/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Diff of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by afe, Tue Jun 22 16:56:31 2004 UTC revision 1.4 by afe, Mon Jul 26 17:52:43 2004 UTC
# Line 1  Line 1 
1  % $Header$  % $Header$
2  % $Name$  % $Name$
3    
 \section{Simulating a Rotating Tank in Cylindrical Coordinates}  
 \label{www:tutorials}  
 \label{sect:eg-tank}  
   
4  \bodytext{bgcolor="#FFFFFFFF"}  \bodytext{bgcolor="#FFFFFFFF"}
5    
6  %\begin{center}  %\begin{center}
7  %{\Large \bf Simulating a Rotating Tank in Cylindrical Coordinates}  %{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical
8  %  %Coordinates}
9  %  %
10  %\vspace*{4mm}  %\vspace*{4mm}
11  %  %
12  %\vspace*{3mm}  %\vspace*{3mm}
13  %{\large June 2004}  %{\large May 2001}
14  %\end{center}  %\end{center}
15    
16  \subsection{Introduction}  \section{A Rotating Tank in Cylindrical Coordinates}
17    \label{sect:eg-tank}
18  \label{www:tutorials}  \label{www:tutorials}
19    
20  This section illustrates an example of MITgcm simulating a laboratory  This section illustrates an example of MITgcm simulating a laboratory
21  experiment on much smaller scales than those common to geophysical  experiment on much smaller scales than those common to geophysical
22  fluid dynamics.  fluid dynamics.
23    
24  \subsection{Overview}  \subsection{Overview}
25  \label{www:tutorials}  \label{www:tutorials}
26                                                                                    
27                                                                                    
28  This example experiment demonstrates using the MITgcm to simulate  This example experiment demonstrates using the MITgcm to simulate
29  a laboratory experiment with a rotating tank of water with an ice  a laboratory experiment with a rotating tank of water with an ice
30  bucket in the center. The simulation is configured for a laboratory  bucket in the center. The simulation is configured for a laboratory
31  scale on a 3^{\circ} \times 20cm cyclindrical grid with twenty-nine vertical  scale on a
32  levels.    $3^{\circ}$ $\times$ 20cm
33    cyclindrical grid with twenty-nine vertical
34    levels.
35  \\  \\
36    
 The model is forced with climatological wind stress data and surface  
 flux data from DaSilva \cite{DaSilva94}. Climatological data  
 from Levitus \cite{Levitus94} is used to initialize the model hydrography.  
 Levitus seasonal climatology data is also used throughout the calculation  
 to provide additional air-sea fluxes.  
 These fluxes are combined with the DaSilva climatological estimates of  
 surface heat flux and fresh water, resulting in a mixed boundary  
 condition of the style described in Haney \cite{Haney}.  
 Altogether, this yields the following forcing applied  
 in the model surface layer.  
   
   
 \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,  
 ${\cal F}_{s}$ are the forcing terms in the zonal and meridional  
 momentum and in the potential temperature and salinity  
 equations respectively.  
 The term $\Delta z_{s}$ represents the top ocean layer thickness in  
 meters.  
 It is used in conjunction with a reference density, $\rho_{0}$  
 (here set to $999.8\,{\rm kg\,m^{-3}}$), a  
 reference salinity, $S_{0}$ (here set to 35~ppt),  
 and a specific heat capacity, $C_{p}$ (here set to  
 $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert  
 input dataset values into time tendencies of  
 potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),  
 salinity (with units ${\rm ppt}~s^{-1}$) and  
 velocity (with units ${\rm m}~{\rm s}^{-2}$).  
 The externally supplied forcing fields used in this  
 experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,  
 $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)  
 have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields  
 ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$  
 respectively. The salinity forcing fields ($S^{\ast}$ and  
 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$  
 respectively.  
 \\  
   
   
 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the  
 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,  
 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)  
 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used  
 in equations \ref{EQ:eg-hs-global_forcing_fu}-\ref{EQ:eg-hs-global_forcing_fs}. The figures  
 also indicate the lateral extent and coastline used in the experiment.  
 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model  
 domain.  
   
