/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Diff of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by afe, Mon Jul 26 21:25:34 2004 UTC revision 1.9 by afe, Tue Jul 27 13:40:09 2004 UTC
# Line 51  a uniform grid spacing in the horizontal Line 51  a uniform grid spacing in the horizontal
51  that there are sixty grid cells in the $x$ and $y$ directions. Vertically the  that there are sixty grid cells in the $x$ and $y$ directions. Vertically the
52  model is configured with a single layer with depth, $\Delta z$, of $5000$~m.  model is configured with a single layer with depth, $\Delta z$, of $5000$~m.
53    
 \subsubsection{Numerical Stability Criteria}  
 \label{www:tutorials}  
   
 The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$.  
 This value is chosen to yield a Munk layer width \cite{adcroft:95},  
   
 \begin{eqnarray}  
 \label{EQ:eg-baro-munk_layer}  
 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}  
 \end{eqnarray}  
   
 \noindent  of $\approx 100$km. This is greater than the model  
 resolution $\Delta x$, ensuring that the frictional boundary  
 layer is well resolved.  
 \\  
   
 \noindent The model is stepped forward with a  
 time step $\delta t=1200$secs. With this time step the stability  
 parameter to the horizontal Laplacian friction \cite{adcroft:95}  
   
   
   
 \begin{eqnarray}  
 \label{EQ:eg-baro-laplacian_stability}  
 S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}  
 \end{eqnarray}  
   
 \noindent evaluates to 0.012, which is well below the 0.3 upper limit  
 for stability.  
 \\  
   
 \noindent The numerical stability for inertial oscillations    
 \cite{adcroft:95}  
   
 \begin{eqnarray}  
 \label{EQ:eg-baro-inertial_stability}  
 S_{i} = f^{2} {\delta t}^2  
 \end{eqnarray}  
   
 \noindent evaluates to $0.0144$, which is well below the $0.5$ upper  
 limit for stability.  
 \\  
   
 \noindent The advective CFL \cite{adcroft:95} for an extreme maximum  
 horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$  
   
 \begin{eqnarray}  
 \label{EQ:eg-baro-cfl_stability}  
 S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}  
 \end{eqnarray}  
   
 \noindent evaluates to 0.12. This is approaching the stability limit  
 of 0.5 and limits $\delta t$ to $1200s$.  
54    
55  \subsection{Code Configuration}  \subsection{Code Configuration}
56  \label{www:tutorials}  \label{www:tutorials}

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.9

  ViewVC Help
Powered by ViewVC 1.1.22