1 |
% $Header$ |
% $Header$ |
2 |
% $Name$ |
% $Name$ |
3 |
|
|
4 |
|
\section{Simulating a Rotating Tank in Cylindrical Coordinates} |
5 |
|
\label{www:tutorials} |
6 |
|
\label{sect:eg-tank} |
7 |
|
|
8 |
\bodytext{bgcolor="#FFFFFFFF"} |
\bodytext{bgcolor="#FFFFFFFF"} |
9 |
|
|
10 |
%\begin{center} |
%\begin{center} |
11 |
%{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical |
%{\Large \bf Simulating a Rotating Tank in Cylindrical Coordinates} |
12 |
%Coordinates} |
% |
13 |
% |
% |
14 |
%\vspace*{4mm} |
%\vspace*{4mm} |
15 |
% |
% |
17 |
%{\large June 2004} |
%{\large June 2004} |
18 |
%\end{center} |
%\end{center} |
19 |
|
|
20 |
This is the first in a series of tutorials describing |
\subsection{Introduction} |
|
example MITgcm numerical experiments. The example experiments |
|
|
include both straightforward examples of idealized geophysical |
|
|
fluid simulations and more involved cases encompassing |
|
|
large scale modeling and |
|
|
automatic differentiation. Both hydrostatic and non-hydrostatic |
|
|
experiments are presented, as well as experiments employing |
|
|
Cartesian, spherical-polar and cube-sphere coordinate systems. |
|
|
These ``case study'' documents include information describing |
|
|
the experimental configuration and detailed information on how to |
|
|
configure the MITgcm code and input files for each experiment. |
|
|
|
|
|
\section{Barotropic Ocean Gyre In Cartesian Coordinates} |
|
|
\label{sect:eg-baro} |
|
21 |
\label{www:tutorials} |
\label{www:tutorials} |
22 |
|
|
23 |
|
This section illustrates an example of MITgcm simulating a laboratory |
24 |
|
experiment on much smaller scales than those common to geophysical |
25 |
\subsection{Equations Solved} |
fluid dynamics. |
26 |
\label{www:tutorials} |
|
27 |
The model is configured in hydrostatic form. The implicit free surface form of the |
\subsection{Overview} |
28 |
|
\label{www:tutorials} |
29 |
|
|
30 |
|
|
31 |
|
This example experiment demonstrates using the MITgcm to simulate |
32 |
|
a laboratory experiment with a rotating tank of water with an ice |
33 |
|
bucket in the center. The simulation is configured for a laboratory |
34 |
|
scale on a 3^{\circ} \times 20cm cyclindrical grid with twenty-nine vertical |
35 |
|
levels. |
36 |
|
\\ |
37 |
|
|
38 |
|
The model is forced with climatological wind stress data and surface |
39 |
|
flux data from DaSilva \cite{DaSilva94}. Climatological data |
40 |
|
from Levitus \cite{Levitus94} is used to initialize the model hydrography. |
41 |
|
Levitus seasonal climatology data is also used throughout the calculation |
42 |
|
to provide additional air-sea fluxes. |
43 |
|
These fluxes are combined with the DaSilva climatological estimates of |
44 |
|
surface heat flux and fresh water, resulting in a mixed boundary |
45 |
|
condition of the style described in Haney \cite{Haney}. |
46 |
|
Altogether, this yields the following forcing applied |
47 |
|
in the model surface layer. |
48 |
|
|
49 |
|
|
50 |
|
\noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$, |
51 |
|
${\cal F}_{s}$ are the forcing terms in the zonal and meridional |
52 |
|
momentum and in the potential temperature and salinity |
53 |
|
equations respectively. |
54 |
|
The term $\Delta z_{s}$ represents the top ocean layer thickness in |
55 |
|
meters. |
56 |
|
It is used in conjunction with a reference density, $\rho_{0}$ |
57 |
|
(here set to $999.8\,{\rm kg\,m^{-3}}$), a |
58 |
|
reference salinity, $S_{0}$ (here set to 35~ppt), |
59 |
|
and a specific heat capacity, $C_{p}$ (here set to |
60 |
|
$4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert |
61 |
|
input dataset values into time tendencies of |
62 |
|
potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$), |
63 |
|
salinity (with units ${\rm ppt}~s^{-1}$) and |
64 |
|
velocity (with units ${\rm m}~{\rm s}^{-2}$). |
65 |
|
The externally supplied forcing fields used in this |
66 |
|
experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$, |
67 |
|
$\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$) |
68 |
|