   
 \subsection{Discrete Numerical Configuration}  
 \label{www:tutorials}  
37    
38    
39   The model is configured in hydrostatic form.  The domain is discretised with  This example experiment demonstrates using the MITgcm to simulate
40  a uniform grid spacing in latitude and longitude on the sphere  a Barotropic, wind-forced, ocean gyre circulation. The experiment
41   $\Delta \phi=\Delta \lambda=4^{\circ}$, so  is a numerical rendition of the gyre circulation problem similar
42  that there are ninety grid cells in the zonal and forty in the  to the problems described analytically by Stommel in 1966
43  meridional direction. The internal model coordinate variables  \cite{Stommel66} and numerically in Holland et. al \cite{Holland75}.
44  $x$ and $y$ are initialized according to  
45  \begin{eqnarray}  In this experiment the model
46  x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\  is configured to represent a rectangular enclosed box of fluid,
47  y=r\lambda,~\Delta x &= &r\Delta \lambda  $1200 \times 1200 $~km in lateral extent. The fluid is $5$~km deep and is forced
48  \end{eqnarray}  by a constant in time zonal wind stress, $\tau_x$, that varies sinusoidally
49    in the ``north-south'' direction. Topologically the grid is Cartesian and
50  Arctic polar regions are not  the coriolis parameter $f$ is defined according to a mid-latitude beta-plane
51  included in this experiment. Meridionally the model extends from  equation
52  $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.  
53  Vertically the model is configured with twenty layers with the  \begin{equation}
54  following thicknesses  \label{EQ:eg-baro-fcori}
55  $\Delta z_{1} = 50\,{\rm m},\,  f(y) = f_{0}+\beta y
56   \Delta z_{2} = 50\,{\rm m},\,  \end{equation}
57   \Delta z_{3} = 55\,{\rm m},\,  
58   \Delta z_{4} = 60\,{\rm m},\,  \noindent where $y$ is the distance along the ``north-south'' axis of the
59   \Delta z_{5} = 65\,{\rm m},\,  simulated domain. For this experiment $f_{0}$ is set to $10^{-4}s^{-1}$ in
60  $  (\ref{EQ:eg-baro-fcori}) and $\beta = 10^{-11}s^{-1}m^{-1}$.
61  $  \\
62   \Delta z_{6}~=~70\,{\rm m},\,  \\
63   \Delta z_{7}~=~80\,{\rm m},\,   The sinusoidal wind-stress variations are defined according to
64   \Delta z_{8}~=95\,{\rm m},\,  
65   \Delta z_{9}=120\,{\rm m},\,  \begin{equation}
66   \Delta z_{10}=155\,{\rm m},\,  \label{EQ:eg-baro-taux}
67  $  \tau_x(y) = \tau_{0}\sin(\pi \frac{y}{L_y})
68  $  \end{equation}
69   \Delta z_{11}=200\,{\rm m},\,  
70   \Delta z_{12}=260\,{\rm m},\,  \noindent where $L_{y}$ is the lateral domain extent ($1200$~km) and
71   \Delta z_{13}=320\,{\rm m},\,  $\tau_0$ is set to $0.1N m^{-2}$.
72   \Delta z_{14}=400\,{\rm m},\,  \\
73   \Delta z_{15}=480\,{\rm m},\,  \\
74  $  Figure \ref{FIG:eg-baro-simulation_config}
75  $  summarizes the configuration simulated.
76   \Delta z_{16}=570\,{\rm m},\,  
77   \Delta z_{17}=655\,{\rm m},\,  %% === eh3 ===
78   \Delta z_{18}=725\,{\rm m},\,  \begin{figure}
79   \Delta z_{19}=775\,{\rm m},\,  %% \begin{center}
80   \Delta z_{20}=815\,{\rm m}  %%  \resizebox{7.5in}{5.5in}{
81  $ (here the numeric subscript indicates the model level index number, ${\tt k}$).  %%    \includegraphics*[0.2in,0.7in][10.5in,10.5in]
82  The implicit free surface form of the pressure equation described in Marshall et. al  %%     {part3/case_studies/barotropic_gyre/simulation_config.eps} }
83  \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous  %% \end{center}
84  dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.  \centerline{
85      \scalefig{.95}
86  Wind-stress forcing is added to the momentum equations for both    \epsfbox{part3/case_studies/barotropic_gyre/simulation_config.eps}
87  the zonal flow, $u$ and the meridional flow $v$, according to equations  }
88  (\ref{EQ:eg-hs-global_forcing_fu}) and (\ref{EQ:eg-hs-global_forcing_fv}).  \caption{Schematic of simulation domain and wind-stress forcing function
89  Thermodynamic forcing inputs are added to the equations for  for barotropic gyre numerical experiment. The domain is enclosed bu solid
90  potential temperature, $\theta$, and salinity, $S$, according to equations  walls at $x=$~0,1200km and at $y=$~0,1200km.}
91  (\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).  \label{FIG:eg-baro-simulation_config}
92  This produces a set of equations solved in this configuration as follows:  \end{figure}
93    
94    \subsection{Equations Solved}
95    \label{www:tutorials}
96    The model is configured in hydrostatic form. The implicit free surface form of the
97    pressure equation described in Marshall et. al \cite{marshall:97a} is
98    employed.
99    A horizontal Laplacian operator $\nabla_{h}^2$ provides viscous
100    dissipation. The wind-stress momentum input is added to the momentum equation
101    for the ``zonal flow'', $u$. Other terms in the model
102    are explicitly switched off for this experiment configuration (see section
103    \ref{SEC:code_config} ), yielding an active set of equations solved in this
104    configuration as follows
105    
106  \begin{eqnarray}  \begin{eqnarray}
107  \label{EQ:eg-hs-model_equations}  \label{EQ:eg-baro-model_equations}
108  \frac{Du}{Dt} - fv +  \frac{Du}{Dt} - fv +
109    \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -                g\frac{\partial \eta}{\partial x} -
110    \nabla_{h}\cdot A_{h}\nabla_{h}u -                A_{h}\nabla_{h}^2u
   \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}  
  & = &  
 \begin{cases}  
 {\cal F}_u & \text{(surface)} \\  
