/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Diff of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by afe, Tue Jun 22 16:56:31 2004 UTC revision 1.3 by afe, Mon Jul 26 16:21:15 2004 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
 \section{Simulating a Rotating Tank in Cylindrical Coordinates}  
 \label{www:tutorials}  
 \label{sect:eg-tank}  
   
4  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
5    
6  %\begin{center}  %\begin{center}
7  %{\Large \bf Simulating a Rotating Tank in Cylindrical Coordinates}  %{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical
8  %  %Coordinates}
9  %  %
10  %\vspace*{4mm}  %\vspace*{4mm}
11  %  %
12  %\vspace*{3mm}  %\vspace*{3mm}
13  %{\large June 2004}  %{\large May 2001}
14  %\end{center}  %\end{center}
15    
16  \subsection{Introduction}  This is the first in a series of tutorials describing
17  \label{www:tutorials}  example MITgcm numerical experiments. The example experiments
18    include both straightforward examples of idealized geophysical
19  This section illustrates an example of MITgcm simulating a laboratory  fluid simulations and more involved cases encompassing
20  experiment on much smaller scales than those common to geophysical  large scale modeling and
21  fluid dynamics.  automatic differentiation. Both hydrostatic and non-hydrostatic
22    experiments are presented, as well as experiments employing
23    Cartesian, spherical-polar and cube-sphere coordinate systems.
24    These ``case study'' documents include information describing
25    the experimental configuration and detailed information on how to
26    configure the MITgcm code and input files for each experiment.
27    
28  \subsection{Overview}  \section{A Rotating Tank in Cylindrical Coordinates}
29    \label{sect:eg-tank}
30  \label{www:tutorials}  \label{www:tutorials}
31    
32    
33  This example experiment demonstrates using the MITgcm to simulate  This example experiment demonstrates using the MITgcm to simulate
34  a laboratory experiment with a rotating tank of water with an ice  a Barotropic, wind-forced, ocean gyre circulation. The experiment
35  bucket in the center. The simulation is configured for a laboratory  is a numerical rendition of the gyre circulation problem similar
36  scale on a 3^{\circ} \times 20cm cyclindrical grid with twenty-nine vertical  to the problems described analytically by Stommel in 1966
37  levels.    \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}.
38  \\  
39    In this experiment the model
40  The model is forced with climatological wind stress data and surface  is configured to represent a rectangular enclosed box of fluid,
41  flux data from DaSilva \cite{DaSilva94}. Climatological data  $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced
42  from Levitus \cite{Levitus94} is used to initialize the model hydrography.  by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally
43  Levitus seasonal climatology data is also used throughout the calculation  in the ``north-south'' direction. Topologically the grid is Cartesian and
44  to provide additional air-sea fluxes.  the coriolis parameter $f$ is defined according to a mid-latitude beta-plane
45  These fluxes are combined with the DaSilva climatological estimates of  equation
46  surface heat flux and fresh water, resulting in a mixed boundary  
47  condition of the style described in Haney \cite{Haney}.  \begin{equation}
48  Altogether, this yields the following forcing applied  \label{EQ:eg-baro-fcori}
49  in the model surface layer.  f(y) = f_{0}+\beta y
50    \end{equation}
51    
52  \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,  \noindent where $y$ is the distance along the ``north-south'' axis of the
53  ${\cal F}_{s}$ are the forcing terms in the zonal and meridional  simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in
54  momentum and in the potential temperature and salinity  (\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.
55  equations respectively.  \\
56  The term $\Delta z_{s}$ represents the top ocean layer thickness in  \\
57  meters.   The sinusoidal wind-stress variations are defined according to
58  It is used in conjunction with a reference density, $\rho_{0}$  
59  (here set to $999.8\,{\rm kg\,m^{-3}}$), a  \begin{equation}
60  reference salinity, $S_{0}$ (here set to 35~ppt),  \label{EQ:eg-baro-taux}
61  and a specific heat capacity, $C_{p}$ (here set to  \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})
62  $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert  \end{equation}
63  input dataset values into time tendencies of  
64  potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),  \noindent where $L_{y}$ is the lateral domain extent ($1200$~km) and
65  salinity (with units ${\rm ppt}~s^{-1}$) and  $\tau_0$ is set to $0.1N m^{-2}$.
66  velocity (with units ${\rm m}~{\rm s}^{-2}$).  \\
67  The externally supplied forcing fields used in this  \\
68  experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,  Figure \ref{FIG:eg-baro-simulation_config}
69  $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)  summarizes the configuration simulated.
70  have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields  
71  ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$  %% === eh3 ===
72  respectively. The salinity forcing fields ($S^{\ast}$ and  \begin{figure}
73  $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$  %% \begin{center}
74  respectively.  %%  \resizebox{7.5in}{5.5in}{
75  \\  %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in]
76    %%     {part3/case_studies/barotropic_gyre/simulation_config.eps} }
77    %% \end{center}
78  Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the  \centerline{
79  relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,    \scalefig{.95}
80  the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)    \epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps}
81  and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used  }
82  in equations \ref{EQ:eg-hs-global_forcing_fu}-\ref{EQ:eg-hs-global_forcing_fs}. The figures  \caption{Schematic of simulation domain and wind-stress forcing function
83  also indicate the lateral extent and coastline used in the experiment.  for barotropic gyre numerical experiment. The domain is enclosed bu solid
84  Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model  walls at $x=$~0,1200km and at $y=$~0,1200km.}
85  domain.  \label{FIG:eg-baro-simulation_config}
86    \end{figure}
87    
88  \subsection{Discrete Numerical Configuration}  \subsection{Equations Solved}
89  \label{www:tutorials}  \label{www:tutorials}
90    The model is configured in hydrostatic form. The implicit free surface form of the
91    pressure equation described in Marshall et. al \cite{marshall:97a} is
92   The model is configured in hydrostatic form.  The domain is discretised with  employed.
93  a uniform grid spacing in latitude and longitude on the sphere  A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous
94   $\Delta \phi=\Delta \lambda=4^{\circ}$, so  dissipation. The wind-stress momentum input is added to the momentum equation
95  that there are ninety grid cells in the zonal and forty in the  for the ``zonal flow'', $u$. Other terms in the model
96  meridional direction. The internal model coordinate variables  are explicitly switched off for this experiment configuration (see section
97  $x$ and $y$ are initialized according to  \ref{SEC:code_config} ), yielding an active set of equations solved in this
98  \begin{eqnarray}  configuration as follows
 x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\  
 y=r\lambda,~\Delta x &= &r\Delta \lambda  
 \end{eqnarray}  
   
 Arctic polar regions are not  
 included in this experiment. Meridionally the model extends from  
 $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.  
 Vertically the model is configured with twenty layers with the  
 following thicknesses  
 $\Delta z_{1} = 50\,{\rm m},\,  
  \Delta z_{2} = 50\,{\rm m},\,  
  \Delta z_{3} = 55\,{\rm m},\,  
  \Delta z_{4} = 60\,{\rm m},\,  
  \Delta z_{5} = 65\,{\rm m},\,  
 $  
 $  
  \Delta z_{6}~=~70\,{\rm m},\,  
  \Delta z_{7}~=~80\,{\rm m},\,  
  \Delta z_{8}~=95\,{\rm m},\,  
  \Delta z_{9}=120\,{\rm m},\,  
  \Delta z_{10}=155\,{\rm m},\,  
 $  
 $  
  \Delta z_{11}=200\,{\rm m},\,  
  \Delta z_{12}=260\,{\rm m},\,  
  \Delta z_{13}=320\,{\rm m},\,  
  \Delta z_{14}=400\,{\rm m},\,  
  \Delta z_{15}=480\,{\rm m},\,  
 $  
 $  
  \Delta z_{16}=570\,{\rm m},\,  
  \Delta z_{17}=655\,{\rm m},\,  
  \Delta z_{18}=725\,{\rm m},\,  
  \Delta z_{19}=775\,{\rm m},\,  
  \Delta z_{20}=815\,{\rm m}  
 $ (here the numeric subscript indicates the model level index number, ${\tt k}$).  
 The implicit free surface form of the pressure equation described in Marshall et. al  
 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous  
 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.  
   
 Wind-stress forcing is added to the momentum equations for both  
 the zonal flow, $u$ and the meridional flow $v$, according to equations  
 (\ref{EQ:eg-hs-global_forcing_fu}) and (\ref{EQ:eg-hs-global_forcing_fv}).  
 Thermodynamic forcing inputs are added to the equations for  
 potential temperature, $\theta$, and salinity, $S$, according to equations  
 (\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).  
 This produces a set of equations solved in this configuration as follows:  
99    
100  \begin{eqnarray}  \begin{eqnarray}
101  \label{EQ:eg-hs-model_equations}  \label{EQ:eg-baro-model_equations}
102  \frac{Du}{Dt} - fv +  \frac{Du}{Dt} - fv +
103    \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -                g\frac{\partial \eta}{\partial x} -
104    \nabla_{h}\cdot A_{h}\nabla_{h}u -                A_{h}\nabla_{h}^2u
105    \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}  & = &
106   & = &  \frac{\tau_{x}}{\rho_{0}\Delta z}
 \begin{cases}  
 {\cal F}_u & \text{(surface)} \\  
 0 & \text{(interior)}  
 \end{cases}  
107  \\  \\
108  \frac{Dv}{Dt} + fu +  \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} -
109    \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -                A_{h}\nabla_{h}^2v
   \nabla_{h}\cdot A_{h}\nabla_{h}v -  
   \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}  
110  & = &  & = &
111  \begin{cases}  0
 {\cal F}_v & \text{(surface)} \\  
 0 & \text{(interior)}  
 \end{cases}  
112  \\  \\
113  \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}  \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
114  &=&  &=&
115  0  0
 \\  
 \frac{D\theta}{Dt} -  
  \nabla_{h}\cdot K_{h}\nabla_{h}\theta  
  - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}  
 & = &  
 \begin{cases}  
 {\cal F}_\theta & \text{(surface)} \\  
 0 & \text{(interior)}  
 \end{cases}  
 \\  
 \frac{D s}{Dt} -  
  \nabla_{h}\cdot K_{h}\nabla_{h}s  
  - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}  
 & = &  
 \begin{cases}  
 {\cal F}_s & \text{(surface)} \\  
 0 & \text{(interior)}  
 \end{cases}  
 \\  
 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}  
116  \end{eqnarray}  \end{eqnarray}
117    
118  \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and  \noindent where $u$ and $v$ and the $x$ and $y$ components of the
119  $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$  flow vector $\vec{u}$.
 are the zonal and meridional components of the  
 flow vector, $\vec{u}$, on the sphere. As described in  
 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time  
 evolution of potential temperature, $\theta$, equation is solved prognostically.  
 The total pressure, $p$, is diagnosed by summing pressure due to surface  
 elevation $\eta$ and the hydrostatic pressure.  
120  \\  \\
121    
122    
123    \subsection{Discrete Numerical Configuration}
124    \label{www:tutorials}
125    
126     The domain is discretised with
127    a uniform grid spacing in the horizontal set to
128     $\Delta x=\Delta y=20$~km, so
129    that there are sixty grid cells in the $x$ and $y$ directions. Vertically the
130    model is configured with a single layer with depth, $\Delta z$, of $5000$~m.
131    
132  \subsubsection{Numerical Stability Criteria}  \subsubsection{Numerical Stability Criteria}
133  \label{www:tutorials}  \label{www:tutorials}
134    
135  The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.  The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$.
136  This value is chosen to yield a Munk layer width \cite{adcroft:95},  This value is chosen to yield a Munk layer width \cite{adcroft:95},
137    
138  \begin{eqnarray}  \begin{eqnarray}
139  \label{EQ:eg-hs-munk_layer}  \label{EQ:eg-baro-munk_layer}
140  M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}  M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
141  \end{eqnarray}  \end{eqnarray}
142    
143  \noindent  of $\approx 600$km. This is greater than the model  \noindent  of $\approx 100$km. This is greater than the model
144  resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional  resolution $\Delta x$, ensuring that the frictional boundary
145  boundary layer is adequately resolved.  layer is well resolved.
146  \\  \\
147    
148  \noindent The model is stepped forward with a  \noindent The model is stepped forward with a
149  time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and  time step $\delta t=1200$secs. With this time step the stability
 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability  
150  parameter to the horizontal Laplacian friction \cite{adcroft:95}  parameter to the horizontal Laplacian friction \cite{adcroft:95}
 \begin{eqnarray}  
 \label{EQ:eg-hs-laplacian_stability}  
 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}  
 \end{eqnarray}  
151    
 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the  
 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at  
 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.  
 \\  
152    
153  \noindent The vertical dissipation coefficient, $A_{z}$, is set to  
 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit  
154  \begin{eqnarray}  \begin{eqnarray}
155  \label{EQ:eg-hs-laplacian_stability_z}  \label{EQ:eg-baro-laplacian_stability}
156  S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}  S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
157  \end{eqnarray}  \end{eqnarray}
158    
159  \noindent evaluates to $0.015$ for the smallest model  \noindent evaluates to 0.012, which is well below the 0.3 upper limit
160  level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below  for stability.
 the upper stability limit.  
161  \\  \\
162    
163  The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients  \noindent The numerical stability for inertial oscillations  
 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$  
 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit  
 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.  
 Here the stability parameter  
 \begin{eqnarray}  
 \label{EQ:eg-hs-laplacian_stability_xtheta}  
 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}  
 \end{eqnarray}  
 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The  
 stability parameter related to $K_{z}$  
 \begin{eqnarray}  
 \label{EQ:eg-hs-laplacian_stability_ztheta}  
 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}  
 \end{eqnarray}  
 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit  
 of $S_{l} \approx 0.5$.  
 \\  
   
 \noindent The numerical stability for inertial oscillations  
164  \cite{adcroft:95}  \cite{adcroft:95}
165    
166  \begin{eqnarray}  \begin{eqnarray}
167  \label{EQ:eg-hs-inertial_stability}  \label{EQ:eg-baro-inertial_stability}
168  S_{i} = f^{2} {\delta t_v}^2  S_{i} = f^{2} {\delta t}^2
169  \end{eqnarray}  \end{eqnarray}
170    
171  \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to  \noindent evaluates to $0.0144$, which is well below the $0.5$ upper
172  the $S_{i} < 1$ upper limit for stability.  limit for stability.
173  \\  \\
174    
175  \noindent The advective CFL \cite{adcroft:95} for a extreme maximum  \noindent The advective CFL \cite{adcroft:95} for an extreme maximum
176  horizontal flow  horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$
 speed of $ | \vec{u} | = 2 ms^{-1}$  
177    
178  \begin{eqnarray}  \begin{eqnarray}
179  \label{EQ:eg-hs-cfl_stability}  \label{EQ:eg-baro-cfl_stability}
180  S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}  S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
181  \end{eqnarray}  \end{eqnarray}
182    
183  \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability  \noindent evaluates to 0.12. This is approaching the stability limit
184  limit of 0.5.  of 0.5 and limits $\delta t$ to $1200s$.
 \\  
   
 \noindent The stability parameter for internal gravity waves propagating  
 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$  
 \cite{adcroft:95}  
185    
186  \begin{eqnarray}  \subsection{Code Configuration}
 \label{EQ:eg-hs-gfl_stability}  
 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}  
 \end{eqnarray}  
   
 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear  
 stability limit of 0.5.  
     
 \subsection{Experiment Configuration}  
187  \label{www:tutorials}  \label{www:tutorials}
188  \label{SEC:eg-hs_examp_exp_config}  \label{SEC:eg-baro-code_config}
189    
190  The model configuration for this experiment resides under the  The model configuration for this experiment resides under the
191  directory {\it verification/hs94.128x64x5}.  The experiment files  directory {\it verification/exp0/}.  The experiment files
192  \begin{itemize}  \begin{itemize}
193  \item {\it input/data}  \item {\it input/data}
194  \item {\it input/data.pkg}  \item {\it input/data.pkg}
195  \item {\it input/eedata},  \item {\it input/eedata},
196  \item {\it input/windx.bin},  \item {\it input/windx.sin\_y},
197  \item {\it input/windy.bin},  \item {\it input/topog.box},
 \item {\it input/salt.bin},  
 \item {\it input/theta.bin},  
 \item {\it input/SSS.bin},  
 \item {\it input/SST.bin},  
 \item {\it input/topog.bin},  
198  \item {\it code/CPP\_EEOPTIONS.h}  \item {\it code/CPP\_EEOPTIONS.h}
199  \item {\it code/CPP\_OPTIONS.h},  \item {\it code/CPP\_OPTIONS.h},
200  \item {\it code/SIZE.h}.  \item {\it code/SIZE.h}.
201  \end{itemize}  \end{itemize}
202  contain the code customizations and parameter settings for these  contain the code customizations and parameter settings for this
203  experiments. Below we describe the customizations  experiments. Below we describe the customizations
204  to these files associated with this experiment.  to these files associated with this experiment.
205    
# Line 330  are Line 212  are
212    
213  \begin{itemize}  \begin{itemize}
214    
215  \item Lines 7-10 and 11-14  \item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets
216  \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 ,  \end{verbatim}  the Laplacian friction coefficient to $400 m^2s^{-1}$
217  $\cdots$ \\  \item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets
218  set reference values for potential  $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$
219  temperature and salinity at each model level in units of $^{\circ}$C and  
220  ${\rm ppt}$. The entries are ordered from surface to depth.  \item Lines 15 and 16
221  Density is calculated from anomalies at each level evaluated  \begin{verbatim}
222  with respect to the reference values set here.\\  rigidLid=.FALSE.,
223  \fbox{  implicitFreeSurface=.TRUE.,
224  \begin{minipage}{5.0in}  \end{verbatim}
225  {\it S/R INI\_THETA}({\it ini\_theta.F})  these lines suppress the rigid lid formulation of the surface
226  \end{minipage}  pressure inverter and activate the implicit free surface form
227  }  of the pressure inverter.
   
   
 \item Line 15,  
 \begin{verbatim} viscAz=1.E-3, \end{verbatim}  
 this line sets the vertical Laplacian dissipation coefficient to  
 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions  
 for this operator are specified later. This variable is copied into  
 model general vertical coordinate variable {\bf viscAr}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})  
 \end{minipage}  
 }  
   
 \item Line 16,  
 \begin{verbatim}  
 viscAh=5.E5,  
 \end{verbatim}  
 this line sets the horizontal Laplacian frictional dissipation coefficient to  
 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions  
 for this operator are specified later.  
   
 \item Lines 17,  
 \begin{verbatim}  
 no_slip_sides=.FALSE.  
 \end{verbatim}  
 this line selects a free-slip lateral boundary condition for  
 the horizontal Laplacian friction operator  
 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and  
 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.  
   
 \item Lines 9,  
 \begin{verbatim}  
 no_slip_bottom=.TRUE.  
 \end{verbatim}  
 this line selects a no-slip boundary condition for bottom  
 boundary condition in the vertical Laplacian friction operator  
 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.  
   
 \item Line 19,  
 \begin{verbatim}  
 diffKhT=1.E3,  
 \end{verbatim}  
 this line sets the horizontal diffusion coefficient for temperature  
 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this  
 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on  
 all boundaries.  
   
 \item Line 20,  
 \begin{verbatim}  
 diffKzT=3.E-5,  
 \end{verbatim}  
 this line sets the vertical diffusion coefficient for temperature  
 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary  
 condition on this operator is $\frac{\partial}{\partial z}=0$ at both  
 the upper and lower boundaries.  
   
 \item Line 21,  
 \begin{verbatim}  
 diffKhS=1.E3,  
 \end{verbatim}  
 this line sets the horizontal diffusion coefficient for salinity  
 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this  
 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on  
 all boundaries.  
   
 \item Line 22,  
 \begin{verbatim}  
 diffKzS=3.E-5,  
 \end{verbatim}  
 this line sets the vertical diffusion coefficient for salinity  
 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary  
 condition on this operator is $\frac{\partial}{\partial z}=0$ at both  
 the upper and lower boundaries.  
   
 \item Lines 23-26  
 \begin{verbatim}  
 beta=1.E-11,  
 \end{verbatim}  
 \vspace{-5mm}$\cdots$\\  
 These settings do not apply for this experiment.  
228    
229  \item Line 27,  \item Line 27,
230  \begin{verbatim}  \begin{verbatim}
231  gravity=9.81,  startTime=0,
232  \end{verbatim}  \end{verbatim}
233  Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\  this line indicates that the experiment should start from $t=0$
234  \fbox{  and implicitly suppresses searching for checkpoint files associated
235  \begin{minipage}{5.0in}  with restarting an numerical integration from a previously saved state.
 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\  
 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\  
 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\  
 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\  
 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})  
 \end{minipage}  
 }  
236    
237    \item Line 29,
 \item Line 28-29,  
238  \begin{verbatim}  \begin{verbatim}
239  rigidLid=.FALSE.,  endTime=12000,
 implicitFreeSurface=.TRUE.,  
240  \end{verbatim}  \end{verbatim}
241  Selects the barotropic pressure equation to be the implicit free surface  this line indicates that the experiment should start finish at $t=12000s$.
242  formulation.  A restart file will be written at this time that will enable the
243    simulation to be continued from this point.
244    
245  \item Line 30,  \item Line 30,
246  \begin{verbatim}  \begin{verbatim}
247  eosType='POLY3',  deltaTmom=1200,
248  \end{verbatim}  \end{verbatim}
249  Selects the third order polynomial form of the equation of state.\\  This line sets the momentum equation timestep to $1200s$.
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\  
 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})  
 \end{minipage}  
 }  
250    
251  \item Line 31,  \item Line 39,
252  \begin{verbatim}  \begin{verbatim}
253  readBinaryPrec=32,  usingCartesianGrid=.TRUE.,
254  \end{verbatim}  \end{verbatim}
255  Sets format for reading binary input datasets holding model fields to  This line requests that the simulation be performed in a
256  use 32-bit representation for floating-point numbers.\\  Cartesian coordinate system.
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\  
 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})  
 \end{minipage}  
 }  
257    
258  \item Line 36,  \item Line 41,
259  \begin{verbatim}  \begin{verbatim}
260  cg2dMaxIters=1000,  delX=60*20E3,
261  \end{verbatim}  \end{verbatim}
262  Sets maximum number of iterations the two-dimensional, conjugate  This line sets the horizontal grid spacing between each x-coordinate line
263  gradient solver will use, {\bf irrespective of convergence  in the discrete grid. The syntax indicates that the discrete grid
264  criteria being met}.\\  should be comprise of $60$ grid lines each separated by $20 \times 10^{3}m$
265  \fbox{  ($20$~km).
 \begin{minipage}{5.0in}  
 {\it S/R CG2D}~({\it cg2d.F})  
 \end{minipage}  
 }  
   
 \item Line 37,  
 \begin{verbatim}  
 cg2dTargetResidual=1.E-13,  
 \end{verbatim}  
 Sets the tolerance which the two-dimensional, conjugate  
 gradient solver will use to test for convergence in equation  
 \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$.  
 Solver will iterate until  
 tolerance falls below this value or until the maximum number of  
 solver iterations is reached.\\  
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R CG2D}~({\it cg2d.F})  
 \end{minipage}  
 }  
266    
267  \item Line 42,  \item Line 42,
268  \begin{verbatim}  \begin{verbatim}
269  startTime=0,  delY=60*20E3,
270  \end{verbatim}  \end{verbatim}
271  Sets the starting time for the model internal time counter.  This line sets the horizontal grid spacing between each y-coordinate line
272  When set to non-zero this option implicitly requests a  in the discrete grid to $20 \times 10^{3}m$ ($20$~km).
 checkpoint file be read for initial state.  
 By default the checkpoint file is named according to  
 the integer number of time steps in the {\bf startTime} value.  
 The internal time counter works in seconds.  
273    
274  \item Line 43,  \item Line 43,
275  \begin{verbatim}  \begin{verbatim}
276  endTime=2808000.,  delZ=5000,
 \end{verbatim}  
 Sets the time (in seconds) at which this simulation will terminate.  
 At the end of a simulation a checkpoint file is automatically  
 written so that a numerical experiment can consist of multiple  
 stages.  
   
 \item Line 44,  
 \begin{verbatim}  
 #endTime=62208000000,  
277  \end{verbatim}  \end{verbatim}
278  A commented out setting for endTime for a 2000 year simulation.  This line sets the vertical grid spacing between each z-coordinate line
279    in the discrete grid to $5000m$ ($5$~km).
 \item Line 45,  
 \begin{verbatim}  
 deltaTmom=2400.0,  
 \end{verbatim}  
 Sets the timestep $\delta t_{v}$ used in the momentum equations to  
 $20~{\rm mins}$.  
 See section \ref{SEC:mom_time_stepping}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R TIMESTEP}({\it timestep.F})  
 \end{minipage}  
 }  
280    
281  \item Line 46,  \item Line 46,
282  \begin{verbatim}  \begin{verbatim}
 tauCD=321428.,  
 \end{verbatim}  
 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.  
 See section \ref{SEC:cd_scheme}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\  
 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})  
 \end{minipage}  
 }  
   
 \item Line 47,  
 \begin{verbatim}  
 deltaTtracer=108000.,  
 \end{verbatim}  
 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to  
 $30~{\rm hours}$.  
 See section \ref{SEC:tracer_time_stepping}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})  
 \end{minipage}  
 }  
   
