/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Diff of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by afe, Tue Jun 22 15:07:37 2004 UTC revision 1.5 by afe, Mon Jul 26 18:41:32 2004 UTC
# Line 4  Line 4 
4  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
5    
6  %\begin{center}  %\begin{center}
7  %{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical  %{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical
8  %Coordinates}  %Coordinates}
9  %  %
10  %\vspace*{4mm}  %\vspace*{4mm}
11  %  %
12  %\vspace*{3mm}  %\vspace*{3mm}
13  %{\large June 2004}  %{\large May 2001}
14  %\end{center}  %\end{center}
15    
16  This is the first in a series of tutorials describing  \section{A Rotating Tank in Cylindrical Coordinates}
17  example MITgcm numerical experiments. The example experiments  \label{sect:eg-tank}
 include both straightforward examples of idealized geophysical  
 fluid simulations and more involved cases encompassing  
 large scale modeling and  
 automatic differentiation. Both hydrostatic and non-hydrostatic  
 experiments are presented, as well as experiments employing  
 Cartesian, spherical-polar and cube-sphere coordinate systems.  
 These ``case study'' documents include information describing  
 the experimental configuration and detailed information on how to  
 configure the MITgcm code and input files for each experiment.  
   
 \section{Barotropic Ocean Gyre In Cartesian Coordinates}  
 \label{sect:eg-baro}  
18  \label{www:tutorials}  \label{www:tutorials}
19    
20    This section illustrates an example of MITgcm simulating a laboratory
21    experiment on much smaller scales than those common to geophysical
22    fluid dynamics.
23    
24    \subsection{Overview}
25    \label{www:tutorials}
26                                                                                    
27                                                                                    
28    This example experiment demonstrates using the MITgcm to simulate
29    a laboratory experiment with a rotating tank of water with an ice
30    bucket in the center. The simulation is configured for a laboratory
31    scale on a
32    $3^{\circ}$ $\times$ 20cm
33    cyclindrical grid with twenty-nine vertical
34    levels.
35    \\
36    
37    
38    
39    This example experiment demonstrates using the MITgcm to simulate
40    a Barotropic, wind-forced, ocean gyre circulation. The experiment
41    is a numerical rendition of the gyre circulation problem similar
42    to the problems described analytically by Stommel in 1966
43    \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}.
44    
45    In this experiment the model
46    is configured to represent a rectangular enclosed box of fluid,
47    $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced
48    by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally
49    in the ``north-south'' direction. Topologically the grid is Cartesian and
50    the coriolis parameter $f$ is defined according to a mid-latitude beta-plane
51    equation
52    
53    \begin{equation}
54    \label{EQ:eg-baro-fcori}
55    f(y) = f_{0}+\beta y
56    \end{equation}
57    
58    \noindent where $y$ is the distance along the ``north-south'' axis of the
59    simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in
60    (\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.
61    \\
62    \\
63     The sinusoidal wind-stress variations are defined according to
64    
65    \begin{equation}
66    \label{EQ:eg-baro-taux}
67    \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})
68    \end{equation}
69    
70    \noindent where $L_{y}$ is the lateral domain extent ($1200$~km) and
71    $\tau_0$ is set to $0.1N m^{-2}$.
72    \\
73    \\
74    Figure \ref{FIG:eg-baro-simulation_config}
75    summarizes the configuration simulated.
76    
77    %% === eh3 ===
78    \begin{figure}
79    %% \begin{center}
80    %%  \resizebox{7.5in}{5.5in}{
81    %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in]
82    %%     {part3/case_studies/barotropic_gyre/simulation_config.eps} }
83    %% \end{center}
84    \centerline{
85      \scalefig{.95}
86      \epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps}
87    }
88    \caption{Schematic of simulation domain and wind-stress forcing function
89    for barotropic gyre numerical experiment. The domain is enclosed bu solid
90    walls at $x=$~0,1200km and at $y=$~0,1200km.}
91    \label{FIG:eg-baro-simulation_config}
92    \end{figure}
93    
94  \subsection{Equations Solved}  \subsection{Equations Solved}
95  \label{www:tutorials}  \label{www:tutorials}
96  The model is configured in hydrostatic form. The implicit free surface form of the  The model is configured in hydrostatic form. The implicit free surface form of the
97    pressure equation described in Marshall et. al \cite{marshall:97a} is
98    employed.
99    A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous
100    dissipation. The wind-stress momentum input is added to the momentum equation
101    for the ``zonal flow'', $u$. Other terms in the model