 0 & \text{(interior)}  
 \end{cases}  
 \\  
 \frac{Dv}{Dt} + fu +  
   \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -  
   \nabla_{h}\cdot A_{h}\nabla_{h}v -  
   \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}  
111  & = &  & = &
112  \begin{cases}  \frac{\tau_{x}}{\rho_{0}\Delta z}
113  {\cal F}_v & \text{(surface)} \\  \\
114  0 & \text{(interior)}  \frac{Dv}{Dt} + fu + g\frac{\partial \eta}{\partial y} -
115  \end{cases}                A_{h}\nabla_{h}^2v
116    & = &
117    0
118  \\  \\
119  \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}  \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
120  &=&  &=&
121  0  0
 \\  
 \frac{D\theta}{Dt} -  
  \nabla_{h}\cdot K_{h}\nabla_{h}\theta  
  - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}  
 & = &  
 \begin{cases}  
 {\cal F}_\theta & \text{(surface)} \\  
 0 & \text{(interior)}  
 \end{cases}  
 \\  
 \frac{D s}{Dt} -  
  \nabla_{h}\cdot K_{h}\nabla_{h}s  
  - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}  
 & = &  
 \begin{cases}  
 {\cal F}_s & \text{(surface)} \\  
 0 & \text{(interior)}  
 \end{cases}  
 \\  
 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}  
122  \end{eqnarray}  \end{eqnarray}
123    
124  \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and  \noindent where $u$ and $v$ and the $x$ and $y$ components of the
125  $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$  flow vector $\vec{u}$.
 are the zonal and meridional components of the  
 flow vector, $\vec{u}$, on the sphere. As described in  
 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time  
 evolution of potential temperature, $\theta$, equation is solved prognostically.  
 The total pressure, $p$, is diagnosed by summing pressure due to surface  
 elevation $\eta$ and the hydrostatic pressure.  
126  \\  \\
127    
128    
129    \subsection{Discrete Numerical Configuration}
130    \label{www:tutorials}
131    
132     The domain is discretised with
133    a uniform grid spacing in the horizontal set to
134     $\Delta x=\Delta y=20$~km, so
135    that there are sixty grid cells in the $x$ and $y$ directions. Vertically the
136    model is configured with a single layer with depth, $\Delta z$, of $5000$~m.
137    
138  \subsubsection{Numerical Stability Criteria}  \subsubsection{Numerical Stability Criteria}
139  \label{www:tutorials}  \label{www:tutorials}
140    
141  The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.  The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$.
142  This value is chosen to yield a Munk layer width \cite{adcroft:95},  This value is chosen to yield a Munk layer width \cite{adcroft:95},
143    
144  \begin{eqnarray}  \begin{eqnarray}
145  \label{EQ:eg-hs-munk_layer}  \label{EQ:eg-baro-munk_layer}
146  M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}  M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
147  \end{eqnarray}  \end{eqnarray}
148    
149  \noindent  of $\approx 600$km. This is greater than the model  \noindent  of $\approx 100$km. This is greater than the model
150  resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional  resolution $\Delta x$, ensuring that the frictional boundary
151  boundary layer is adequately resolved.  layer is well resolved.
152  \\  \\
153    
154  \noindent The model is stepped forward with a  \noindent The model is stepped forward with a
155  time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and  time step $\delta t=1200$secs. With this time step the stability
 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability  
156  parameter to the horizontal Laplacian friction \cite{adcroft:95}  parameter to the horizontal Laplacian friction \cite{adcroft:95}
 \begin{eqnarray}  
 \label{EQ:eg-hs-laplacian_stability}  
 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}  
 \end{eqnarray}  
157    
 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the  
 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at  
 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.  
 \\  
158    
159  \noindent The vertical dissipation coefficient, $A_{z}$, is set to  
 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit  
160  \begin{eqnarray}  \begin{eqnarray}
161  \label{EQ:eg-hs-laplacian_stability_z}  \label{EQ:eg-baro-laplacian_stability}
162  S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}  S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
163  \end{eqnarray}  \end{eqnarray}
164    
165  \noindent evaluates to $0.015$ for the smallest model  \noindent evaluates to 0.012, which is well below the 0.3 upper limit
166  level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below  for stability.
 the upper stability limit.  
167  \\  \\
168    
169  The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients  \noindent The numerical stability for inertial oscillations  
 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$  
 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit  
 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.  
 Here the stability parameter  
 \begin{eqnarray}  
 \label{EQ:eg-hs-laplacian_stability_xtheta}  
 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}  
 \end{eqnarray}  
 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The  
 stability parameter related to $K_{z}$  
 \begin{eqnarray}  
 \label{EQ:eg-hs-laplacian_stability_ztheta}  
 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}  
 \end{eqnarray}  
 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit  
 of $S_{l} \approx 0.5$.  
 \\  
   
 \noindent The numerical stability for inertial oscillations  
170  \cite{adcroft:95}  \cite{adcroft:95}
171    
172  \begin{eqnarray}  \begin{eqnarray}
173  \label{EQ:eg-hs-inertial_stability}  \label{EQ:eg-baro-inertial_stability}
174  S_{i} = f^{2} {\delta t_v}^2  S_{i} = f^{2} {\delta t}^2
175  \end{eqnarray}  \end{eqnarray}
176    
177  \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to  \noindent evaluates to $0.0144$, which is well below the $0.5$ upper
178  the $S_{i} < 1$ upper limit for stability.  limit for stability.
179  \\  \\
180    
181  \noindent The advective CFL \cite{adcroft:95} for a extreme maximum  \noindent The advective CFL \cite{adcroft:95} for an extreme maximum
182  horizontal flow  horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$
 speed of $ | \vec{u} | = 2 ms^{-1}$  
183    
184  \begin{eqnarray}  \begin{eqnarray}
185  \label{EQ:eg-hs-cfl_stability}  \label{EQ:eg-baro-cfl_stability}
186  S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}  S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
187  \end{eqnarray}  \end{eqnarray}
188    
189  \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability  \noindent evaluates to 0.12. This is approaching the stability limit
190  limit of 0.5.  of 0.5 and limits $\delta t$ to $1200s$.
 \\  
191    
192  \noindent The stability parameter for internal gravity waves propagating  \subsection{Code Configuration}
 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$  
 \cite{adcroft:95}  
   
 \begin{eqnarray}  
 \label{EQ:eg-hs-gfl_stability}  
 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}  
 \end{eqnarray}  
   
 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear  
 stability limit of 0.5.  
     
 \subsection{Experiment Configuration}  
193  \label{www:tutorials}  \label{www:tutorials}
194  \label{SEC:eg-hs_examp_exp_config}  \label{SEC:eg-baro-code_config}
195    
196  The model configuration for this experiment resides under the  The model configuration for this experiment resides under the
197  directory {\it verification/hs94.128x64x5}.  The experiment files  directory {\it verification/exp0/}.  The experiment files
198  \begin{itemize}  \begin{itemize}
199  \item {\it input/data}  \item {\it input/data}
200  \item {\it input/data.pkg}  \item {\it input/data.pkg}
201  \item {\it input/eedata},  \item {\it input/eedata},
202  \item {\it input/windx.bin},  \item {\it input/windx.sin\_y},
203  \item {\it input/windy.bin},  \item {\it input/topog.box},
 \item {\it input/salt.bin},  
 \item {\it input/theta.bin},  
 \item {\it input/SSS.bin},  
 \item {\it input/SST.bin},  
 \item {\it input/topog.bin},  
204  \item {\it code/CPP\_EEOPTIONS.h}  \item {\it code/CPP\_EEOPTIONS.h}
205  \item {\it code/CPP\_OPTIONS.h},  \item {\it code/CPP\_OPTIONS.h},
206  \item {\it code/SIZE.h}.  \item {\it code/SIZE.h}.
207  \end{itemize}  \end{itemize}
208  contain the code customizations and parameter settings for these  contain the code customizations and parameter settings for this
209  experiments. Below we describe the customizations  experiments. Below we describe the customizations
210  to these files associated with this experiment.  to these files associated with this experiment.
211    
# Line 330  are Line 218  are
218    
219  \begin{itemize}  \begin{itemize}
220    
221  \item Lines 7-10 and 11-14  \item Line 7, \begin{verbatim} viscAh=4.E2, \end{verbatim} this line sets
222  \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 ,  \end{verbatim}  the Laplacian friction coefficient to $400 m^2s^{-1}$
223  $\cdots$ \\  \item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets
224  set reference values for potential  $\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$
225  temperature and salinity at each model level in units of $^{\circ}$C and  
226  ${\rm ppt}$. The entries are ordered from surface to depth.  \item Lines 15 and 16
227  Density is calculated from anomalies at each level evaluated  \begin{verbatim}
228  with respect to the reference values set here.\\  rigidLid=.FALSE.,
229  \fbox{  implicitFreeSurface=.TRUE.,
230  \begin{minipage}{5.0in}  \end{verbatim}
231  {\it S/R INI\_THETA}({\it ini\_theta.F})  these lines suppress the rigid lid formulation of the surface
232  \end{minipage}  pressure inverter and activate the implicit free surface form
233  }  of the pressure inverter.
   
   
 \item Line 15,  
 \begin{verbatim} viscAz=1.E-3, \end{verbatim}  
 this line sets the vertical Laplacian dissipation coefficient to  
 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions  
 for this operator are specified later. This variable is copied into  
 model general vertical coordinate variable {\bf viscAr}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})  
 \end{minipage}  
 }  
   
 \item Line 16,  
 \begin{verbatim}  
 viscAh=5.E5,  
 \end{verbatim}  
 this line sets the horizontal Laplacian frictional dissipation coefficient to  
 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions  
 for this operator are specified later.  
   
 \item Lines 17,  
 \begin{verbatim}  
 no_slip_sides=.FALSE.  
 \end{verbatim}  
 this line selects a free-slip lateral boundary condition for  
 the horizontal Laplacian friction operator  
 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and  
 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.  
   
 \item Lines 9,  
 \begin{verbatim}  
 no_slip_bottom=.TRUE.  
 \end{verbatim}  
 this line selects a no-slip boundary condition for bottom  
 boundary condition in the vertical Laplacian friction operator  
 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.  
   
