1 |
% $Header: /u/gcmpack/manual/part3/case_studies/rotating_tank/tank.tex,v 1.10 2004/10/13 18:52:17 afe Exp $ |
2 |
% $Name: $ |
3 |
|
4 |
\bodytext{bgcolor="#FFFFFFFF"} |
5 |
|
6 |
%\begin{center} |
7 |
%{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical |
8 |
%Coordinates} |
9 |
% |
10 |
%\vspace*{4mm} |
11 |
% |
12 |
%\vspace*{3mm} |
13 |
%{\large May 2001} |
14 |
%\end{center} |
15 |
|
16 |
\section{A Rotating Tank in Cylindrical Coordinates} |
17 |
\label{sect:eg-tank} |
18 |
\label{www:tutorials} |
19 |
\begin{rawhtml} |
20 |
<!-- CMIREDIR:eg-tank: --> |
21 |
\end{rawhtml} |
22 |
|
23 |
This section illustrates an example of MITgcm simulating a laboratory |
24 |
experiment on much smaller scales than those commonly considered in |
25 |
geophysical |
26 |
fluid dynamics. |
27 |
|
28 |
\subsection{Overview} |
29 |
\label{www:tutorials} |
30 |
|
31 |
|
32 |
This example configuration demonstrates using the MITgcm to simulate |
33 |
a laboratory demonstration using a rotating tank of water with an ice |
34 |
bucket in the center. The simulation is configured for a laboratory |
35 |
scale on a |
36 |
$3^{\circ}$ $\times$ 20cm |
37 |
cyclindrical grid with twenty-nine vertical |
38 |
levels. |
39 |
\\ |
40 |
example illustration from GFD lab here |
41 |
\\ |
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
\subsection{Equations Solved} |
48 |
\label{www:tutorials} |
49 |
|
50 |
|
51 |
\subsection{Discrete Numerical Configuration} |
52 |
\label{www:tutorials} |
53 |
|
54 |
The domain is discretised with |
55 |
a uniform cylindrical grid spacing in the horizontal set to |
56 |
$\Delta a=1$~cm and $\Delta \phi=3^{\circ}$, so |
57 |
that there are 120 grid cells in the azimuthal direction and thirty-one grid cells in the radial. Vertically the |
58 |
model is configured with twenty-nine layers of uniform 0.5cm thickness. |
59 |
\\ |
60 |
something about heat flux |
61 |
|
62 |
\subsection{Code Configuration} |
63 |
\label{www:tutorials} |
64 |
\label{SEC:eg-baro-code_config} |
65 |
|
66 |
The model configuration for this experiment resides under the |
67 |
directory {\it verification/rotatingi\_tank/}. The experiment files |
68 |
\begin{itemize} |
69 |
\item {\it input/data} |
70 |
\item {\it input/data.pkg} |
71 |
\item {\it input/eedata}, |
72 |
\item {\it input/bathyPol.bin}, |
73 |
\item {\it input/thetaPol.bin}, |
74 |
\item {\it code/CPP\_EEOPTIONS.h} |
75 |
\item {\it code/CPP\_OPTIONS.h}, |
76 |
\item {\it code/SIZE.h}. |
77 |
\end{itemize} |
78 |
|
79 |
contain the code customizations and parameter settings for this |
80 |
experiments. Below we describe the customizations |
81 |
to these files associated with this experiment. |
82 |
|
83 |
\subsubsection{File {\it input/data}} |
84 |
\label{www:tutorials} |
85 |
|
86 |
This file, reproduced completely below, specifies the main parameters |
87 |
for the experiment. The parameters that are significant for this configuration |
88 |
are |
89 |
|
90 |
\begin{itemize} |
91 |
|
92 |
\item Line 10, \begin{verbatim} viscAh=5.0E-6, \end{verbatim} this line sets |
93 |
the Laplacian friction coefficient to $6 \times 10^{-6} m^2s^{-1}$, |
94 |
which is ususally |
95 |
low because of the small scale, presumably.... qqq |
96 |
|
97 |
\item Line 19, \begin{verbatim}f0=0.5 , \end{verbatim} this line sets the |
98 |
coriolis term, and represents a tank spinning at 2/s |
99 |
\item Line 20, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets |
100 |
$\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ |
101 |
|
102 |
\item Lines 27 and 28 |
103 |
\begin{verbatim} |
104 |
rigidLid=.TRUE., |
105 |
implicitFreeSurface=.FALSE., |
106 |
\end{verbatim} |
107 |
|
108 |
qqq these lines do the opposite of the following: |
109 |
suppress the rigid lid formulation of the surface |
110 |
pressure inverter and activate the implicit free surface form |
111 |
of the pressure inverter. |
112 |
|
113 |
\item Line 44, |
114 |
\begin{verbatim} |
115 |
nIter=0, |
116 |
\end{verbatim} |
117 |
this line indicates that the experiment should start from $t=0$ |
118 |
and implicitly suppresses searching for checkpoint files associated |
119 |
with restarting an numerical integration from a previously saved state. |
120 |
|
121 |
\item Line 47, |
122 |
\begin{verbatim} |
123 |
deltaT=0.1, |
124 |
\end{verbatim} |
125 |
This line sets the integration timestep to $0.1s$. This is an unsually |
126 |
small value among the examples due to the small physical scale of the |
127 |
experiment. |
128 |
|
129 |
\item Line 58, |
130 |
\begin{verbatim} |
131 |
usingCylindricalGrid=.TRUE., |
132 |
\end{verbatim} |
133 |
This line requests that the simulation be performed in a |
134 |
cylindrical coordinate system. |
135 |
|
136 |
\item Line 60, |
137 |
\begin{verbatim} |
138 |
dXspacing=3, |
139 |
\end{verbatim} |
140 |
