4 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
5 |
|
|
6 |
%\begin{center} |
%\begin{center} |
7 |
%{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical |
%{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical |
8 |
%Coordinates} |
%Coordinates} |
9 |
% |
% |
10 |
%\vspace*{4mm} |
%\vspace*{4mm} |
11 |
% |
% |
12 |
%\vspace*{3mm} |
%\vspace*{3mm} |
13 |
%{\large June 2004} |
%{\large May 2001} |
14 |
%\end{center} |
%\end{center} |
15 |
|
|
16 |
This is the first in a series of tutorials describing |
This is the first in a series of tutorials describing |
25 |
the experimental configuration and detailed information on how to |
the experimental configuration and detailed information on how to |
26 |
configure the MITgcm code and input files for each experiment. |
configure the MITgcm code and input files for each experiment. |
27 |
|
|
28 |
\section{Barotropic Ocean Gyre In Cartesian Coordinates} |
\section{A Rotating Tank in Cylindrical Coordinates} |
29 |
\label{sect:eg-baro} |
\label{sect:eg-tank} |
30 |
\label{www:tutorials} |
\label{www:tutorials} |
31 |
|
|
32 |
|
|
33 |
|
This example experiment demonstrates using the MITgcm to simulate |
34 |
|
a Barotropic, wind-forced, ocean gyre circulation. The experiment |
35 |
|
is a numerical rendition of the gyre circulation problem similar |
36 |
|
to the problems described analytically by Stommel in 1966 |
37 |
|
\cite{Stommel66} and numerically in Holland et. al \cite{Holland75}. |
38 |
|
|
39 |
|
In this experiment the model |
40 |
|
is configured to represent a rectangular enclosed box of fluid, |
41 |
|
$1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced |
42 |
|
by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally |
43 |
|
in the ``north-south'' direction. Topologically the grid is Cartesian and |
44 |
|
the coriolis parameter $f$ is defined according to a mid-latitude beta-plane |
45 |
|
equation |
46 |
|
|
47 |
|
\begin{equation} |
48 |
|
\label{EQ:eg-baro-fcori} |
49 |
|
f(y) = f_{0}+\beta y |
50 |
|
\end{equation} |
51 |
|
|
52 |
|
\noindent where $y$ is the distance along the ``north-south'' axis of the |
53 |
|
simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in |
54 |
|
(\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$. |
55 |
|
\\ |
56 |
|
\\ |
57 |
|
The sinusoidal wind-stress variations are defined according to |
58 |
|
|
59 |
|
\begin{equation} |
60 |
|
\label{EQ:eg-baro-taux} |
61 |
|
\tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y}) |
62 |
|
\end{equation} |
63 |
|
|
64 |
|
\noindent where $L_{y}$ is the lateral domain extent ($1200$~km) and |
65 |
|
$\tau_0$ is set to $0.1N m^{-2}$. |
66 |
|
\\ |
67 |
|
\\ |
68 |
|
Figure \ref{FIG:eg-baro-simulation_config} |
69 |
|
summarizes the configuration simulated. |
70 |
|
|
71 |
|
%% === eh3 === |
72 |
|
\begin{figure} |
73 |
|
%% \begin{center} |
74 |
|
%% \resizebox{7.5in}{5.5in}{ |
75 |
|
%% \includegraphics*[0.2in,0.7in][10.5in,10.5in] |
76 |
|
%% {part3/case_studies/barotropic_gyre/simulation_config.eps} } |
77 |
|
%% \end{center} |
78 |
|
\centerline{ |
79 |
|
\scalefig{.95} |
80 |
|
\epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps} |
81 |
|
} |
82 |
|
\caption{Schematic of simulation domain and wind-stress forcing function |
83 |
|
for barotropic gyre numerical experiment. The domain is enclosed bu solid |
84 |
|
walls at $x=$~0,1200km and at $y=$~0,1200km.} |
85 |
|
\label{FIG:eg-baro-simulation_config} |
86 |
|
\end{figure} |
87 |
|
|
88 |
\subsection{Equations Solved} |
\subsection{Equations Solved} |
89 |
\label{www:tutorials} |
\label{www:tutorials} |
90 |
The model is configured in hydrostatic form. The implicit free surface form of the |
The model is configured in hydrostatic form. The implicit free surface form of the |
91 |
|
