/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Diff of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.7 by afe, Mon Jul 26 21:09:47 2004 UTC revision 1.8 by afe, Mon Jul 26 21:25:34 2004 UTC
# Line 36  levels. Line 36  levels.
36    
37    
38    
 This example experiment demonstrates using the MITgcm to simulate  
 a Barotropic, wind-forced, ocean gyre circulation. The experiment  
 is a numerical rendition of the gyre circulation problem similar  
 to the problems described analytically by Stommel in 1966  
 \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}.  
   
 In this experiment the model  
 is configured to represent a rectangular enclosed box of fluid,  
 $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced  
 by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally  
 in the ``north-south'' direction. Topologically the grid is Cartesian and  
 the coriolis parameter $f$ is defined according to a mid-latitude beta-plane  
 equation  
   
 \begin{equation}  
 \label{EQ:eg-baro-fcori}  
 f(y) = f_{0}+\beta y  
 \end{equation}  
39    
 \noindent where $y$ is the distance along the ``north-south'' axis of the  
 simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in  
 (\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.  
 \\  
 \\  
  The sinusoidal wind-stress variations are defined according to  
   
 \begin{equation}  
 \label{EQ:eg-baro-taux}  
 \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})  
 \end{equation}  
   
 \noindent where $L_{y}$ is the lateral domain extent ($1200$~km) and  
 $\tau_0$ is set to $0.1N m^{-2}$.  
 \\  
 \\  
 Figure \ref{FIG:eg-baro-simulation_config}  
 summarizes the configuration simulated.  
   
 %% === eh3 ===  
 \begin{figure}  
 %% \begin{center}  
 %%  \resizebox{7.5in}{5.5in}{  
 %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in]  
 %%     {part3/case_studies/barotropic_gyre/simulation_config.eps} }  
 %% \end{center}  
 \centerline{  
   \scalefig{.95}  
   \epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps}  
 }  
 \caption{Schematic of simulation domain and wind-stress forcing function  
 for barotropic gyre numerical experiment. The domain is enclosed bu solid  
 walls at $x=$~0,1200km and at $y=$~0,1200km.}  
 \label{FIG:eg-baro-simulation_config}  
 \end{figure}  
40    
41  \subsection{Equations Solved}  \subsection{Equations Solved}
42  \label{www:tutorials}  \label{www:tutorials}
 The model is configured in hydrostatic form. The implicit free surface form of the  
 pressure equation described in Marshall et. al \cite{marshall:97a} is  
 employed.  
 A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous  
 dissipation. The wind-stress momentum input is added to the momentum equation  
 for the ``zonal flow'', $u$. Other terms in the model  
 are explicitly switched off for this experiment configuration (see section  
 \ref{SEC:code_config} ), yielding an active set of equations solved in this  
 configuration as follows  
   
 \begin{eqnarray}  
 \label{EQ:eg-baro-model_equations}  
 \frac{Du}{Dt} - fv +  
               g\frac{\partial \eta}{\partial x} -  
               A_{h}\nabla_{h}^2u  
 & = &  
 \frac{\tau_{x}}{\rho_{0}\Delta z}  
 \\  
 \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} -  
               A_{h}\nabla_{h}^2v  
 & = &  
 0  
 \\  
 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}  
 &=&  
 0  
 \end{eqnarray}  
   
 \noindent where $u$ and $v$ and the $x$ and $y$ components of the  
 flow vector $\vec{u}$.  
 \\  
43    
44    
45  \subsection{Discrete Numerical Configuration}  \subsection{Discrete Numerical Configuration}

Legend:
Removed from v.1.7  
changed lines
  Added in v.1.8

  ViewVC Help
Powered by ViewVC 1.1.22