/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Annotation of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (hide annotations) (download) (as text)
Tue Jun 22 16:56:31 2004 UTC (21 years ago) by afe
Branch: MAIN
Changes since 1.1: +534 -86 lines
File MIME type: application/x-tex
better template

1 afe 1.2 % $Header: /u/gcmpack/manual/part3/case_studies/hs_atmosphere/hs_atmos.tex,v 1.3 2003/08/07 18:27:52 edhill Exp $
2 afe 1.1 % $Name: $
3    
4 afe 1.2 \section{Simulating a Rotating Tank in Cylindrical Coordinates}
5     \label{www:tutorials}
6     \label{sect:eg-tank}
7    
8 afe 1.1 \bodytext{bgcolor="#FFFFFFFF"}
9    
10     %\begin{center}
11 afe 1.2 %{\Large \bf Simulating a Rotating Tank in Cylindrical Coordinates}
12     %
13 afe 1.1 %
14     %\vspace*{4mm}
15     %
16     %\vspace*{3mm}
17     %{\large June 2004}
18     %\end{center}
19    
20 afe 1.2 \subsection{Introduction}
21 afe 1.1 \label{www:tutorials}
22    
23 afe 1.2 This section illustrates an example of MITgcm simulating a laboratory
24     experiment on much smaller scales than those common to geophysical
25     fluid dynamics.
26    
27     \subsection{Overview}
28     \label{www:tutorials}
29    
30    
31     This example experiment demonstrates using the MITgcm to simulate
32     a laboratory experiment with a rotating tank of water with an ice
33     bucket in the center. The simulation is configured for a laboratory
34     scale on a 3^{\circ} \times 20cm cyclindrical grid with twenty-nine vertical
35     levels.
36     \\
37    
38     The model is forced with climatological wind stress data and surface
39     flux data from DaSilva \cite{DaSilva94}. Climatological data
40     from Levitus \cite{Levitus94} is used to initialize the model hydrography.
41     Levitus seasonal climatology data is also used throughout the calculation
42     to provide additional air-sea fluxes.
43     These fluxes are combined with the DaSilva climatological estimates of
44     surface heat flux and fresh water, resulting in a mixed boundary
45     condition of the style described in Haney \cite{Haney}.
46     Altogether, this yields the following forcing applied
47     in the model surface layer.
48    
49    
50     \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
51     ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
52     momentum and in the potential temperature and salinity
53     equations respectively.
54     The term $\Delta z_{s}$ represents the top ocean layer thickness in
55     meters.
56     It is used in conjunction with a reference density, $\rho_{0}$
57     (here set to $999.8\,{\rm kg\,m^{-3}}$), a
58     reference salinity, $S_{0}$ (here set to 35~ppt),
59     and a specific heat capacity, $C_{p}$ (here set to
60     $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
61     input dataset values into time tendencies of
62     potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
63     salinity (with units ${\rm ppt}~s^{-1}$) and
64     velocity (with units ${\rm m}~{\rm s}^{-2}$).
65     The externally supplied forcing fields used in this
66     experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
67     $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
68     have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
69     ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
70     respectively. The salinity forcing fields ($S^{\ast}$ and
71     $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
72     respectively.
73     \\
74    
75    
76     Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
77     relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
78     the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
79     and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
80     in equations \ref{EQ:eg-hs-global_forcing_fu}-\ref{EQ:eg-hs-global_forcing_fs}. The figures
81     also indicate the lateral extent and coastline used in the experiment.
82     Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
83     domain.
