &r\Delta \lambda
99 \end{eqnarray}
100
101 Arctic polar regions are not
102 included in this experiment. Meridionally the model extends from
103 $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
104 Vertically the model is configured with twenty layers with the
105 following thicknesses
106 $\Delta z_{1} = 50\,{\rm m},\,
107 \Delta z_{2} = 50\,{\rm m},\,
108 \Delta z_{3} = 55\,{\rm m},\,
109 \Delta z_{4} = 60\,{\rm m},\,
110 \Delta z_{5} = 65\,{\rm m},\,
111 $
112 $
113 \Delta z_{6}~=~70\,{\rm m},\,
114 \Delta z_{7}~=~80\,{\rm m},\,
115 \Delta z_{8}~=95\,{\rm m},\,
116 \Delta z_{9}=120\,{\rm m},\,
117 \Delta z_{10}=155\,{\rm m},\,
118 $
119 $
120 \Delta z_{11}=200\,{\rm m},\,
121 \Delta z_{12}=260\,{\rm m},\,
122 \Delta z_{13}=320\,{\rm m},\,
123 \Delta z_{14}=400\,{\rm m},\,
124 \Delta z_{15}=480\,{\rm m},\,
125 $
126 $
127 \Delta z_{16}=570\,{\rm m},\,
128 \Delta z_{17}=655\,{\rm m},\,
129 \Delta z_{18}=725\,{\rm m},\,
130 \Delta z_{19}=775\,{\rm m},\,
131 \Delta z_{20}=815\,{\rm m}
132 $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
133 The implicit free surface form of the pressure equation described in Marshall et. al
134 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
135 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
136
137 Wind-stress forcing is added to the momentum equations for both
138 the zonal flow, $u$ and the meridional flow $v$, according to equations
139 (\ref{EQ:eg-hs-global_forcing_fu}) and (\ref{EQ:eg-hs-global_forcing_fv}).
140 Thermodynamic forcing inputs are added to the equations for
141 potential temperature, $\theta$, and salinity, $S$, according to equations
142 (\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
143 This produces a set of equations solved in this configuration as follows:
144
145 \begin{eqnarray}
146 \label{EQ:eg-hs-model_equations}
147 \frac{Du}{Dt} - fv +
148 \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
149 \nabla_{h}\cdot A_{h}\nabla_{h}u -
150 \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
151 & = &
152 \begin{cases}
153 {\cal F}_u & \text{(surface)} \\
154 0 & \text{(interior)}
155 \end{cases}
156 \\
157 \frac{Dv}{Dt} + fu +
158 \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
159 \nabla_{h}\cdot A_{h}\nabla_{h}v -
160 \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
161 & = &
162 \begin{cases}
163 {\cal F}_v & \text{(surface)} \\
164 0 & \text{(interior)}
165 \end{cases}
166 \\
167 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
168 &=&
169 0
170 \\
171 \frac{D\theta}{Dt} -
172 \nabla_{h}\cdot K_{h}\nabla_{h}\theta
173 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
174 & = &
175 \begin{cases}
176 {\cal F}_\theta & \text{(surface)} \\
177 0 & \text{(interior)}
178 \end{cases}
179 \\
180 \frac{D s}{Dt} -
181 \nabla_{h}\cdot K_{h}\nabla_{h}s
182 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
183 & = &
184 \begin{cases}
185 {\cal F}_s & \text{(surface)} \\
186 0 & \text{(interior)}
187 \end{cases}
188 \\
189 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
190 \end{eqnarray}
191
192 \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
193 $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
194 are the zonal and meridional components of the
195 flow vector, $\vec{u}$, on the sphere. As described in
196 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
197 evolution of potential temperature, $\theta$, equation is solved prognostically.
198 The total pressure, $p$, is diagnosed by summing pressure due to surface
199 elevation $\eta$ and the hydrostatic pressure.
200 \\
201
202 \subsubsection{Numerical Stability Criteria}
203 \label{www:tutorials}
204
205 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
206 This value is chosen to yield a Munk layer width \cite{adcroft:95},
207 \begin{eqnarray}
208 \label{EQ:eg-hs-munk_layer}
209 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
210 \end{eqnarray}
211
212 \noindent of $\approx 600$km. This is greater than the model
213 resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
214 boundary layer is adequately resolved.
215 \\
216
217 \noindent The model is stepped forward with a
218 time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
219 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
220 parameter to the horizontal Laplacian friction \cite{adcroft:95}
221 \begin{eqnarray}
222 \label{EQ:eg-hs-laplacian_stability}
223 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
224 \end{eqnarray}
225
226 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
227 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
228 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
229 \\
230
231 \noindent The vertical dissipation coefficient, $A_{z}$, is set to
232 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
233 \begin{eqnarray}
234 \label{EQ:eg-hs-laplacian_stability_z}
235 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
236 \end{eqnarray}
237
238 \noindent evaluates to $0.015$ for the smallest model
239 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
240 the upper stability limit.