This line sets the azimuthal grid spacing between each $x$-coordinate line |
141 |
in the discrete grid. The syntax indicates that the discrete grid |
142 |
should be comprise of $120$ grid lines each separated by $3^{\circ}$. |
143 |
|
144 |
|
145 |
|
146 |
\item Line 61, |
147 |
\begin{verbatim} |
148 |
dYspacing=0.01, |
149 |
\end{verbatim} |
150 |
This line sets the radial cylindrical grid spacing between each $a$-coordinate line |
151 |
in the discrete grid to $1cm$. |
152 |
|
153 |
\item Line 62, |
154 |
\begin{verbatim} |
155 |
delZ=29*0.005, |
156 |
\end{verbatim} |
157 |
This line sets the vertical grid spacing between each z-coordinate line |
158 |
in the discrete grid to $5000m$ ($5$~km). |
159 |
|
160 |
\item Line 68, |
161 |
\begin{verbatim} |
162 |
bathyFile='bathyPol.bin', |
163 |
\end{verbatim} |
164 |
This line specifies the name of the file from which the domain |
165 |
``bathymetry'' (tank depth) is read. This file is a two-dimensional |
166 |
($a,\phi$) map of |
167 |
depths. This file is assumed to contain 64-bit binary numbers |
168 |
giving the depth of the model at each grid cell, ordered with the $\phi$ |
169 |
coordinate varying fastest. The points are ordered from low coordinate |
170 |
to high coordinate for both axes. The units and orientation of the |
171 |
depths in this file are the same as used in the MITgcm code. In this |
172 |
experiment, a depth of $0m$ indicates an area outside of the tank |
173 |
and a depth |
174 |
f $-0.145m$ indicates the tank itself. |
175 |
|
176 |
\item Line 67, |
177 |
\begin{verbatim} |
178 |
hydrogThetaFile='thetaPol.bin', |
179 |
\end{verbatim} |
180 |
This line specifies the name of the file from which the initial values |
181 |
of temperature |
182 |
are read. This file is a three-dimensional |
183 |
($x,y,z$) map and is enumerated and formatted in the same manner as the |
184 |
bathymetry file. |
185 |
|
186 |
\item Line qqq |
187 |
\begin{verbatim} |
188 |
tCyl = 0 |
189 |
\end{verbatim} |
190 |
This line specifies the temperature in degrees Celsius of the interior |
191 |
wall of the tank -- usually a bucket of ice water. |
192 |
|
193 |
|
194 |
\end{itemize} |
195 |
|
196 |
\noindent other lines in the file {\it input/data} are standard values |
197 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
198 |
notes. |
199 |
|
200 |
\begin{small} |
201 |
\input{part3/case_studies/rotating_tank/input/data} |
202 |
\end{small} |
203 |
|
204 |
\subsubsection{File {\it input/data.pkg}} |
205 |
\label{www:tutorials} |
206 |
|
207 |
This file uses standard default values and does not contain |
208 |
customizations for this experiment. |
209 |
|
210 |
\subsubsection{File {\it input/eedata}} |
211 |
\label{www:tutorials} |
212 |
|
213 |
This file uses standard default values and does not contain |
214 |
customizations for this experiment. |
215 |
|
216 |
\subsubsection{File {\it input/thetaPol.bin}} |
217 |
\label{www:tutorials} |
218 |
|
219 |
The {\it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$) |
220 |
map of initial values of $\theta$ in degrees Celsius. This particular |
221 |
experiment is set to random values x around 20C to provide initial |
222 |
perturbations. |
223 |
|
224 |
\subsubsection{File {\it input/bathyPol.bin}} |
225 |
\label{www:tutorials} |
226 |
|
227 |
|
228 |
The {\it input/bathyPol.bin} file specifies a two-dimensional ($x,y$) |
229 |
map of depth values. For this experiment values are either |
230 |
$0m$ or {\bf -delZ}m, corresponding respectively to outside or inside of |
231 |
the tank. The file contains a raw binary stream of data that is enumerated |
232 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
233 |
|
234 |
\subsubsection{File {\it code/SIZE.h}} |
235 |
\label{www:tutorials} |
236 |
|
237 |
Two lines are customized in this file for the current experiment |
238 |
|
239 |
\begin{itemize} |
240 |
|
241 |
\item Line 39, |
242 |
\begin{verbatim} sNx=120, \end{verbatim} this line sets |
243 |
the lateral domain extent in grid points for the |
244 |
axis aligned with the x-coordinate. |
245 |
|
246 |
\item Line 40, |
247 |
\begin{verbatim} sNy=31, \end{verbatim} this line sets |
248 |
the lateral domain extent in grid points for the |
249 |
axis aligned with the y-coordinate. |
250 |
|
251 |
\end{itemize} |
252 |
|
253 |
\begin{small} |
254 |
\input{part3/case_studies/rotating_tank/code/SIZE.h} |
255 |
\end{small} |
256 |
|
257 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
258 |
\label{www:tutorials} |
259 |
|
260 |
This file uses standard default values and does not contain |
261 |
customizations for this experiment. |
262 |
|
263 |
|
264 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
265 |
\label{www:tutorials} |
266 |
|
267 |
This file uses standard default values and does not contain |
268 |
customizations for this experiment. |
269 |
|