have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields |
69 |
|
($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$ |
70 |
|
respectively. The salinity forcing fields ($S^{\ast}$ and |
71 |
|
$\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$ |
72 |
|
respectively. |
73 |
|
\\ |
74 |
|
|
75 |
|
|
76 |
|
Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the |
77 |
|
relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields, |
78 |
|
the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$) |
79 |
|
and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used |
80 |
|
in equations \ref{EQ:eg-hs-global_forcing_fu}-\ref{EQ:eg-hs-global_forcing_fs}. The figures |
81 |
|
also indicate the lateral extent and coastline used in the experiment. |
82 |
|
Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model |
83 |
|
domain. |
84 |
|
|
85 |
|
|
86 |
\subsection{Discrete Numerical Configuration} |
\subsection{Discrete Numerical Configuration} |
87 |
\label{www:tutorials} |
\label{www:tutorials} |
88 |
|
|
89 |
The domain is discretised with |
|
90 |
a uniform grid spacing in the horizontal set to |
The model is configured in hydrostatic form. The domain is discretised with |
91 |
$\Delta x=\Delta y=20$~km, so |
a uniform grid spacing in latitude and longitude on the sphere |
92 |
that there are sixty grid cells in the $x$ and $y$ directions. Vertically the |
$\Delta \phi=\Delta \lambda=4^{\circ}$, so |
93 |
model is configured with a single layer with depth, $\Delta z$, of $5000$~m. |
that there are ninety grid cells in the zonal and forty in the |
94 |
|
meridional direction. The internal model coordinate variables |
95 |
|
$x$ and $y$ are initialized according to |
96 |
|
\begin{eqnarray} |
97 |
|
x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\ |
98 |
|
y=r\lambda,~\Delta x &= &r\Delta \lambda |
99 |
|
\end{eqnarray} |
100 |
|
|
101 |
|
Arctic polar regions are not |
102 |
|
included in this experiment. Meridionally the model extends from |
103 |
|
$80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$. |
104 |
|
Vertically the model is configured with twenty layers with the |
105 |
|
following thicknesses |
106 |
|
$\Delta z_{1} = 50\,{\rm m},\, |
107 |
|
\Delta z_{2} = 50\,{\rm m},\, |
108 |
|
\Delta z_{3} = 55\,{\rm m},\, |
109 |
|
\Delta z_{4} = 60\,{\rm m},\, |
110 |
|
\Delta z_{5} = 65\,{\rm m},\, |
111 |
|
$ |
112 |
|
$ |
113 |
|
\Delta z_{6}~=~70\,{\rm m},\, |
114 |
|
\Delta z_{7}~=~80\,{\rm m},\, |
115 |
|
\Delta z_{8}~=95\,{\rm m},\, |
116 |
|
\Delta z_{9}=120\,{\rm m},\, |
117 |
|
\Delta z_{10}=155\,{\rm m},\, |
118 |
|
$ |
119 |
|
$ |
120 |
|
\Delta z_{11}=200\,{\rm m},\, |
121 |
|
\Delta z_{12}=260\,{\rm m},\, |
122 |
|
\Delta z_{13}=320\,{\rm m},\, |
123 |
|
\Delta z_{14}=400\,{\rm m},\, |
124 |
|
\Delta z_{15}=480\,{\rm m},\, |
125 |
|
$ |
126 |
|
$ |
127 |
|
\Delta z_{16}=570\,{\rm m},\, |
128 |
|
\Delta z_{17}=655\,{\rm m},\, |
129 |
|
\Delta z_{18}=725\,{\rm m},\, |
130 |
|
\Delta z_{19}=775\,{\rm m},\, |
131 |
|
\Delta z_{20}=815\,{\rm m} |
132 |
|
$ (here the numeric subscript indicates the model level index number, ${\tt k}$). |
133 |
|
The implicit free surface form of the pressure equation described in Marshall et. al |
134 |
|
\cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous |
135 |
|
dissipation. Thermal and haline diffusion is also represented by a Laplacian operator. |
136 |
|
|
137 |
|
Wind-stress forcing is added to the momentum equations for both |
138 |
|
the zonal flow, $u$ and the meridional flow $v$, according to equations |
139 |
|
(\ref{EQ:eg-hs-global_forcing_fu}) and (\ref{EQ:eg-hs-global_forcing_fv}). |
140 |
|
Thermodynamic forcing inputs are added to the equations for |
141 |
|
potential temperature, $\theta$, and salinity, $S$, according to equations |
142 |
|
(\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}). |
143 |
|
This produces a set of equations solved in this configuration as follows: |
144 |
|
|
145 |
|
\begin{eqnarray} |
146 |
|
\label{EQ:eg-hs-model_equations} |
147 |
|
\frac{Du}{Dt} - fv + |
148 |