102    are explicitly switched off for this experiment configuration (see section
103    \ref{SEC:code_config} ), yielding an active set of equations solved in this
104    configuration as follows
105    
106    \begin{eqnarray}
107    \label{EQ:eg-baro-model_equations}
108    \frac{Du}{Dt} - fv +
109                  g\frac{\partial \eta}{\partial x} -
110                  A_{h}\nabla_{h}^2u
111    & = &
112    \frac{\tau_{x}}{\rho_{0}\Delta z}
113    \\
114    \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} -
115                  A_{h}\nabla_{h}^2v
116    & = &
117    0
118    \\
119    \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
120    &=&
121    0
122    \end{eqnarray}
123    
124    \noindent where $u$ and $v$ and the $x$ and $y$ components of the
125    flow vector $\vec{u}$.
126    \\
127    
128    
129  \subsection{Discrete Numerical Configuration}  \subsection{Discrete Numerical Configuration}
# Line 48  model is configured with a single layer Line 138  model is configured with a single layer
138  \subsubsection{Numerical Stability Criteria}  \subsubsection{Numerical Stability Criteria}
139  \label{www:tutorials}  \label{www:tutorials}
140    
141    The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$.
142    This value is chosen to yield a Munk layer width \cite{adcroft:95},
143    
144    \begin{eqnarray}
145    \label{EQ:eg-baro-munk_layer}
146    M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
147    \end{eqnarray}
148    
149    \noindent  of $\approx 100$km. This is greater than the model
150    resolution $\Delta x$, ensuring that the frictional boundary
151    layer is well resolved.
152    \\
153    
154    \noindent The model is stepped forward with a
155    time step $\delta t=1200$secs. With this time step the stability
156    parameter to the horizontal Laplacian friction \cite{adcroft:95}
157    
158    
159    
160    \begin{eqnarray}
161    \label{EQ:eg-baro-laplacian_stability}
162    S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
163    \end{eqnarray}
164    
165    \noindent evaluates to 0.012, which is well below the 0.3 upper limit
166    for stability.
167    \\
168    
169    \noindent The numerical stability for inertial oscillations  
170    \cite{adcroft:95}
171    
172    \begin{eqnarray}
173    \label{EQ:eg-baro-inertial_stability}
174    S_{i} = f^{2} {\delta t}^2
175    \end{eqnarray}
176    
177    \noindent evaluates to $0.0144$, which is well below the $0.5$ upper
178    limit for stability.
179    \\
180    
181    \noindent The advective CFL \cite{adcroft:95} for an extreme maximum
182    horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$
183    
184    \begin{eqnarray}
185    \label{EQ:eg-baro-cfl_stability}
186    S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
187    \end{eqnarray}
188    
189    \noindent evaluates to 0.12. This is approaching the stability limit
190    of 0.5 and limits $\delta t$ to $1200s$.
191    
192  \subsection{Code Configuration}  \subsection{Code Configuration}
193  \label{www:tutorials}  \label{www:tutorials}
194  \label{SEC:eg-baro-code_config}  \label{SEC:eg-baro-code_config}
195    
196  The model configuration for this experiment resides under the  The model configuration for this experiment resides under the
197  directory {\it verification/exp0/}.  The experiment files  directory {\it verification/rotatingi\_tank/}.  The experiment files
198  \begin{itemize}  \begin{itemize}
199  \item {\it input/data}  \item {\it input/data}
200  \item {\it input/data.pkg}  \item {\it input/data.pkg}
201  \item {\it input/eedata},  \item {\it input/eedata},
202  \item {\it input/windx.sin\_y},  \item {\it input/bathyPol.bin},
203  \item {\it input/topog.box},  \item {\it input/thetaPol.bin},
204  \item {\it code/CPP\_EEOPTIONS.h}  \item {\it code/CPP\_EEOPTIONS.h}
205  \item {\it code/CPP\_OPTIONS.h},  \item {\it code/CPP\_OPTIONS.h},
206  \item {\it code/SIZE.h}.  \item {\it code/SIZE.h}.
207  \end{itemize}  \end{itemize}
208    
209  contain the code customizations and parameter settings for this  contain the code customizations and parameter settings for this
210  experiments. Below we describe the customizations  experiments. Below we describe the customizations
211  to these files associated with this experiment.  to these files associated with this experiment.
# Line 177  code to generate a valid {\bf zonalWindF Line 318  code to generate a valid {\bf zonalWindF
318  that are described in the MITgcm Getting Started and MITgcm Parameters  that are described in the MITgcm Getting Started and MITgcm Parameters
319  notes.  notes.
320    
321  %%\begin{small}  \begin{small}
322  %%\input{part3/case_studies/barotropic_gyre/input/data}  \input{part3/case_studies/rotating_tank/input/data}
323  %%\end{small}  \end{small}
324    
325  \subsubsection{File {\it input/data.pkg}}  \subsubsection{File {\it input/data.pkg}}
326  \label{www:tutorials}  \label{www:tutorials}

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.5

  ViewVC Help
Powered by ViewVC 1.1.22