pressure equation described in Marshall et. al \cite{marshall:97a} is |
92 |
|
employed. |
93 |
|
A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous |
94 |
|
dissipation. The wind-stress momentum input is added to the momentum equation |
95 |
|
for the ``zonal flow'', $u$. Other terms in the model |
96 |
|
are explicitly switched off for this experiment configuration (see section |
97 |
|
\ref{SEC:code_config} ), yielding an active set of equations solved in this |
98 |
|
configuration as follows |
99 |
|
|
100 |
|
\begin{eqnarray} |
101 |
|
\label{EQ:eg-baro-model_equations} |
102 |
|
\frac{Du}{Dt} - fv + |
103 |
|
g\frac{\partial \eta}{\partial x} - |
104 |
|
A_{h}\nabla_{h}^2u |
105 |
|
& = & |
106 |
|
\frac{\tau_{x}}{\rho_{0}\Delta z} |
107 |
|
\\ |
108 |
|
\frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} - |
109 |
|
A_{h}\nabla_{h}^2v |
110 |
|
& = & |
111 |
|
0 |
112 |
|
\\ |
113 |
|
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
114 |
|
&=& |
115 |
|
0 |
116 |
|
\end{eqnarray} |
117 |
|
|
118 |
|
\noindent where $u$ and $v$ and the $x$ and $y$ components of the |
119 |
|
flow vector $\vec{u}$. |
120 |
|
\\ |
121 |
|
|
122 |
|
|
123 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
132 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
133 |
\label{www:tutorials} |
\label{www:tutorials} |
134 |
|
|
135 |
|
The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$. |
136 |
|
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
137 |
|
|
138 |
|
\begin{eqnarray} |
139 |
|
\label{EQ:eg-baro-munk_layer} |
140 |
|
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
141 |
|
\end{eqnarray} |
142 |
|
|
143 |
|
\noindent of $\approx 100$km. This is greater than the model |
144 |
|
resolution $\Delta x$, ensuring that the frictional boundary |
145 |
|
layer is well resolved. |
146 |
|
\\ |
147 |
|
|
148 |
|
\noindent The model is stepped forward with a |
149 |
|
time step $\delta t=1200$secs. With this time step the stability |
150 |
|
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
151 |
|
|
152 |
|
|
153 |
|
|
154 |
|
\begin{eqnarray} |
155 |
|
\label{EQ:eg-baro-laplacian_stability} |
156 |
|
S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2} |
157 |
|
\end{eqnarray} |
158 |
|
|
159 |
|
\noindent evaluates to 0.012, which is well below the 0.3 upper limit |
160 |
|
for stability. |
161 |
|
\\ |
162 |
|
|
163 |
|
\noindent The numerical stability for inertial oscillations |
164 |
|
\cite{adcroft:95} |
165 |
|
|
166 |
|
\begin{eqnarray} |
167 |
|
\label{EQ:eg-baro-inertial_stability} |
168 |
|
S_{i} = f^{2} {\delta t}^2 |
169 |
|
\end{eqnarray} |
170 |
|
|
171 |
|
\noindent evaluates to $0.0144$, which is well below the $0.5$ upper |
172 |
|
limit for stability. |
173 |
|
\\ |
174 |
|
|
175 |
|
\noindent The advective CFL \cite{adcroft:95} for an extreme maximum |
176 |
|
horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$ |
177 |
|
|
178 |
|
\begin{eqnarray} |
179 |
|
\label{EQ:eg-baro-cfl_stability} |
180 |
|
S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x} |
181 |
|
\end{eqnarray} |
182 |
|
|
183 |
|
\noindent evaluates to 0.12. This is approaching the stability limit |
184 |
|
of 0.5 and limits $\delta t$ to $1200s$. |
185 |
|
|
186 |
\subsection{Code Configuration} |
\subsection{Code Configuration} |
187 |
\label{www:tutorials} |
\label{www:tutorials} |
311 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
that are described in the MITgcm Getting Started and MITgcm Parameters |
312 |
notes. |
notes. |
313 |
|
|
314 |
%%\begin{small} |
\begin{small} |
315 |
%%\input{part3/case_studies/barotropic_gyre/input/data} |
\input{part3/case_studies/barotropic_gyre/input/data} |
316 |
%%\end{small} |
\end{small} |
317 |
|
|
318 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
319 |
\label{www:tutorials} |
\label{www:tutorials} |