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial x} - |
149 |
|
\nabla_{h}\cdot A_{h}\nabla_{h}u - |
150 |
|
\frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z} |
151 |
|
& = & |
152 |
|
\begin{cases} |
153 |
|
{\cal F}_u & \text{(surface)} \\ |
154 |
|
0 & \text{(interior)} |
155 |
|
\end{cases} |
156 |
|
\\ |
157 |
|
\frac{Dv}{Dt} + fu + |
158 |
|
\frac{1}{\rho}\frac{\partial p^{'}}{\partial y} - |
159 |
|
\nabla_{h}\cdot A_{h}\nabla_{h}v - |
160 |
|
\frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z} |
161 |
|
& = & |
162 |
|
\begin{cases} |
163 |
|
{\cal F}_v & \text{(surface)} \\ |
164 |
|
0 & \text{(interior)} |
165 |
|
\end{cases} |
166 |
|
\\ |
167 |
|
\frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u} |
168 |
|
&=& |
169 |
|
0 |
170 |
|
\\ |
171 |
|
\frac{D\theta}{Dt} - |
172 |
|
\nabla_{h}\cdot K_{h}\nabla_{h}\theta |
173 |
|
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z} |
174 |
|
& = & |
175 |
|
\begin{cases} |
176 |
|
{\cal F}_\theta & \text{(surface)} \\ |
177 |
|
0 & \text{(interior)} |
178 |
|
\end{cases} |
179 |
|
\\ |
180 |
|
\frac{D s}{Dt} - |
181 |
|
\nabla_{h}\cdot K_{h}\nabla_{h}s |
182 |
|
- \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z} |
183 |
|
& = & |
184 |
|
\begin{cases} |
185 |
|
{\cal F}_s & \text{(surface)} \\ |
186 |
|
0 & \text{(interior)} |
187 |
|
\end{cases} |
188 |
|
\\ |
189 |
|
g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'} |
190 |
|
\end{eqnarray} |
191 |
|
|
192 |
|
\noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and |
193 |
|
$v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$ |
194 |
|
are the zonal and meridional components of the |
195 |
|
flow vector, $\vec{u}$, on the sphere. As described in |
196 |
|
MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time |
197 |
|
evolution of potential temperature, $\theta$, equation is solved prognostically. |
198 |
|
The total pressure, $p$, is diagnosed by summing pressure due to surface |
199 |
|
elevation $\eta$ and the hydrostatic pressure. |
200 |
|
\\ |
201 |
|
|
202 |
\subsubsection{Numerical Stability Criteria} |
\subsubsection{Numerical Stability Criteria} |
203 |
\label{www:tutorials} |
\label{www:tutorials} |
204 |
|
|
205 |
|
The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$. |
206 |
\subsection{Code Configuration} |
This value is chosen to yield a Munk layer width \cite{adcroft:95}, |
207 |
|
\begin{eqnarray} |
208 |
|
\label{EQ:eg-hs-munk_layer} |
209 |
|
M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}} |
210 |
|
\end{eqnarray} |
211 |
|
|
212 |
|
\noindent of $\approx 600$km. This is greater than the model |
213 |
|
resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional |
214 |
|
boundary layer is adequately resolved. |
215 |
|
\\ |
216 |
|
|
217 |
|
\noindent The model is stepped forward with a |
218 |
|
time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and |
219 |
|
$\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability |
220 |
|
parameter to the horizontal Laplacian friction \cite{adcroft:95} |
221 |
|
\begin{eqnarray} |
222 |
|
\label{EQ:eg-hs-laplacian_stability} |
223 |
|
S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2} |
224 |
|
\end{eqnarray} |
225 |
|
|
226 |
|
\noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the |
227 |
|
0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at |
228 |
|
$\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$. |
229 |
|
\\ |
230 |
|
|
231 |
|
\noindent The vertical dissipation coefficient, $A_{z}$, is set to |
232 |
|
$1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit |
233 |
|
\begin{eqnarray} |
234 |
|
\label{EQ:eg-hs-laplacian_stability_z} |
235 |
|
S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2} |
236 |
|
\end{eqnarray} |
237 |
|
|
238 |
|
\noindent evaluates to $0.015$ for the smallest model |
239 |
|
level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below |
240 |
|
the upper stability limit. |
241 |
|
\\ |
242 |
|
|
243 |
|
The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients |
244 |
|