 \item Line 19,  
 \begin{verbatim}  
 diffKhT=1.E3,  
 \end{verbatim}  
 this line sets the horizontal diffusion coefficient for temperature  
 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this  
 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on  
 all boundaries.  
   
 \item Line 20,  
 \begin{verbatim}  
 diffKzT=3.E-5,  
 \end{verbatim}  
 this line sets the vertical diffusion coefficient for temperature  
 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary  
 condition on this operator is $\frac{\partial}{\partial z}=0$ at both  
 the upper and lower boundaries.  
   
 \item Line 21,  
 \begin{verbatim}  
 diffKhS=1.E3,  
 \end{verbatim}  
 this line sets the horizontal diffusion coefficient for salinity  
 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this  
 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on  
 all boundaries.  
   
 \item Line 22,  
 \begin{verbatim}  
 diffKzS=3.E-5,  
 \end{verbatim}  
 this line sets the vertical diffusion coefficient for salinity  
 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary  
 condition on this operator is $\frac{\partial}{\partial z}=0$ at both  
 the upper and lower boundaries.  
   
 \item Lines 23-26  
 \begin{verbatim}  
 beta=1.E-11,  
 \end{verbatim}  
 \vspace{-5mm}$\cdots$\\  
 These settings do not apply for this experiment.  
234    
235  \item Line 27,  \item Line 27,
236  \begin{verbatim}  \begin{verbatim}
237  gravity=9.81,  startTime=0,
238  \end{verbatim}  \end{verbatim}
239  Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\  this line indicates that the experiment should start from $t=0$
240  \fbox{  and implicitly suppresses searching for checkpoint files associated
241  \begin{minipage}{5.0in}  with restarting an numerical integration from a previously saved state.
 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\  
 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\  
 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\  
 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\  
 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})  
 \end{minipage}  
 }  
242    
243    \item Line 29,
 \item Line 28-29,  
244  \begin{verbatim}  \begin{verbatim}
245  rigidLid=.FALSE.,  endTime=12000,
 implicitFreeSurface=.TRUE.,  
246  \end{verbatim}  \end{verbatim}
247  Selects the barotropic pressure equation to be the implicit free surface  this line indicates that the experiment should start finish at $t=12000s$.
248  formulation.  A restart file will be written at this time that will enable the
249    simulation to be continued from this point.
250    
251  \item Line 30,  \item Line 30,
252  \begin{verbatim}  \begin{verbatim}
253  eosType='POLY3',  deltaTmom=1200,
254  \end{verbatim}  \end{verbatim}
255  Selects the third order polynomial form of the equation of state.\\  This line sets the momentum equation timestep to $1200s$.
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\  
 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})  
 \end{minipage}  
 }  
256    
257  \item Line 31,  \item Line 39,
258  \begin{verbatim}  \begin{verbatim}
259  readBinaryPrec=32,  usingCartesianGrid=.TRUE.,
260  \end{verbatim}  \end{verbatim}
261  Sets format for reading binary input datasets holding model fields to  This line requests that the simulation be performed in a
262  use 32-bit representation for floating-point numbers.\\  Cartesian coordinate system.
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\  
 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})  
 \end{minipage}  
 }  
263    
264  \item Line 36,  \item Line 41,
265  \begin{verbatim}  \begin{verbatim}
266  cg2dMaxIters=1000,  delX=60*20E3,
267  \end{verbatim}  \end{verbatim}
268  Sets maximum number of iterations the two-dimensional, conjugate  This line sets the horizontal grid spacing between each x-coordinate line
269  gradient solver will use, {\bf irrespective of convergence  in the discrete grid. The syntax indicates that the discrete grid
270  criteria being met}.\\  should be comprise of $60$ grid lines each separated by $20 \times 10^{3}m$
271  \fbox{  ($20$~km).
 \begin{minipage}{5.0in}  
 {\it S/R CG2D}~({\it cg2d.F})  
 \end{minipage}  
 }  
   
