| 1 |
% $Header: /u/gcmpack/manual/part3/case_studies/rotating_tank/tank.tex,v 1.8 2004/07/26 21:25:34 afe Exp $ |
| 2 |
% $Name: $ |
| 3 |
|
| 4 |
\bodytext{bgcolor="#FFFFFFFF"} |
| 5 |
|
| 6 |
%\begin{center} |
| 7 |
%{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical |
| 8 |
%Coordinates} |
| 9 |
% |
| 10 |
%\vspace*{4mm} |
| 11 |
% |
| 12 |
%\vspace*{3mm} |
| 13 |
%{\large May 2001} |
| 14 |
%\end{center} |
| 15 |
|
| 16 |
\section{A Rotating Tank in Cylindrical Coordinates} |
| 17 |
\label{sect:eg-tank} |
| 18 |
\label{www:tutorials} |
| 19 |
|
| 20 |
This section illustrates an example of MITgcm simulating a laboratory |
| 21 |
experiment on much smaller scales than those common to geophysical |
| 22 |
fluid dynamics. |
| 23 |
|
| 24 |
\subsection{Overview} |
| 25 |
\label{www:tutorials} |
| 26 |
|
| 27 |
|
| 28 |
This example experiment demonstrates using the MITgcm to simulate |
| 29 |
a laboratory experiment with a rotating tank of water with an ice |
| 30 |
bucket in the center. The simulation is configured for a laboratory |
| 31 |
scale on a |
| 32 |
$3^{\circ}$ $\times$ 20cm |
| 33 |
cyclindrical grid with twenty-nine vertical |
| 34 |
levels. |
| 35 |
\\ |
| 36 |
|
| 37 |
|
| 38 |
|
| 39 |
|
| 40 |
|
| 41 |
\subsection{Equations Solved} |
| 42 |
\label{www:tutorials} |
| 43 |
|
| 44 |
|
| 45 |
\subsection{Discrete Numerical Configuration} |
| 46 |
\label{www:tutorials} |
| 47 |
|
| 48 |
The domain is discretised with |
| 49 |
a uniform grid spacing in the horizontal set to |
| 50 |
$\Delta x=\Delta y=20$~km, so |
| 51 |
that there are sixty grid cells in the $x$ and $y$ directions. Vertically the |
| 52 |
model is configured with a single layer with depth, $\Delta z$, of $5000$~m. |
| 53 |
|
| 54 |
|
| 55 |
\subsection{Code Configuration} |
| 56 |
\label{www:tutorials} |
| 57 |
\label{SEC:eg-baro-code_config} |
| 58 |
|
| 59 |
The model configuration for this experiment resides under the |
| 60 |
directory {\it verification/rotatingi\_tank/}. The experiment files |
| 61 |
\begin{itemize} |
| 62 |
\item {\it input/data} |
| 63 |
\item {\it input/data.pkg} |
| 64 |
\item {\it input/eedata}, |
| 65 |
\item {\it input/bathyPol.bin}, |
| 66 |
\item {\it input/thetaPol.bin}, |
| 67 |
\item {\it code/CPP\_EEOPTIONS.h} |
| 68 |
\item {\it code/CPP\_OPTIONS.h}, |
| 69 |
\item {\it code/SIZE.h}. |
| 70 |
\end{itemize} |
| 71 |
|
| 72 |
contain the code customizations and parameter settings for this |
| 73 |
experiments. Below we describe the customizations |
| 74 |
to these files associated with this experiment. |
| 75 |
|
| 76 |
\subsubsection{File {\it input/data}} |
| 77 |
\label{www:tutorials} |
| 78 |
|
| 79 |
This file, reproduced completely below, specifies the main parameters |
| 80 |
for the experiment. The parameters that are significant for this configuration |
| 81 |
are |
| 82 |
|
| 83 |
\begin{itemize} |
| 84 |
|
| 85 |
\item Line X, \begin{verbatim} viscAh=5.0E-6, \end{verbatim} this line sets |
| 86 |
the Laplacian friction coefficient to $0.000006 m^2s^{-1}$, which is ususally |
| 87 |
low because of the small scale, presumably.... qqq |
| 88 |
|
| 89 |
\item Line X, \begin{verbatim}f0=0.5 , \end{verbatim} this line sets the |
| 90 |
coriolis term, and represents a tank spinning at qqq |
| 91 |