for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$ |
245 |
|
and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit |
246 |
|
related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$. |
247 |
|
Here the stability parameter |
248 |
|
\begin{eqnarray} |
249 |
|
\label{EQ:eg-hs-laplacian_stability_xtheta} |
250 |
|
S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2} |
251 |
|
\end{eqnarray} |
252 |
|
evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The |
253 |
|
stability parameter related to $K_{z}$ |
254 |
|
\begin{eqnarray} |
255 |
|
\label{EQ:eg-hs-laplacian_stability_ztheta} |
256 |
|
S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2} |
257 |
|
\end{eqnarray} |
258 |
|
evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit |
259 |
|
of $S_{l} \approx 0.5$. |
260 |
|
\\ |
261 |
|
|
262 |
|
\noindent The numerical stability for inertial oscillations |
263 |
|
\cite{adcroft:95} |
264 |
|
|
265 |
|
\begin{eqnarray} |
266 |
|
\label{EQ:eg-hs-inertial_stability} |
267 |
|
S_{i} = f^{2} {\delta t_v}^2 |
268 |
|
\end{eqnarray} |
269 |
|
|
270 |
|
\noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to |
271 |
|
the $S_{i} < 1$ upper limit for stability. |
272 |
|
\\ |
273 |
|
|
274 |
|
\noindent The advective CFL \cite{adcroft:95} for a extreme maximum |
275 |
|
horizontal flow |
276 |
|
speed of $ | \vec{u} | = 2 ms^{-1}$ |
277 |
|
|
278 |
|
\begin{eqnarray} |
279 |
|
\label{EQ:eg-hs-cfl_stability} |
280 |
|
S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x} |
281 |
|
\end{eqnarray} |
282 |
|
|
283 |
|
\noindent evaluates to $6 \times 10^{-2}$. This is well below the stability |
284 |
|
limit of 0.5. |
285 |
|
\\ |
286 |
|
|
287 |
|
\noindent The stability parameter for internal gravity waves propagating |
288 |
|
with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$ |
289 |
|
\cite{adcroft:95} |
290 |
|
|
291 |
|
\begin{eqnarray} |
292 |
|
\label{EQ:eg-hs-gfl_stability} |
293 |
|
S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x} |
294 |
|
\end{eqnarray} |
295 |
|
|
296 |
|
\noindent evaluates to $3 \times 10^{-1}$. This is close to the linear |
297 |
|
stability limit of 0.5. |
298 |
|
|
299 |
|
\subsection{Experiment Configuration} |
300 |
\label{www:tutorials} |
\label{www:tutorials} |
301 |
\label{SEC:eg-baro-code_config} |
\label{SEC:eg-hs_examp_exp_config} |
302 |
|
|
303 |
The model configuration for this experiment resides under the |
The model configuration for this experiment resides under the |
304 |
directory {\it verification/exp0/}. The experiment files |
directory {\it verification/hs94.128x64x5}. The experiment files |
305 |
\begin{itemize} |
\begin{itemize} |
306 |
\item {\it input/data} |
\item {\it input/data} |
307 |
\item {\it input/data.pkg} |
\item {\it input/data.pkg} |
308 |
\item {\it input/eedata}, |
\item {\it input/eedata}, |
309 |
\item {\it input/windx.sin\_y}, |
\item {\it input/windx.bin}, |
310 |
\item {\it input/topog.box}, |
\item {\it input/windy.bin}, |
311 |
|
\item {\it input/salt.bin}, |
312 |
|
\item {\it input/theta.bin}, |
313 |
|
\item {\it input/SSS.bin}, |
314 |
|
\item {\it input/SST.bin}, |
315 |
|
\item {\it input/topog.bin}, |
316 |
\item {\it code/CPP\_EEOPTIONS.h} |
\item {\it code/CPP\_EEOPTIONS.h} |
317 |
\item {\it code/CPP\_OPTIONS.h}, |
\item {\it code/CPP\_OPTIONS.h}, |
318 |
\item {\it code/SIZE.h}. |
\item {\it code/SIZE.h}. |
319 |
\end{itemize} |
\end{itemize} |
320 |
contain the code customizations and parameter settings for this |
contain the code customizations and parameter settings for these |
321 |
experiments. Below we describe the customizations |
experiments. Below we describe the customizations |
322 |
to these files associated with this experiment. |
to these files associated with this experiment. |
323 |
|
|
330 |
|
|
331 |
\begin{itemize} |
\begin{itemize} |
332 |
|
|
333 |
\item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets |
\item Lines 7-10 and 11-14 |
334 |
the Laplacian friction coefficient to $400 m^2s^{-1}$ |
\begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim} |
335 |