 \item Line 37,  
 \begin{verbatim}  
 cg2dTargetResidual=1.E-13,  
 \end{verbatim}  
 Sets the tolerance which the two-dimensional, conjugate  
 gradient solver will use to test for convergence in equation  
 \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$.  
 Solver will iterate until  
 tolerance falls below this value or until the maximum number of  
 solver iterations is reached.\\  
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R CG2D}~({\it cg2d.F})  
 \end{minipage}  
 }  
272    
273  \item Line 42,  \item Line 42,
274  \begin{verbatim}  \begin{verbatim}
275  startTime=0,  delY=60*20E3,
276  \end{verbatim}  \end{verbatim}
277  Sets the starting time for the model internal time counter.  This line sets the horizontal grid spacing between each y-coordinate line
278  When set to non-zero this option implicitly requests a  in the discrete grid to $20 \times 10^{3}m$ ($20$~km).
 checkpoint file be read for initial state.  
 By default the checkpoint file is named according to  
 the integer number of time steps in the {\bf startTime} value.  
 The internal time counter works in seconds.  
279    
280  \item Line 43,  \item Line 43,
281  \begin{verbatim}  \begin{verbatim}
282  endTime=2808000.,  delZ=5000,
283  \end{verbatim}  \end{verbatim}
284  Sets the time (in seconds) at which this simulation will terminate.  This line sets the vertical grid spacing between each z-coordinate line
285  At the end of a simulation a checkpoint file is automatically  in the discrete grid to $5000m$ ($5$~km).
 written so that a numerical experiment can consist of multiple  
 stages.  
   
 \item Line 44,  
 \begin{verbatim}  
 #endTime=62208000000,  
 \end{verbatim}  
 A commented out setting for endTime for a 2000 year simulation.  
   
 \item Line 45,  
 \begin{verbatim}  
 deltaTmom=2400.0,  
 \end{verbatim}  
 Sets the timestep $\delta t_{v}$ used in the momentum equations to  
 $20~{\rm mins}$.  
 See section \ref{SEC:mom_time_stepping}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R TIMESTEP}({\it timestep.F})  
 \end{minipage}  
 }  
286    
287  \item Line 46,  \item Line 46,
288  \begin{verbatim}  \begin{verbatim}
 tauCD=321428.,  
 \end{verbatim}  
 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.  
 See section \ref{SEC:cd_scheme}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\  
 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})  
 \end{minipage}  
 }  
   
 \item Line 47,  
 \begin{verbatim}  
 deltaTtracer=108000.,  
 \end{verbatim}  
 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to  
 $30~{\rm hours}$.  
 See section \ref{SEC:tracer_time_stepping}.  
   
 \fbox{  
 \begin{minipage}{5.0in}  
 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})  
 \end{minipage}  
 }  
   
