Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_examples/rotating_tank/tank.tex 2004/07/26 21:25:34 1.8
+++ manual/s_examples/rotating_tank/tank.tex 2004/07/27 13:40:09 1.9
@@ -1,4 +1,4 @@
-% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/rotating_tank/tank.tex,v 1.8 2004/07/26 21:25:34 afe Exp $
+% $Header: /home/ubuntu/mnt/e9_copy/manual/s_examples/rotating_tank/tank.tex,v 1.9 2004/07/27 13:40:09 afe Exp $
% $Name: $
\bodytext{bgcolor="#FFFFFFFF"}
@@ -51,59 +51,6 @@
that there are sixty grid cells in the $x$ and $y$ directions. Vertically the
model is configured with a single layer with depth, $\Delta z$, of $5000$~m.
-\subsubsection{Numerical Stability Criteria}
-\label{www:tutorials}
-
-The Laplacian dissipation coefficient, $A_{h}$, is set to $400 m s^{-1}$.
-This value is chosen to yield a Munk layer width \cite{adcroft:95},
-
-\begin{eqnarray}
-\label{EQ:eg-baro-munk_layer}
-M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
-\end{eqnarray}
-
-\noindent of $\approx 100$km. This is greater than the model
-resolution $\Delta x$, ensuring that the frictional boundary
-layer is well resolved.
-\\
-
-\noindent The model is stepped forward with a
-time step $\delta t=1200$secs. With this time step the stability
-parameter to the horizontal Laplacian friction \cite{adcroft:95}
-
-
-
-\begin{eqnarray}
-\label{EQ:eg-baro-laplacian_stability}
-S_{l} = 4 \frac{A_{h} \delta t}{{\Delta x}^2}
-\end{eqnarray}
-
-\noindent evaluates to 0.012, which is well below the 0.3 upper limit
-for stability.
-\\
-
-\noindent The numerical stability for inertial oscillations
-\cite{adcroft:95}
-
-\begin{eqnarray}
-\label{EQ:eg-baro-inertial_stability}
-S_{i} = f^{2} {\delta t}^2
-\end{eqnarray}
-
-\noindent evaluates to $0.0144$, which is well below the $0.5$ upper
-limit for stability.
-\\
-
-\noindent The advective CFL \cite{adcroft:95} for an extreme maximum
-horizontal flow speed of $ | \vec{u} | = 2 ms^{-1}$
-
-\begin{eqnarray}
-\label{EQ:eg-baro-cfl_stability}
-S_{a} = \frac{| \vec{u} | \delta t}{ \Delta x}
-\end{eqnarray}
-
-\noindent evaluates to 0.12. This is approaching the stability limit
-of 0.5 and limits $\delta t$ to $1200s$.
\subsection{Code Configuration}
\label{www:tutorials}
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |