/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Diff of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by afe, Mon Jul 26 19:13:08 2004 UTC revision 1.8 by afe, Mon Jul 26 21:25:34 2004 UTC
# Line 36  levels. Line 36  levels.
36    
37    
38    
 This example experiment demonstrates using the MITgcm to simulate  
 a Barotropic, wind-forced, ocean gyre circulation. The experiment  
 is a numerical rendition of the gyre circulation problem similar  
 to the problems described analytically by Stommel in 1966  
 \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}.  
   
 In this experiment the model  
 is configured to represent a rectangular enclosed box of fluid,  
 $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced  
 by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally  
 in the ``north-south'' direction. Topologically the grid is Cartesian and  
 the coriolis parameter $f$ is defined according to a mid-latitude beta-plane  
 equation  
   
 \begin{equation}  
 \label{EQ:eg-baro-fcori}  
 f(y) = f_{0}+\beta y  
 \end{equation}  
39    
 \noindent where $y$ is the distance along the ``north-south'' axis of the  
 simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in  
 (\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.  
 \\  
 \\  
  The sinusoidal wind-stress variations are defined according to  
   
 \begin{equation}  
 \label{EQ:eg-baro-taux}  
 \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})  
 \end{equation}  
   
 \noindent where $L_{y}$ is the lateral domain extent ($1200$~km) and  
 $\tau_0$ is set to $0.1N m^{-2}$.  
 \\  
 \\  
 Figure \ref{FIG:eg-baro-simulation_config}  
 summarizes the configuration simulated.  
   
 %% === eh3 ===  
 \begin{figure}  
 %% \begin{center}  
 %%  \resizebox{7.5in}{5.5in}{  
 %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in]  
 %%     {part3/case_studies/barotropic_gyre/simulation_config.eps} }  
 %% \end{center}  
 \centerline{  
   \scalefig{.95}  
   \epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps}  
 }  
 \caption{Schematic of simulation domain and wind-stress forcing function  
 for barotropic gyre numerical experiment. The domain is enclosed bu solid  
 walls at $x=$~0,1200km and at $y=$~0,1200km.}  
 \label{FIG:eg-baro-simulation_config}  
 \end{figure}  
40    
41  \subsection{Equations Solved}  \subsection{Equations Solved}
42  \label{www:tutorials}  \label{www:tutorials}
 The model is configured in hydrostatic form. The implicit free surface form of the  
 pressure equation described in Marshall et. al \cite{marshall:97a} is  
 employed.  
 A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous  
 dissipation. The wind-stress momentum input is added to the momentum equation  
 for the ``zonal flow'', $u$. Other terms in the model  
 are explicitly switched off for this experiment configuration (see section  
 \ref{SEC:code_config} ), yielding an active set of equations solved in this  
 configuration as follows  
   
 \begin{eqnarray}  
 \label{EQ:eg-baro-model_equations}  
 \frac{Du}{Dt} - fv +  
               g\frac{\partial \eta}{\partial x} -  
               A_{h}\nabla_{h}^2u  
 & = &  
 \frac{\tau_{x}}{\rho_{0}\Delta z}  
 \\  
 \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} -  
               A_{h}\nabla_{h}^2v  
 & = &  
 0  
 \\  
 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}  
 &=&  
 0  
 \end{eqnarray}  
   