 \item Line 47,  
 \begin{verbatim}  
283  bathyFile='topog.box'  bathyFile='topog.box'
284  \end{verbatim}  \end{verbatim}
285  This line specifies the name of the file from which the domain  This line specifies the name of the file from which the domain
# Line 584  coordinate varying fastest. The points a Line 290  coordinate varying fastest. The points a
290  to high coordinate for both axes. The units and orientation of the  to high coordinate for both axes. The units and orientation of the
291  depths in this file are the same as used in the MITgcm code. In this  depths in this file are the same as used in the MITgcm code. In this
292  experiment, a depth of $0m$ indicates a solid wall and a depth  experiment, a depth of $0m$ indicates a solid wall and a depth
293  of $-2000m$ indicates open ocean. The matlab program  of $-5000m$ indicates open ocean. The matlab program
294  {\it input/gendata.m} shows an example of how to generate a  {\it input/gendata.m} shows an example of how to generate a
295  bathymetry file.  bathymetry file.
296    
297    
298  \item Line 50,  \item Line 49,
299  \begin{verbatim}  \begin{verbatim}
300  zonalWindFile='windx.sin_y'  zonalWindFile='windx.sin_y'
301  \end{verbatim}  \end{verbatim}
# Line 597  This line specifies the name of the file Line 303  This line specifies the name of the file
303  surface wind stress is read. This file is also a two-dimensional  surface wind stress is read. This file is also a two-dimensional
304  ($x,y$) map and is enumerated and formatted in the same manner as the  ($x,y$) map and is enumerated and formatted in the same manner as the
305  bathymetry file. The matlab program {\it input/gendata.m} includes example  bathymetry file. The matlab program {\it input/gendata.m} includes example
306  code to generate a valid  code to generate a valid {\bf zonalWindFile} file.  
 {\bf zonalWindFile}  
 file.    
307    
308  \end{itemize}  \end{itemize}
309    
# Line 608  that are described in the MITgcm Getting Line 312  that are described in the MITgcm Getting
312  notes.  notes.
313    
314  \begin{small}  \begin{small}
315  \input{part3/case_studies/climatalogical_ogcm/input/data}  \input{part3/case_studies/barotropic_gyre/input/data}
316  \end{small}  \end{small}
317    
318  \subsubsection{File {\it input/data.pkg}}  \subsubsection{File {\it input/data.pkg}}
319  \label{www:tutorials}  \label{www:tutorials}
320    
321  This file uses standard default values and does not contain  This file uses standard default values and does not contain
322  customisations for this experiment.  customizations for this experiment.
323    
324  \subsubsection{File {\it input/eedata}}  \subsubsection{File {\it input/eedata}}
325  \label{www:tutorials}  \label{www:tutorials}
326    
327  This file uses standard default values and does not contain  This file uses standard default values and does not contain
328  customisations for this experiment.  customizations for this experiment.
329    
330  \subsubsection{File {\it input/windx.sin\_y}}  \subsubsection{File {\it input/windx.sin\_y}}
331  \label{www:tutorials}  \label{www:tutorials}
# Line 640  code for creating the {\it input/windx.s Line 344  code for creating the {\it input/windx.s
344    
345  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
346  map of depth values. For this experiment values are either  map of depth values. For this experiment values are either
347  $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep  $0m$ or {\bf -delZ}m, corresponding respectively to a wall or to deep
348  ocean. The file contains a raw binary stream of data that is enumerated  ocean. The file contains a raw binary stream of data that is enumerated
349  in the same way as standard MITgcm two-dimensional, horizontal arrays.  in the same way as standard MITgcm two-dimensional, horizontal arrays.
350  The included matlab program {\it input/gendata.m} gives a complete  The included matlab program {\it input/gendata.m} gives a complete
# Line 663  axis aligned with the x-coordinate. Line 367  axis aligned with the x-coordinate.
367  the lateral domain extent in grid points for the  the lateral domain extent in grid points for the
368  axis aligned with the y-coordinate.  axis aligned with the y-coordinate.
369    
 \item Line 49,  
 \begin{verbatim} Nr=4,   \end{verbatim} this line sets  
 the vertical domain extent in grid points.  
   
370  \end{itemize}  \end{itemize}
371    
372  \begin{small}  \begin{small}
373  \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}  \input{part3/case_studies/barotropic_gyre/code/SIZE.h}
374  \end{small}  \end{small}
375    
376  \subsubsection{File {\it code/CPP\_OPTIONS.h}}  \subsubsection{File {\it code/CPP\_OPTIONS.h}}
377  \label{www:tutorials}  \label{www:tutorials}
378    
379  This file uses standard default values and does not contain  This file uses standard default values and does not contain
380  customisations for this experiment.  customizations for this experiment.
381    
382    
383  \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}  \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
384  \label{www:tutorials}  \label{www:tutorials}
385    
386  This file uses standard default values and does not contain  This file uses standard default values and does not contain
387  customisations for this experiment.  customizations for this experiment.
388    
 \subsubsection{Other Files }  
 \label{www:tutorials}  
   
 Other files relevant to this experiment are  
 \begin{itemize}  
 \item {\it model/src/ini\_cori.F}. This file initializes the model  
 coriolis variables {\bf fCorU}.  
 \item {\it model/src/ini\_spherical\_polar\_grid.F}  
 \item {\it model/src/ini\_parms.F},  
 \item {\it input/windx.sin\_y},  
 \end{itemize}  
 contain the code customisations and parameter settings for this  
 experiments. Below we describe the customisations  
 to these files associated with this experiment.  

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.3

  ViewVC Help
Powered by ViewVC 1.1.22