1 |
% $Header: /u/gcmpack/manual/part3/case_studies/rotating_tank/tank.tex,v 1.9 2004/07/27 13:40:09 afe Exp $ |
2 |
% $Name: $ |
3 |
|
4 |
\bodytext{bgcolor="#FFFFFFFF"} |
5 |
|
6 |
%\begin{center} |
7 |
%{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical |
8 |
%Coordinates} |
9 |
% |
10 |
%\vspace*{4mm} |
11 |
% |
12 |
%\vspace*{3mm} |
13 |
%{\large May 2001} |
14 |
%\end{center} |
15 |
|
16 |
\section{A Rotating Tank in Cylindrical Coordinates} |
17 |
\label{sect:eg-tank} |
18 |
\label{www:tutorials} |
19 |
|
20 |
This section illustrates an example of MITgcm simulating a laboratory |
21 |
experiment on much smaller scales than those commonly considered in |
22 |
geophysical |
23 |
fluid dynamics. |
24 |
|
25 |
\subsection{Overview} |
26 |
\label{www:tutorials} |
27 |
|
28 |
|
29 |
This example configuration demonstrates using the MITgcm to simulate |
30 |
a laboratory demonstration using a rotating tank of water with an ice |
31 |
bucket in the center. The simulation is configured for a laboratory |
32 |
scale on a |
33 |
$3^{\circ}$ $\times$ 20cm |
34 |
cyclindrical grid with twenty-nine vertical |
35 |
levels. |
36 |
\\ |
37 |
example illustration from GFD lab here |
38 |
\\ |
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
\subsection{Equations Solved} |
45 |
\label{www:tutorials} |
46 |
|
47 |
|
48 |
\subsection{Discrete Numerical Configuration} |
49 |
\label{www:tutorials} |
50 |
|
51 |
The domain is discretised with |
52 |
a uniform cylindrical grid spacing in the horizontal set to |
53 |
$\Delta a=1$~cm and $\Delta \phi=3^{\circ}$, so |
54 |
that there are 120 grid cells in the azimuthal direction and thirty-one grid cells in the radial. Vertically the |
55 |
model is configured with twenty-nine layers of uniform 0.5cm thickness. |
56 |
\\ |
57 |
something about heat flux |
58 |
|
59 |
\subsection{Code Configuration} |
60 |
\label{www:tutorials} |
61 |
\label{SEC:eg-baro-code_config} |
62 |
|
63 |
The model configuration for this experiment resides under the |
64 |
directory {\it verification/rotatingi\_tank/}. The experiment files |
65 |
\begin{itemize} |
66 |
\item {\it input/data} |
67 |
\item {\it input/data.pkg} |
68 |
\item {\it input/eedata}, |
69 |
\item {\it input/bathyPol.bin}, |
70 |
\item {\it input/thetaPol.bin}, |
71 |
\item {\it code/CPP\_EEOPTIONS.h} |
72 |
\item {\it code/CPP\_OPTIONS.h}, |
73 |
\item {\it code/SIZE.h}. |
74 |
\end{itemize} |
75 |
|
76 |
contain the code customizations and parameter settings for this |
77 |
experiments. Below we describe the customizations |
78 |
to these files associated with this experiment. |
79 |
|
80 |
\subsubsection{File {\it input/data}} |
81 |
\label{www:tutorials} |
82 |
|
83 |
This file, reproduced completely below, specifies the main parameters |
84 |
for the experiment. The parameters that are significant for this configuration |
85 |
are |
86 |
|
87 |
\begin{itemize} |
88 |
|
89 |
\item Line 10, \begin{verbatim} viscAh=5.0E-6, \end{verbatim} this line sets |
90 |
the Laplacian friction coefficient to $6 \times 10^{-6} m^2s^{-1}$, |
91 |
which is ususally |
92 |
low because of the small scale, presumably.... qqq |
93 |
|
94 |
\item Line 19, \begin{verbatim}f0=0.5 , \end{verbatim} this line sets the |
95 |
coriolis term, and represents a tank spinning at 2/s |
96 |
\item Line 20, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets |
97 |
$\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ |
98 |
|
99 |
\item Lines 27 and 28 |
100 |
\begin{verbatim} |
101 |
rigidLid=.TRUE., |
102 |
implicitFreeSurface=.FALSE., |
103 |
\end{verbatim} |
104 |
|
105 |
qqq these lines do the opposite of the following: |
106 |
suppress the rigid lid formulation of the surface |
107 |
pressure inverter and activate the implicit free surface form |
108 |
of the pressure inverter. |
109 |
|
110 |
\item Line 44, |
111 |
\begin{verbatim} |
112 |
nIter=0, |
113 |
\end{verbatim} |
114 |
this line indicates that the experiment should start from $t=0$ |
115 |
and implicitly suppresses searching for checkpoint files associated |
116 |
with restarting an numerical integration from a previously saved state. |
117 |
|
118 |
\item Line 47, |
119 |
\begin{verbatim} |
120 |
deltaT=0.1, |
121 |
\end{verbatim} |
122 |
This line sets the integration timestep to $0.1s$. This is an unsually |
123 |
small value among the examples due to the small physical scale of the |
124 |
experiment. |
125 |
|
126 |
\item Line 58, |
127 |
\begin{verbatim} |
128 |
usingCylindricalGrid=.TRUE., |
129 |
\end{verbatim} |
130 |
This line requests that the simulation be performed in a |
131 |
cylindrical coordinate system. |
132 |
|
133 |
\item Line 60, |
134 |
\begin{verbatim} |
135 |
dXspacing=3, |
136 |
\end{verbatim} |
137 |
This line sets the azimuthal grid spacing between each $x$-coordinate line |