\item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets |
$\cdots$ \\ |
336 |
$\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ |
set reference values for potential |
337 |
|
temperature and salinity at each model level in units of $^{\circ}$C and |
338 |
\item Lines 15 and 16 |
${\rm ppt}$. The entries are ordered from surface to depth. |
339 |
\begin{verbatim} |
Density is calculated from anomalies at each level evaluated |
340 |
rigidLid=.FALSE., |
with respect to the reference values set here.\\ |
341 |
implicitFreeSurface=.TRUE., |
\fbox{ |
342 |
\end{verbatim} |
\begin{minipage}{5.0in} |
343 |
these lines suppress the rigid lid formulation of the surface |
{\it S/R INI\_THETA}({\it ini\_theta.F}) |
344 |
pressure inverter and activate the implicit free surface form |
\end{minipage} |
345 |
of the pressure inverter. |
} |
346 |
|
|
347 |
|
|
348 |
|
\item Line 15, |
349 |
|
\begin{verbatim} viscAz=1.E-3, \end{verbatim} |
350 |
|
this line sets the vertical Laplacian dissipation coefficient to |
351 |
|
$1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions |
352 |
|
for this operator are specified later. This variable is copied into |
353 |
|
model general vertical coordinate variable {\bf viscAr}. |
354 |
|
|
355 |
|
\fbox{ |
356 |
|
\begin{minipage}{5.0in} |
357 |
|
{\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) |
358 |
|
\end{minipage} |
359 |
|
} |
360 |
|
|
361 |
|
\item Line 16, |
362 |
|
\begin{verbatim} |
363 |
|
viscAh=5.E5, |
364 |
|
\end{verbatim} |
365 |
|
this line sets the horizontal Laplacian frictional dissipation coefficient to |
366 |
|
$5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions |
367 |
|
for this operator are specified later. |
368 |
|
|
369 |
|
\item Lines 17, |
370 |
|
\begin{verbatim} |
371 |
|
no_slip_sides=.FALSE. |
372 |
|
\end{verbatim} |
373 |
|
this line selects a free-slip lateral boundary condition for |
374 |
|
the horizontal Laplacian friction operator |
375 |
|
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and |
376 |
|
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. |
377 |
|
|
378 |
|
\item Lines 9, |
379 |
|
\begin{verbatim} |
380 |
|
no_slip_bottom=.TRUE. |
381 |
|
\end{verbatim} |
382 |
|
this line selects a no-slip boundary condition for bottom |
383 |
|
boundary condition in the vertical Laplacian friction operator |
384 |
|
e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain. |
385 |
|
|
386 |
|
\item Line 19, |
387 |
|
\begin{verbatim} |
388 |
|
diffKhT=1.E3, |
389 |
|
\end{verbatim} |
390 |
|
this line sets the horizontal diffusion coefficient for temperature |
391 |
|
to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
392 |
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
393 |
|
all boundaries. |
394 |
|
|
395 |
|
\item Line 20, |
396 |
|
\begin{verbatim} |
397 |
|
diffKzT=3.E-5, |
398 |
|
\end{verbatim} |
399 |
|
this line sets the vertical diffusion coefficient for temperature |
400 |
|
to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary |
401 |
|
condition on this operator is $\frac{\partial}{\partial z}=0$ at both |
402 |
|
the upper and lower boundaries. |
403 |
|
|
404 |
|
\item Line 21, |
405 |
|
\begin{verbatim} |
406 |
|
diffKhS=1.E3, |
407 |
|
\end{verbatim} |
408 |
|
this line sets the horizontal diffusion coefficient for salinity |
409 |
|
to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this |
410 |
|
operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on |
411 |
|
all boundaries. |
412 |
|
|
413 |
|
\item Line 22, |
414 |
|
\begin{verbatim} |
415 |
|
diffKzS=3.E-5, |
416 |
|
\end{verbatim} |
417 |
|
this line sets the vertical diffusion coefficient for salinity |
418 |
|
to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary |
419 |
|
condition on this operator is $\frac{\partial}{\partial z}=0$ at both |
420 |
|
the upper and lower boundaries. |
421 |
|
|
422 |
|
\item Lines 23-26 |
423 |
|
\begin{verbatim} |
424 |
|
beta=1.E-11, |
425 |
|
\end{verbatim} |
426 |
|
\vspace{-5mm}$\cdots$\\ |
427 |
|
These settings do not apply for this experiment. |