\item Line 10, \begin{verbatim} beta=1.E-11, \end{verbatim} this line sets |
| 92 |
$\beta$ (the gradient of the coriolis parameter, $f$) to $10^{-11} s^{-1}m^{-1}$ |
| 93 |
|
| 94 |
\item Lines 15 and 16 |
| 95 |
\begin{verbatim} |
| 96 |
rigidLid=.TRUE., |
| 97 |
implicitFreeSurface=.FALSE., |
| 98 |
\end{verbatim} |
| 99 |
|
| 100 |
these lines do the opposite of the following: |
| 101 |
suppress the rigid lid formulation of the surface |
| 102 |
pressure inverter and activate the implicit free surface form |
| 103 |
of the pressure inverter. |
| 104 |
|
| 105 |
\item Line 27, |
| 106 |
\begin{verbatim} |
| 107 |
startTime=0, |
| 108 |
\end{verbatim} |
| 109 |
this line indicates that the experiment should start from $t=0$ |
| 110 |
and implicitly suppresses searching for checkpoint files associated |
| 111 |
with restarting an numerical integration from a previously saved state. |
| 112 |
|
| 113 |
\item Line 30, |
| 114 |
\begin{verbatim} |
| 115 |
deltaT=0.1, |
| 116 |
\end{verbatim} |
| 117 |
This line sets the integration timestep to $0.1s$. This is an unsually |
| 118 |
small value among the examples due to the small physical scale of the |
| 119 |
experiment. |
| 120 |
|
| 121 |
\item Line 39, |
| 122 |
\begin{verbatim} |
| 123 |
usingCylindricalGrid=.TRUE., |
| 124 |
\end{verbatim} |
| 125 |
This line requests that the simulation be performed in a |
| 126 |
cylindrical coordinate system. |
| 127 |
|
| 128 |
\item Line qqq, |
| 129 |
\begin{verbatim} |
| 130 |
dXspacing=3, |
| 131 |
\end{verbatim} |
| 132 |
This line sets the azimuthal grid spacing between each x-coordinate line |
| 133 |
in the discrete grid. The syntax indicates that the discrete grid |
| 134 |
should be comprise of $120$ grid lines each separated by $3^{\circ}$. |
| 135 |
|
| 136 |
|
| 137 |
|
| 138 |
\item Line qqq, |
| 139 |
\begin{verbatim} |
| 140 |
dYspacing=0.01, |
| 141 |
\end{verbatim} |
| 142 |
This line sets the radial grid spacing between each $\rho$-coordinate line |
| 143 |
in the discrete grid to $1cm$. |
| 144 |
|
| 145 |
\item Line 43, |
| 146 |
\begin{verbatim} |
| 147 |
delZ=29*0.005, |
| 148 |
\end{verbatim} |
| 149 |
This line sets the vertical grid spacing between each z-coordinate line |
| 150 |
in the discrete grid to $5000m$ ($5$~km). |
| 151 |
|
| 152 |
\item Line 46, |
| 153 |
\begin{verbatim} |
| 154 |
bathyFile='bathyPol.bin', |
| 155 |
\end{verbatim} |
| 156 |
This line specifies the name of the file from which the domain |
| 157 |
``bathymetry'' (tank depth) is read. This file is a two-dimensional |
| 158 |
($x,y$) map of |
| 159 |
depths. This file is assumed to contain 64-bit binary numbers |
| 160 |
giving the depth of the model at each grid cell, ordered with the $x$ |
| 161 |
coordinate varying fastest. The points are ordered from low coordinate |
| 162 |
to high coordinate for both axes. The units and orientation of the |
| 163 |
depths in this file are the same as used in the MITgcm code. In this |
| 164 |
experiment, a depth of $0m$ indicates an area outside of the tank |
| 165 |
and a depth |
| 166 |
f $-0.145m$ indicates the tank itself. |
| 167 |
|
| 168 |
\item Line 49, |
| 169 |
\begin{verbatim} |
| 170 |
hydrogThetaFile='thetaPol.bin', |
| 171 |
\end{verbatim} |
| 172 |