138 |
in the discrete grid. The syntax indicates that the discrete grid |
139 |
should be comprise of $120$ grid lines each separated by $3^{\circ}$. |
140 |
|
141 |
|
142 |
|
143 |
\item Line 61, |
144 |
\begin{verbatim} |
145 |
dYspacing=0.01, |
146 |
\end{verbatim} |
147 |
This line sets the radial cylindrical grid spacing between each $a$-coordinate line |
148 |
in the discrete grid to $1cm$. |
149 |
|
150 |
\item Line 62, |
151 |
\begin{verbatim} |
152 |
delZ=29*0.005, |
153 |
\end{verbatim} |
154 |
This line sets the vertical grid spacing between each z-coordinate line |
155 |
in the discrete grid to $5000m$ ($5$~km). |
156 |
|
157 |
\item Line 68, |
158 |
\begin{verbatim} |
159 |
bathyFile='bathyPol.bin', |
160 |
\end{verbatim} |
161 |
This line specifies the name of the file from which the domain |
162 |
``bathymetry'' (tank depth) is read. This file is a two-dimensional |
163 |
($a,\phi$) map of |
164 |
depths. This file is assumed to contain 64-bit binary numbers |
165 |
giving the depth of the model at each grid cell, ordered with the $\phi$ |
166 |
coordinate varying fastest. The points are ordered from low coordinate |
167 |
to high coordinate for both axes. The units and orientation of the |
168 |
depths in this file are the same as used in the MITgcm code. In this |
169 |
experiment, a depth of $0m$ indicates an area outside of the tank |
170 |
and a depth |
171 |
f $-0.145m$ indicates the tank itself. |
172 |
|
173 |
\item Line 67, |
174 |
\begin{verbatim} |
175 |
hydrogThetaFile='thetaPol.bin', |
176 |
\end{verbatim} |
177 |
This line specifies the name of the file from which the initial values |
178 |
of temperature |
179 |
are read. This file is a three-dimensional |
180 |
($x,y,z$) map and is enumerated and formatted in the same manner as the |
181 |
bathymetry file. |
182 |
|
183 |
\item Line qqq |
184 |
\begin{verbatim} |
185 |
tCyl = 0 |
186 |
\end{verbatim} |
187 |
This line specifies the temperature in degrees Celsius of the interior |
188 |
wall of the tank -- usually a bucket of ice water. |
189 |
|
190 |
|
191 |
\end{itemize} |
192 |
|
193 |
\noindent other lines in the file {\it input/data} are standard values |
194 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
195 |
notes. |
196 |
|
197 |
\begin{small} |
198 |
\input{part3/case_studies/rotating_tank/input/data} |
199 |
\end{small} |
200 |
|
201 |
\subsubsection{File {\it input/data.pkg}} |
202 |
\label{www:tutorials} |
203 |
|
204 |
This file uses standard default values and does not contain |
205 |
customizations for this experiment. |
206 |
|
207 |
\subsubsection{File {\it input/eedata}} |
208 |
\label{www:tutorials} |
209 |
|
210 |
This file uses standard default values and does not contain |
211 |
customizations for this experiment. |
212 |
|
213 |
\subsubsection{File {\it input/thetaPol.bin}} |
214 |
\label{www:tutorials} |
215 |
|
216 |
The {\it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$) |
217 |
map of initial values of $\theta$ in degrees Celsius. This particular |
218 |
experiment is set to random values x around 20C to provide initial |
219 |
perturbations. |
220 |
|
221 |
\subsubsection{File {\it input/bathyPol.bin}} |
222 |
\label{www:tutorials} |
223 |
|
224 |
|
225 |
The {\it input/bathyPol.bin} file specifies a two-dimensional ($x,y$) |
226 |
map of depth values. For this experiment values are either |
227 |
$0m$ or {\bf -delZ}m, corresponding respectively to outside or inside of |
228 |
the tank. The file contains a raw binary stream of data that is enumerated |
229 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
230 |
|
231 |
\subsubsection{File {\it code/SIZE.h}} |
232 |
\label{www:tutorials} |
233 |
|
234 |
Two lines are customized in this file for the current experiment |
235 |
|
236 |
\begin{itemize} |
237 |
|
238 |
\item Line 39, |
239 |
\begin{verbatim} sNx=120, \end{verbatim} this line sets |
240 |
the lateral domain extent in grid points for the |
241 |
axis aligned with the x-coordinate. |
242 |
|
243 |
\item Line 40, |
244 |
\begin{verbatim} sNy=31, \end{verbatim} this line sets |
245 |
the lateral domain extent in grid points for the |
246 |
axis aligned with the y-coordinate. |
247 |
|
248 |
\end{itemize} |
249 |
|
250 |
\begin{small} |
251 |
\input{part3/case_studies/rotating_tank/code/SIZE.h} |
252 |
\end{small} |
253 |
|
254 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
255 |
\label{www:tutorials} |
256 |
|
257 |
This file uses standard default values and does not contain |
258 |
customizations for this experiment. |
259 |
|
260 |
|
261 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
262 |
\label{www:tutorials} |
263 |
|
264 |
This file uses standard default values and does not contain |
265 |
customizations for this experiment. |
266 |
|