428 |
|
|
429 |
\item Line 27, |
\item Line 27, |
430 |
\begin{verbatim} |
\begin{verbatim} |
431 |
startTime=0, |
gravity=9.81, |
432 |
\end{verbatim} |
\end{verbatim} |
433 |
this line indicates that the experiment should start from $t=0$ |
Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\ |
434 |
and implicitly suppresses searching for checkpoint files associated |
\fbox{ |
435 |
with restarting an numerical integration from a previously saved state. |
\begin{minipage}{5.0in} |
436 |
|
{\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\ |
437 |
|
{\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\ |
438 |
|
{\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\ |
439 |
|
{\it S/R INI\_PARMS}~({\it ini\_parms.F})\\ |
440 |
|
{\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F}) |
441 |
|
\end{minipage} |
442 |
|
} |
443 |
|
|
444 |
|
|
445 |
\item Line 29, |
\item Line 28-29, |
446 |
\begin{verbatim} |
\begin{verbatim} |
447 |
endTime=12000, |
rigidLid=.FALSE., |
448 |
|
implicitFreeSurface=.TRUE., |
449 |
\end{verbatim} |
\end{verbatim} |
450 |
this line indicates that the experiment should start finish at $t=12000s$. |
Selects the barotropic pressure equation to be the implicit free surface |
451 |
A restart file will be written at this time that will enable the |
formulation. |
|
simulation to be continued from this point. |
|
452 |
|
|
453 |
\item Line 30, |
\item Line 30, |
454 |
\begin{verbatim} |
\begin{verbatim} |
455 |
deltaTmom=1200, |
eosType='POLY3', |
456 |
\end{verbatim} |
\end{verbatim} |
457 |
This line sets the momentum equation timestep to $1200s$. |
Selects the third order polynomial form of the equation of state.\\ |
458 |
|
\fbox{ |
459 |
|
\begin{minipage}{5.0in} |
460 |
|
{\it S/R FIND\_RHO}~({\it find\_rho.F})\\ |
461 |
|
{\it S/R FIND\_ALPHA}~({\it find\_alpha.F}) |
462 |
|
\end{minipage} |
463 |
|
} |
464 |
|
|
465 |
\item Line 39, |
\item Line 31, |
466 |
\begin{verbatim} |
\begin{verbatim} |
467 |
usingCartesianGrid=.TRUE., |
readBinaryPrec=32, |
468 |
\end{verbatim} |
\end{verbatim} |
469 |
This line requests that the simulation be performed in a |
Sets format for reading binary input datasets holding model fields to |
470 |
Cartesian coordinate system. |
use 32-bit representation for floating-point numbers.\\ |
471 |
|
\fbox{ |
472 |
|
\begin{minipage}{5.0in} |
473 |
|
{\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\ |
474 |
|
{\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F}) |
475 |
|
\end{minipage} |
476 |
|
} |
477 |
|
|
478 |
\item Line 41, |
\item Line 36, |
479 |
\begin{verbatim} |
\begin{verbatim} |
480 |
delX=60*20E3, |
cg2dMaxIters=1000, |
481 |
\end{verbatim} |
\end{verbatim} |
482 |
This line sets the horizontal grid spacing between each x-coordinate line |
Sets maximum number of iterations the two-dimensional, conjugate |
483 |
in the discrete grid. The syntax indicates that the discrete grid |
gradient solver will use, {\bf irrespective of convergence |
484 |
should be comprise of $60$ grid lines each separated by $20 \times 10^{3}m$ |
criteria being met}.\\ |
485 |
($20$~km). |
\fbox{ |
486 |
|
\begin{minipage}{5.0in} |
487 |
|
{\it S/R CG2D}~({\it cg2d.F}) |
488 |
|
\end{minipage} |
489 |
|
} |
490 |
|
|
491 |
|
\item Line 37, |
492 |
|
\begin{verbatim} |
493 |
|
cg2dTargetResidual=1.E-13, |
494 |
|
\end{verbatim} |
495 |
|
Sets the tolerance which the two-dimensional, conjugate |
496 |
|
gradient solver will use to test for convergence in equation |
497 |
|
\ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$. |
498 |
|
Solver will iterate until |
499 |
|
tolerance falls below this value or until the maximum number of |
500 |
|
solver iterations is reached.\\ |
501 |
|
\fbox{ |
502 |
|
\begin{minipage}{5.0in} |
503 |
|
{\it S/R CG2D}~({\it cg2d.F}) |
504 |
|
\end{minipage} |
505 |
|
} |
506 |
|
|
507 |
\item Line 42, |
\item Line 42, |
508 |
\begin{verbatim} |
\begin{verbatim} |
509 |
delY=60*20E3, |
startTime=0, |
510 |
\end{verbatim} |
\end{verbatim} |
511 |
This line sets the horizontal grid spacing between each y-coordinate line |
Sets the starting time for the model internal time counter. |
512 |
in the discrete grid to $20 \times 10^{3}m$ ($20$~km). |
When set to non-zero this option implicitly requests a |
513 |
|
checkpoint file be read for initial state. |
514 |
|
By default the checkpoint file is named according to |
515 |
|
the integer number of time steps in the {\bf startTime} value. |
516 |
|
The internal time counter works in seconds. |
517 |
|
|
518 |
\item Line 43, |
\item Line 43, |
519 |
\begin{verbatim} |
\begin{verbatim} |
520 |
delZ=5000, |
endTime=2808000., |
521 |
\end{verbatim} |
\end{verbatim} |
522 |
This line sets the vertical grid spacing between each z-coordinate line |
Sets the time (in seconds) at which this simulation will terminate. |
523 |
in the discrete grid to $5000m$ ($5$~km). |
At the end of a simulation a checkpoint file is automatically |
524 |
|
written so that a numerical experiment can consist of multiple |
525 |
|
stages. |
526 |
|
|
527 |
|
\item Line 44, |
528 |
|
\begin{verbatim} |
529 |
|
#endTime=62208000000, |
530 |
|
\end{verbatim} |
531 |
|
A commented out setting for endTime for a 2000 year simulation. |
532 |
|
|
533 |
|
\item Line 45, |
534 |
|
\begin{verbatim} |
535 |
|
deltaTmom=2400.0, |
536 |
|
\end{verbatim} |
537 |
|
Sets the timestep $\delta t_{v}$ used in the momentum equations to |
538 |
|
$20~{\rm mins}$. |
539 |
|
See section \ref{SEC:mom_time_stepping}. |
540 |
|
|
541 |
|
\fbox{ |
542 |
|
\begin{minipage}{5.0in} |
543 |
|
{\it S/R TIMESTEP}({\it timestep.F}) |
544 |
|
\end{minipage} |
545 |
|
} |
546 |
|
|
547 |
\item Line 46, |
\item Line 46, |
548 |
\begin{verbatim} |
\begin{verbatim} |
549 |
|
tauCD=321428., |
550 |
|
\end{verbatim} |
551 |
|
Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations. |
552 |
|
See section \ref{SEC:cd_scheme}. |
553 |
|
|
554 |
|
\fbox{ |
555 |
|
\begin{minipage}{5.0in} |
556 |
|
{\it S/R INI\_PARMS}({\it ini\_parms.F})\\ |
557 |
|
{\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F}) |
558 |
|
\end{minipage} |
559 |
|
} |
560 |
|
|
561 |
|
\item Line 47, |
562 |
|
\begin{verbatim} |
563 |
|
deltaTtracer=108000., |
564 |
|
\end{verbatim} |
565 |
|
Sets the default timestep, $\delta t_{\theta}$, for tracer equations to |
566 |
|
$30~{\rm hours}$. |
567 |
|
See section \ref{SEC:tracer_time_stepping}. |
568 |
|
|
569 |
|
\fbox{ |
570 |
|
\begin{minipage}{5.0in} |
571 |
|
{\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F}) |
572 |
|
\end{minipage} |
573 |
|
} |
574 |
|
|
575 |
|
\item Line 47, |
576 |
|
\begin{verbatim} |
577 |
bathyFile='topog.box' |
bathyFile='topog.box' |
578 |
\end{verbatim} |
\end{verbatim} |
579 |
This line specifies the name of the file from which the domain |
This line specifies the name of the file from which the domain |
584 |
to high coordinate for both axes. The units and orientation of the |
to high coordinate for both axes. The units and orientation of the |
585 |
depths in this file are the same as used in the MITgcm code. In this |
depths in this file are the same as used in the MITgcm code. In this |
586 |
experiment, a depth of $0m$ indicates a solid wall and a depth |
experiment, a depth of $0m$ indicates a solid wall and a depth |
587 |
of $-5000m$ indicates open ocean. The matlab program |
of $-2000m$ indicates open ocean. The matlab program |
588 |
{\it input/gendata.m} shows an example of how to generate a |
{\it input/gendata.m} shows an example of how to generate a |
589 |
bathymetry file. |
bathymetry file. |
590 |
|
|
591 |
|
|
592 |
\item Line 49, |
\item Line 50, |
593 |
\begin{verbatim} |
\begin{verbatim} |
594 |
zonalWindFile='windx.sin_y' |
zonalWindFile='windx.sin_y' |
595 |
\end{verbatim} |
\end{verbatim} |
597 |
surface wind stress is read. This file is also a two-dimensional |
surface wind stress is read. This file is also a two-dimensional |
598 |
($x,y$) map and is enumerated and formatted in the same manner as the |
($x,y$) map and is enumerated and formatted in the same manner as the |
599 |
bathymetry file. The matlab program {\it input/gendata.m} includes example |