241 \\
242
243 The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
244 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
245 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
246 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
247 Here the stability parameter
248 \begin{eqnarray}
249 \label{EQ:eg-hs-laplacian_stability_xtheta}
250 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
251 \end{eqnarray}
252 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
253 stability parameter related to $K_{z}$
254 \begin{eqnarray}
255 \label{EQ:eg-hs-laplacian_stability_ztheta}
256 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
257 \end{eqnarray}
258 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
259 of $S_{l} \approx 0.5$.
260 \\
261
262 \noindent The numerical stability for inertial oscillations
263 \cite{adcroft:95}
264
265 \begin{eqnarray}
266 \label{EQ:eg-hs-inertial_stability}
267 S_{i} = f^{2} {\delta t_v}^2
268 \end{eqnarray}
269
270 \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
271 the $S_{i} < 1$ upper limit for stability.
272 \\
273
274 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
275 horizontal flow
276 speed of $ | \vec{u} | = 2 ms^{-1}$
277
278 \begin{eqnarray}
279 \label{EQ:eg-hs-cfl_stability}
280 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
281 \end{eqnarray}
282
283 \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
284 limit of 0.5.
285 \\
286
287 \noindent The stability parameter for internal gravity waves propagating
288 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
289 \cite{adcroft:95}
290
291 \begin{eqnarray}
292 \label{EQ:eg-hs-gfl_stability}
293 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
294 \end{eqnarray}
295
296 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
297 stability limit of 0.5.
298
299 \subsection{Experiment Configuration}
300 \label{www:tutorials}
301 \label{SEC:eg-hs_examp_exp_config}
302
303 The model configuration for this experiment resides under the
304 directory {\it verification/hs94.128x64x5}. The experiment files
305 \begin{itemize}
306 \item {\it input/data}
307 \item {\it input/data.pkg}
308 \item {\it input/eedata},
309 \item {\it input/windx.bin},
310 \item {\it input/windy.bin},
311 \item {\it input/salt.bin},
312 \item {\it input/theta.bin},
313 \item {\it input/SSS.bin},
314 \item {\it input/SST.bin},
315 \item {\it input/topog.bin},
316 \item {\it code/CPP\_EEOPTIONS.h}
317 \item {\it code/CPP\_OPTIONS.h},
318 \item {\it code/SIZE.h}.
319 \end{itemize}
320 contain the code customizations and parameter settings for these
321 experiments. Below we describe the customizations
322 to these files associated with this experiment.
323
324 \subsubsection{File {\it input/data}}
325 \label{www:tutorials}
326
327 This file, reproduced completely below, specifies the main parameters
328 for the experiment. The parameters that are significant for this configuration
329 are
330
331 \begin{itemize}
332
333 \item Lines 7-10 and 11-14
334 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
335 $\cdots$ \\
336 set reference values for potential
337 temperature and salinity at each model level in units of $^{\circ}$C and
338 ${\rm ppt}$. The entries are ordered from surface to depth.
339 Density is calculated from anomalies at each level evaluated
340 with respect to the reference values set here.\\
341 \fbox{
342 \begin{minipage}{5.0in}
343 {\it S/R INI\_THETA}({\it ini\_theta.F})
344 \end{minipage}
345 }
346
347
348 \item Line 15,
349 \begin{verbatim} viscAz=1.E-3, \end{verbatim}
350 this line sets the vertical Laplacian dissipation coefficient to
351 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
352 for this operator are specified later. This variable is copied into
353 model general vertical coordinate variable {\bf viscAr}.
354
355 \fbox{
356 \begin{minipage}{5.0in}
357 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
358 \end{minipage}
359 }
360
361 \item Line 16,
362 \begin{verbatim}
363 viscAh=5.E5,
364 \end{verbatim}
365 this line sets the horizontal Laplacian frictional dissipation coefficient to
366 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
367 for this operator are specified later.
368
369 \item Lines 17,
370 \begin{verbatim}
371 no_slip_sides=.FALSE.
372 \end{verbatim}
373 this line selects a free-slip lateral boundary condition for
374 the horizontal Laplacian friction operator
375 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
376 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
377
378 \item Lines 9,
379 \begin{verbatim}
380 no_slip_bottom=.TRUE.
381 \end{verbatim}
382 this line selects a no-slip boundary condition for bottom
383 boundary condition in the vertical Laplacian friction operator
384 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
385
386 \item Line 19,
387 \begin{verbatim}
388 diffKhT=1.E3,
389 \end{verbatim}
390 this line sets the horizontal diffusion coefficient for temperature
391 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
392 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
393 all boundaries.