This line specifies the name of the file from which the initial values |
| 173 |
of $\theta$ |
| 174 |
are read. This file is a three-dimensional |
| 175 |
($x,y,z$) map and is enumerated and formatted in the same manner as the |
| 176 |
bathymetry file. |
| 177 |
|
| 178 |
\item Line qqq |
| 179 |
\begin{verbatim} |
| 180 |
tCyl = 0 |
| 181 |
\end{verbatim} |
| 182 |
This line specifies the temperature in degrees Celsius of the interior |
| 183 |
wall of the tank -- usually a bucket of ice water. |
| 184 |
|
| 185 |
|
| 186 |
\end{itemize} |
| 187 |
|
| 188 |
\noindent other lines in the file {\it input/data} are standard values |
| 189 |
that are described in the MITgcm Getting Started and MITgcm Parameters |
| 190 |
notes. |
| 191 |
|
| 192 |
\begin{small} |
| 193 |
\input{part3/case_studies/rotating_tank/input/data} |
| 194 |
\end{small} |
| 195 |
|
| 196 |
\subsubsection{File {\it input/data.pkg}} |
| 197 |
\label{www:tutorials} |
| 198 |
|
| 199 |
This file uses standard default values and does not contain |
| 200 |
customizations for this experiment. |
| 201 |
|
| 202 |
\subsubsection{File {\it input/eedata}} |
| 203 |
\label{www:tutorials} |
| 204 |
|
| 205 |
This file uses standard default values and does not contain |
| 206 |
customizations for this experiment. |
| 207 |
|
| 208 |
\subsubsection{File {\it input/thetaPol.bin}} |
| 209 |
\label{www:tutorials} |
| 210 |
|
| 211 |
The {\it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$) |
| 212 |
map of initial values of $\theta$ in degrees Celsius. |
| 213 |
|
| 214 |
\subsubsection{File {\it input/bathyPol.bin}} |
| 215 |
\label{www:tutorials} |
| 216 |
|
| 217 |
|
| 218 |
The {\it input/bathyPol.bin} file specifies a two-dimensional ($x,y$) |
| 219 |
map of depth values. For this experiment values are either |
| 220 |
$0m$ or {\bf -delZ}m, corresponding respectively to outside or inside of |
| 221 |
the tank. The file contains a raw binary stream of data that is enumerated |
| 222 |
in the same way as standard MITgcm two-dimensional, horizontal arrays. |
| 223 |
|
| 224 |
\subsubsection{File {\it code/SIZE.h}} |
| 225 |
\label{www:tutorials} |
| 226 |
|
| 227 |
Two lines are customized in this file for the current experiment |
| 228 |
|
| 229 |
\begin{itemize} |
| 230 |
|
| 231 |
\item Line 39, |
| 232 |
\begin{verbatim} sNx=120, \end{verbatim} this line sets |
| 233 |
the lateral domain extent in grid points for the |
| 234 |
axis aligned with the x-coordinate. |
| 235 |
|
| 236 |
\item Line 40, |
| 237 |
\begin{verbatim} sNy=31, \end{verbatim} this line sets |
| 238 |
the lateral domain extent in grid points for the |
| 239 |
axis aligned with the y-coordinate. |
| 240 |
|
| 241 |
\end{itemize} |
| 242 |
|
| 243 |
\begin{small} |
| 244 |
\input{part3/case_studies/rotating_tank/code/SIZE.h} |
| 245 |
\end{small} |
| 246 |
|
| 247 |
\subsubsection{File {\it code/CPP\_OPTIONS.h}} |
| 248 |
\label{www:tutorials} |
| 249 |
|
| 250 |
This file uses standard default values and does not contain |
| 251 |
customizations for this experiment. |
| 252 |
|
| 253 |
|
| 254 |
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} |
| 255 |
\label{www:tutorials} |
| 256 |
|
| 257 |
This file uses standard default values and does not contain |
| 258 |
customizations for this experiment. |
| 259 |
|