 \item Line 47,  
 \begin{verbatim}  
289  bathyFile='topog.box'  bathyFile='topog.box'
290  \end{verbatim}  \end{verbatim}
291  This line specifies the name of the file from which the domain  This line specifies the name of the file from which the domain
# Line 584  coordinate varying fastest. The points a Line 296  coordinate varying fastest. The points a
296  to high coordinate for both axes. The units and orientation of the  to high coordinate for both axes. The units and orientation of the
297  depths in this file are the same as used in the MITgcm code. In this  depths in this file are the same as used in the MITgcm code. In this
298  experiment, a depth of $0m$ indicates a solid wall and a depth  experiment, a depth of $0m$ indicates a solid wall and a depth
299  of $-2000m$ indicates open ocean. The matlab program  of $-5000m$ indicates open ocean. The matlab program
300  {\it input/gendata.m} shows an example of how to generate a  {\it input/gendata.m} shows an example of how to generate a
301  bathymetry file.  bathymetry file.
302    
303    
304  \item Line 50,  \item Line 49,
305  \begin{verbatim}  \begin{verbatim}
306  zonalWindFile='windx.sin_y'  zonalWindFile='windx.sin_y'
307  \end{verbatim}  \end{verbatim}
# Line 597  This line specifies the name of the file Line 309  This line specifies the name of the file
309  surface wind stress is read. This file is also a two-dimensional  surface wind stress is read. This file is also a two-dimensional
310  ($x,y$) map and is enumerated and formatted in the same manner as the  ($x,y$) map and is enumerated and formatted in the same manner as the
311  bathymetry file. The matlab program {\it input/gendata.m} includes example  bathymetry file. The matlab program {\it input/gendata.m} includes example
312  code to generate a valid  code to generate a valid {\bf zonalWindFile} file.  
 {\bf zonalWindFile}  
 file.    
313    
314  \end{itemize}  \end{itemize}
315    
# Line 608  that are described in the MITgcm Getting Line 318  that are described in the MITgcm Getting
318  notes.  notes.
319    
320  \begin{small}  \begin{small}
321  \input{part3/case_studies/climatalogical_ogcm/input/data}  \input{part3/case_studies/barotropic_gyre/input/data}
322  \end{small}  \end{small}
323    
324  \subsubsection{File {\it input/data.pkg}}  \subsubsection{File {\it input/data.pkg}}
325  \label{www:tutorials}  \label{www:tutorials}
326    
327  This file uses standard default values and does not contain  This file uses standard default values and does not contain
328  customisations for this experiment.  customizations for this experiment.
329    
330  \subsubsection{File {\it input/eedata}}  \subsubsection{File {\it input/eedata}}
331  \label{www:tutorials}  \label{www:tutorials}
332    
333  This file uses standard default values and does not contain  This file uses standard default values and does not contain
334  customisations for this experiment.  customizations for this experiment.
335    
336  \subsubsection{File {\it input/windx.sin\_y}}  \subsubsection{File {\it input/windx.sin\_y}}
337  \label{www:tutorials}  \label{www:tutorials}
# Line 640  code for creating the {\it input/windx.s Line 350  code for creating the {\it input/windx.s
350    
351  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)  The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
352  map of depth values. For this experiment values are either  map of depth values. For this experiment values are either
353  $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep  $0m$ or {\bf -delZ}m, corresponding respectively to a wall or to deep
354  ocean. The file contains a raw binary stream of data that is enumerated  ocean. The file contains a raw binary stream of data that is enumerated
355  in the same way as standard MITgcm two-dimensional, horizontal arrays.  in the same way as standard MITgcm two-dimensional, horizontal arrays.
356  The included matlab program {\it input/gendata.m} gives a complete  The included matlab program {\it input/gendata.m} gives a complete
# Line 663  axis aligned with the x-coordinate. Line 373  axis aligned with the x-coordinate.
373  the lateral domain extent in grid points for the  the lateral domain extent in grid points for the
374  axis aligned with the y-coordinate.  axis aligned with the y-coordinate.
375    
 \item Line 49,  
 \begin{verbatim} Nr=4,   \end{verbatim} this line sets  
 the vertical domain extent in grid points.  
   
376  \end{itemize}  \end{itemize}
377    
378  \begin{small}  \begin{small}
379  \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}  \input{part3/case_studies/barotropic_gyre/code/SIZE.h}
380  \end{small}  \end{small}
381    
382  \subsubsection{File {\it code/CPP\_OPTIONS.h}}  \subsubsection{File {\it code/CPP\_OPTIONS.h}}
383  \label{www:tutorials}  \label{www:tutorials}
384    
385  This file uses standard default values and does not contain  This file uses standard default values and does not contain
386  customisations for this experiment.  customizations for this experiment.
387    
388    
389  \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}  \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
390  \label{www:tutorials}  \label{www:tutorials}
391    
392  This file uses standard default values and does not contain  This file uses standard default values and does not contain
393  customisations for this experiment.  customizations for this experiment.
394    
 \subsubsection{Other Files }  
 \label{www:tutorials}  
   
 Other files relevant to this experiment are  
 \begin{itemize}  
 \item {\it model/src/ini\_cori.F}. This file initializes the model  
 coriolis variables {\bf fCorU}.  
 \item {\it model/src/ini\_spherical\_polar\_grid.F}  
 \item {\it model/src/ini\_parms.F},  
 \item {\it input/windx.sin\_y},  
 \end{itemize}  
 contain the code customisations and parameter settings for this  
 experiments. Below we describe the customisations  
 to these files associated with this experiment.  

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.4

  ViewVC Help
Powered by ViewVC 1.1.22