 \noindent where $u$ and $v$ and the $x$ and $y$ components of the  
 flow vector $\vec{u}$.  
 \\  
43    
44    
45  \subsection{Discrete Numerical Configuration}  \subsection{Discrete Numerical Configuration}
# Line 260  experiment. Line 176  experiment.
176  usingCylindricalGrid=.TRUE.,  usingCylindricalGrid=.TRUE.,
177  \end{verbatim}  \end{verbatim}
178  This line requests that the simulation be performed in a  This line requests that the simulation be performed in a
179  Cartesian coordinate system.  cylindrical coordinate system.
180    
181  \item Line 41,  \item Line qqq,
182  \begin{verbatim}  \begin{verbatim}
183  delX=60*20E3,  dXspacing=3,
184  \end{verbatim}  \end{verbatim}
185  This line sets the horizontal grid spacing between each x-coordinate line  This line sets the azimuthal grid spacing between each x-coordinate line
186  in the discrete grid. The syntax indicates that the discrete grid  in the discrete grid. The syntax indicates that the discrete grid
187  should be comprise of $60$ grid lines each separated by $20 \times 10^{3}m$  should be comprise of $120$ grid lines each separated by $3^{\circ}$.
188  ($20$~km).                                                                                  
189    
190    
191  \item Line 42,  \item Line qqq,
192  \begin{verbatim}  \begin{verbatim}
193  delY=60*20E3,  dYspacing=0.01,
194  \end{verbatim}  \end{verbatim}
195  This line sets the horizontal grid spacing between each y-coordinate line  This line sets the radial grid spacing between each $\rho$-coordinate line
196  in the discrete grid to $20 \times 10^{3}m$ ($20$~km).  in the discrete grid to $1cm$.
197    
198  \item Line 43,  \item Line 43,
199  \begin{verbatim}  \begin{verbatim}
200  delZ=5000,  delZ=29*0.005,
201  \end{verbatim}  \end{verbatim}
202  This line sets the vertical grid spacing between each z-coordinate line  This line sets the vertical grid spacing between each z-coordinate line
203  in the discrete grid to $5000m$ ($5$~km).  in the discrete grid to $5000m$ ($5$~km).
204    
205  \item Line 46,  \item Line 46,
206  \begin{verbatim}  \begin{verbatim}
207  bathyFile='topog.box'  bathyFile='bathyPol.bin',
208  \end{verbatim}  \end{verbatim}
209  This line specifies the name of the file from which the domain  This line specifies the name of the file from which the domain
210  bathymetry is read. This file is a two-dimensional ($x,y$) map of  ``bathymetry'' (tank depth) is read. This file is a two-dimensional
211    ($x,y$) map of
212  depths. This file is assumed to contain 64-bit binary numbers  depths. This file is assumed to contain 64-bit binary numbers
213  giving the depth of the model at each grid cell, ordered with the x  giving the depth of the model at each grid cell, ordered with the $x$
214  coordinate varying fastest. The points are ordered from low coordinate  coordinate varying fastest. The points are ordered from low coordinate
215  to high coordinate for both axes. The units and orientation of the  to high coordinate for both axes.  The units and orientation of the
216  depths in this file are the same as used in the MITgcm code. In this  depths in this file are the same as used in the MITgcm code. In this
217  experiment, a depth of $0m$ indicates a solid wall and a depth  experiment, a depth of $0m$ indicates an area outside of the tank
218  of $-5000m$ indicates open ocean. The matlab program  and a depth
219  {\it input/gendata.m} shows an example of how to generate a  f $-0.145m$ indicates the tank itself.
 bathymetry file.  
   
220    
221  \item Line 49,  \item Line 49,
222  \begin{verbatim}  \begin{verbatim}
223  zonalWindFile='windx.sin_y'  hydrogThetaFile='thetaPol.bin',
224  \end{verbatim}  \end{verbatim}
225  This line specifies the name of the file from which the x-direction  This line specifies the name of the file from which the initial values
226  surface wind stress is read. This file is also a two-dimensional  of $\theta$
227  ($x,y$) map and is enumerated and formatted in the same manner as the  are read. This file is a three-dimensional
228  bathymetry file. The matlab program {\it input/gendata.m} includes example  ($x,y,z$) map and is enumerated and formatted in the same manner as the
229  code to generate a valid {\bf zonalWindFile} file.    bathymetry file.
230    
231    \item Line qqq
232    \begin{verbatim}
233     tCyl  = 0
234    \end{verbatim}
235    This line specifies the temperature in degrees Celsius of the interior
236    wall of the tank -- usually a bucket of ice water.
237    
238    
239  \end{itemize}  \end{itemize}
240    
# Line 358  Two lines are customized in this file fo Line 282  Two lines are customized in this file fo
282  \begin{itemize}  \begin{itemize}
283    
284  \item Line 39,  \item Line 39,
285  \begin{verbatim} sNx=60, \end{verbatim} this line sets  \begin{verbatim} sNx=120, \end{verbatim} this line sets
286  the lateral domain extent in grid points for the  the lateral domain extent in grid points for the
287  axis aligned with the x-coordinate.  axis aligned with the x-coordinate.
288    
289  \item Line 40,  \item Line 40,
290  \begin{verbatim} sNy=60, \end{verbatim} this line sets  \begin{verbatim} sNy=31, \end{verbatim} this line sets
291  the lateral domain extent in grid points for the  the lateral domain extent in grid points for the
292  axis aligned with the y-coordinate.  axis aligned with the y-coordinate.
293    
294  \end{itemize}  \end{itemize}
295    
296  \begin{small}  \begin{small}
297  \input{part3/case_studies/barotropic_gyre/code/SIZE.h}  \input{part3/case_studies/rotating_tank/code/SIZE.h}
298  \end{small}  \end{small}
299    
300  \subsubsection{File {\it code/CPP\_OPTIONS.h}}  \subsubsection{File {\it code/CPP\_OPTIONS.h}}

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22