394
395 \item Line 20,
396 \begin{verbatim}
397 diffKzT=3.E-5,
398 \end{verbatim}
399 this line sets the vertical diffusion coefficient for temperature
400 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
401 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
402 the upper and lower boundaries.
403
404 \item Line 21,
405 \begin{verbatim}
406 diffKhS=1.E3,
407 \end{verbatim}
408 this line sets the horizontal diffusion coefficient for salinity
409 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
410 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
411 all boundaries.
412
413 \item Line 22,
414 \begin{verbatim}
415 diffKzS=3.E-5,
416 \end{verbatim}
417 this line sets the vertical diffusion coefficient for salinity
418 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
419 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
420 the upper and lower boundaries.
421
422 \item Lines 23-26
423 \begin{verbatim}
424 beta=1.E-11,
425 \end{verbatim}
426 \vspace{-5mm}$\cdots$\\
427 These settings do not apply for this experiment.
428
429 \item Line 27,
430 \begin{verbatim}
431 gravity=9.81,
432 \end{verbatim}
433 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
434 \fbox{
435 \begin{minipage}{5.0in}
436 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
437 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
438 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
439 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
440 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
441 \end{minipage}
442 }
443
444
445 \item Line 28-29,
446 \begin{verbatim}
447 rigidLid=.FALSE.,
448 implicitFreeSurface=.TRUE.,
449 \end{verbatim}
450 Selects the barotropic pressure equation to be the implicit free surface
451 formulation.
452
453 \item Line 30,
454 \begin{verbatim}
455 eosType='POLY3',
456 \end{verbatim}
457 Selects the third order polynomial form of the equation of state.\\
458 \fbox{
459 \begin{minipage}{5.0in}
460 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
461 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
462 \end{minipage}
463 }
464
465 \item Line 31,
466 \begin{verbatim}
467 readBinaryPrec=32,
468 \end{verbatim}
469 Sets format for reading binary input datasets holding model fields to
470 use 32-bit representation for floating-point numbers.\\
471 \fbox{
472 \begin{minipage}{5.0in}
473 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
474 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
475 \end{minipage}
476 }
477
478 \item Line 36,
479 \begin{verbatim}
480 cg2dMaxIters=1000,
481 \end{verbatim}
482 Sets maximum number of iterations the two-dimensional, conjugate
483 gradient solver will use, {\bf irrespective of convergence
484 criteria being met}.\\
485 \fbox{
486 \begin{minipage}{5.0in}
487 {\it S/R CG2D}~({\it cg2d.F})
488 \end{minipage}
489 }
490
491 \item Line 37,
492 \begin{verbatim}
493 cg2dTargetResidual=1.E-13,
494 \end{verbatim}
495 Sets the tolerance which the two-dimensional, conjugate
496 gradient solver will use to test for convergence in equation
497 \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$.
498 Solver will iterate until
499 tolerance falls below this value or until the maximum number of
500 solver iterations is reached.\\
501 \fbox{
502 \begin{minipage}{5.0in}
503 {\it S/R CG2D}~({\it cg2d.F})
504 \end{minipage}
505 }
506
507 \item Line 42,
508 \begin{verbatim}
509 startTime=0,
510 \end{verbatim}
511 Sets the starting time for the model internal time counter.
512 When set to non-zero this option implicitly requests a
513 checkpoint file be read for initial state.
514 By default the checkpoint file is named according to
515 the integer number of time steps in the {\bf startTime} value.
516 The internal time counter works in seconds.
517
518 \item Line 43,
519 \begin{verbatim}
520 endTime=2808000.,
521 \end{verbatim}
522 Sets the time (in seconds) at which this simulation will terminate.
523 At the end of a simulation a checkpoint file is automatically
524 written so that a numerical experiment can consist of multiple
525 stages.
526
527 \item Line 44,
528 \begin{verbatim}
529 #endTime=62208000000,
530 \end{verbatim}
531 A commented out setting for endTime for a 2000 year simulation.
532
533 \item Line 45,
534 \begin{verbatim}
535 deltaTmom=2400.0,
536 \end{verbatim}
537 Sets the timestep $\delta t_{v}$ used in the momentum equations to
538 $20~{\rm mins}$.
539 See section \ref{SEC:mom_time_stepping}.
540
541 \fbox{
542 \begin{minipage}{5.0in}
543 {\it S/R TIMESTEP}({\it timestep.F})
544 \end{minipage}
545 }
546
547 \item Line 46,
548 \begin{verbatim}
549 tauCD=321428.,
550 \end{verbatim}
551 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
552 See section \ref{SEC:cd_scheme}.
553
554 \fbox{
555 \begin{minipage}{5.0in}
556 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
557 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
558 \end{minipage}
559 }
560
561 \item Line 47,
562 \begin{verbatim}
563 deltaTtracer=108000.,
564 \end{verbatim}
565 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
566 $30~{\rm hours}$.