bathymetry file. The matlab program {\it input/gendata.m} includes example |
600 |
code to generate a valid {\bf zonalWindFile} file. |
code to generate a valid |
601 |
|
{\bf zonalWindFile} |
602 |
|
file. |
603 |
|
|
604 |
\end{itemize} |
\end{itemize} |
605 |
|
|
607 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
that are described in the MITgcm Getting Started and MITgcm Parameters |
608 |
notes. |
notes. |
609 |
|
|
610 |
%%\begin{small} |
\begin{small} |
611 |
%%\input{part3/case_studies/barotropic_gyre/input/data} |
\input{part3/case_studies/climatalogical_ogcm/input/data} |
612 |
%%\end{small} |
\end{small} |
613 |
|
|
614 |
\subsubsection{File {\it input/data.pkg}} |
\subsubsection{File {\it input/data.pkg}} |
615 |
\label{www:tutorials} |
\label{www:tutorials} |
616 |
|
|
617 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
618 |
customizations for this experiment. |
customisations for this experiment. |
619 |
|
|
620 |
\subsubsection{File {\it input/eedata}} |
\subsubsection{File {\it input/eedata}} |
621 |
\label{www:tutorials} |
\label{www:tutorials} |
622 |
|
|
623 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
624 |
customizations for this experiment. |
customisations for this experiment. |
625 |
|
|
626 |
\subsubsection{File {\it input/windx.sin\_y}} |
\subsubsection{File {\it input/windx.sin\_y}} |
627 |
\label{www:tutorials} |
\label{www:tutorials} |
640 |
|
|
641 |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
The {\it input/topog.box} file specifies a two-dimensional ($x,y$) |
642 |
map of depth values. For this experiment values are either |
map of depth values. For this experiment values are either |
643 |
$0m$ or {\bf -delZ}m, corresponding respectively to a wall or to deep |
$0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep |
644 |
ocean. The file contains a raw binary stream of data that is enumerated |
ocean. The file contains a raw binary stream of data that is enumerated |
645 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
646 |
The included matlab program {\it input/gendata.m} gives a complete |
The included matlab program {\it input/gendata.m} gives a complete |
663 |
the lateral domain extent in grid points for the |
the lateral domain extent in grid points for the |
664 |
axis aligned with the y-coordinate. |
axis aligned with the y-coordinate. |
665 |
|
|
666 |
|
\item Line 49, |
667 |
|
\begin{verbatim} Nr=4, \end{verbatim} this line sets |
668 |
|
the vertical domain extent in grid points. |
669 |
|
|
670 |
\end{itemize} |
\end{itemize} |
671 |
|
|
672 |
\begin{small} |
\begin{small} |
673 |
\input{part3/case_studies/barotropic_gyre/code/SIZE.h} |
\input{part3/case_studies/climatalogical_ogcm/code/SIZE.h} |
674 |
\end{small} |
\end{small} |
675 |
|
|
676 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
677 |
\label{www:tutorials} |
\label{www:tutorials} |
678 |
|
|
679 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
680 |
customizations for this experiment. |
customisations for this experiment. |
681 |
|
|
682 |
|
|
683 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
684 |
\label{www:tutorials} |
\label{www:tutorials} |
685 |
|
|
686 |
This file uses standard default values and does not contain |
This file uses standard default values and does not contain |
687 |
customizations for this experiment. |
customisations for this experiment. |
688 |
|
|
689 |
|
\subsubsection{Other Files } |
690 |
|
\label{www:tutorials} |
691 |
|
|
692 |
|
Other files relevant to this experiment are |
693 |
|
\begin{itemize} |
694 |
|
\item {\it model/src/ini\_cori.F}. This file initializes the model |
695 |
|
coriolis variables {\bf fCorU}. |
696 |
|
\item {\it model/src/ini\_spherical\_polar\_grid.F} |
697 |
|
\item {\it model/src/ini\_parms.F}, |
698 |
|
\item {\it input/windx.sin\_y}, |
699 |
|
\end{itemize} |
700 |
|
contain the code customisations and parameter settings for this |
701 |
|
experiments. Below we describe the customisations |
702 |
|
to these files associated with this experiment. |