567 See section \ref{SEC:tracer_time_stepping}.
568
569 \fbox{
570 \begin{minipage}{5.0in}
571 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
572 \end{minipage}
573 }
574
575 \item Line 47,
576 \begin{verbatim}
577 bathyFile='topog.box'
578 \end{verbatim}
579 This line specifies the name of the file from which the domain
580 bathymetry is read. This file is a two-dimensional ($x,y$) map of
581 depths. This file is assumed to contain 64-bit binary numbers
582 giving the depth of the model at each grid cell, ordered with the x
583 coordinate varying fastest. The points are ordered from low coordinate
584 to high coordinate for both axes. The units and orientation of the
585 depths in this file are the same as used in the MITgcm code. In this
586 experiment, a depth of $0m$ indicates a solid wall and a depth
587 of $-2000m$ indicates open ocean. The matlab program
588 {\it input/gendata.m} shows an example of how to generate a
589 bathymetry file.
590
591
592 \item Line 50,
593 \begin{verbatim}
594 zonalWindFile='windx.sin_y'
595 \end{verbatim}
596 This line specifies the name of the file from which the x-direction
597 surface wind stress is read. This file is also a two-dimensional
598 ($x,y$) map and is enumerated and formatted in the same manner as the
599 bathymetry file. The matlab program {\it input/gendata.m} includes example
600 code to generate a valid
601 {\bf zonalWindFile}
602 file.
603
604 \end{itemize}
605
606 \noindent other lines in the file {\it input/data} are standard values
607 that are described in the MITgcm Getting Started and MITgcm Parameters
608 notes.
609
610 \begin{small}
611 \input{part3/case_studies/climatalogical_ogcm/input/data}
612 \end{small}
613
614 \subsubsection{File {\it input/data.pkg}}
615 \label{www:tutorials}
616
617 This file uses standard default values and does not contain
618 customisations for this experiment.
619
620 \subsubsection{File {\it input/eedata}}
621 \label{www:tutorials}
622
623 This file uses standard default values and does not contain
624 customisations for this experiment.
625
626 \subsubsection{File {\it input/windx.sin\_y}}
627 \label{www:tutorials}
628
629 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
630 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
631 Although $\tau_{x}$ is only a function of $y$n in this experiment
632 this file must still define a complete two-dimensional map in order
633 to be compatible with the standard code for loading forcing fields
634 in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
635 code for creating the {\it input/windx.sin\_y} file.
636
637 \subsubsection{File {\it input/topog.box}}
638 \label{www:tutorials}
639
640
641 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
642 map of depth values. For this experiment values are either
643 $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
644 ocean. The file contains a raw binary stream of data that is enumerated
645 in the same way as standard MITgcm two-dimensional, horizontal arrays.
646 The included matlab program {\it input/gendata.m} gives a complete
647 code for creating the {\it input/topog.box} file.
648
649 \subsubsection{File {\it code/SIZE.h}}
650 \label{www:tutorials}
651
652 Two lines are customized in this file for the current experiment
653
654 \begin{itemize}
655
656 \item Line 39,
657 \begin{verbatim} sNx=60, \end{verbatim} this line sets
658 the lateral domain extent in grid points for the
659 axis aligned with the x-coordinate.
660
661 \item Line 40,
662 \begin{verbatim} sNy=60, \end{verbatim} this line sets
663 the lateral domain extent in grid points for the
664 axis aligned with the y-coordinate.
665
666 \item Line 49,
667 \begin{verbatim} Nr=4, \end{verbatim} this line sets
668 the vertical domain extent in grid points.
669
670 \end{itemize}
671
672 \begin{small}
673 \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
674 \end{small}
675
676 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
677 \label{www:tutorials}
678
679 This file uses standard default values and does not contain
680 customisations for this experiment.
681
682
683 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
684 \label{www:tutorials}
685
686 This file uses standard default values and does not contain
687 customisations for this experiment.
688
689 \subsubsection{Other Files }
690 \label{www:tutorials}
691
692 Other files relevant to this experiment are
693 \begin{itemize}
694 \item {\it model/src/ini\_cori.F}. This file initializes the model
695 coriolis variables {\bf fCorU}.
696 \item {\it model/src/ini\_spherical\_polar\_grid.F}
697 \item {\it model/src/ini\_parms.F},
698 \item {\it input/windx.sin\_y},
699 \end{itemize}
700 contain the code customisations and parameter settings for this
701 experiments. Below we describe the customisations
702 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22