84 afe 1.1
85    
86 afe 1.2 \subsection{Discrete Numerical Configuration}
87 afe 1.1 \label{www:tutorials}
88    
89    
90 afe 1.2 The model is configured in hydrostatic form. The domain is discretised with
91     a uniform grid spacing in latitude and longitude on the sphere
92     $\Delta \phi=\Delta \lambda=4^{\circ}$, so
93     that there are ninety grid cells in the zonal and forty in the
94     meridional direction. The internal model coordinate variables
95     $x$ and $y$ are initialized according to
96     \begin{eqnarray}
97     x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
98     y=r\lambda,~\Delta x &= &r\Delta \lambda
99     \end{eqnarray}
100    
101     Arctic polar regions are not
102     included in this experiment. Meridionally the model extends from
103     $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
104     Vertically the model is configured with twenty layers with the
105     following thicknesses
106     $\Delta z_{1} = 50\,{\rm m},\,
107     \Delta z_{2} = 50\,{\rm m},\,
108     \Delta z_{3} = 55\,{\rm m},\,
109     \Delta z_{4} = 60\,{\rm m},\,
110     \Delta z_{5} = 65\,{\rm m},\,
111     $
112     $
113     \Delta z_{6}~=~70\,{\rm m},\,
114     \Delta z_{7}~=~80\,{\rm m},\,
115     \Delta z_{8}~=95\,{\rm m},\,
116     \Delta z_{9}=120\,{\rm m},\,
117     \Delta z_{10}=155\,{\rm m},\,
118     $
119     $
120     \Delta z_{11}=200\,{\rm m},\,
121     \Delta z_{12}=260\,{\rm m},\,
122     \Delta z_{13}=320\,{\rm m},\,
123     \Delta z_{14}=400\,{\rm m},\,
124     \Delta z_{15}=480\,{\rm m},\,
125     $
126     $
127     \Delta z_{16}=570\,{\rm m},\,
128     \Delta z_{17}=655\,{\rm m},\,
129     \Delta z_{18}=725\,{\rm m},\,
130     \Delta z_{19}=775\,{\rm m},\,
131     \Delta z_{20}=815\,{\rm m}
132     $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
133     The implicit free surface form of the pressure equation described in Marshall et. al
134     \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
135     dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
136    
137     Wind-stress forcing is added to the momentum equations for both
138     the zonal flow, $u$ and the meridional flow $v$, according to equations
139     (\ref{EQ:eg-hs-global_forcing_fu}) and (\ref{EQ:eg-hs-global_forcing_fv}).
140     Thermodynamic forcing inputs are added to the equations for
141     potential temperature, $\theta$, and salinity, $S$, according to equations
142     (\ref{EQ:eg-hs-global_forcing_ft}) and (\ref{EQ:eg-hs-global_forcing_fs}).
143     This produces a set of equations solved in this configuration as follows:
144    
145     \begin{eqnarray}
146     \label{EQ:eg-hs-model_equations}
147     \frac{Du}{Dt} - fv +
148     \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
149     \nabla_{h}\cdot A_{h}\nabla_{h}u -
150     \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
151     & = &
152     \begin{cases}
153     {\cal F}_u & \text{(surface)} \\
154     0 & \text{(interior)}
155     \end{cases}
156     \\
157     \frac{Dv}{Dt} + fu +
158     \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
159     \nabla_{h}\cdot A_{h}\nabla_{h}v -
160     \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
161     & = &
162     \begin{cases}
163     {\cal F}_v & \text{(surface)} \\
164     0 & \text{(interior)}
165     \end{cases}
166     \\
167     \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
168     &=&
169     0
170     \\
171     \frac{D\theta}{Dt} -
172     \nabla_{h}\cdot K_{h}\nabla_{h}\theta
173     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
174     & = &
175     \begin{cases}
176     {\cal F}_\theta & \text{(surface)} \\
177     0 & \text{(interior)}
178     \end{cases}
179     \\
180     \frac{D s}{Dt} -
181     \nabla_{h}\cdot K_{h}\nabla_{h}s
182     - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
183     & = &
184     \begin{cases}
185     {\cal F}_s & \text{(surface)} \\
186     0 & \text{(interior)}
187     \end{cases}
188     \\
189     g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
190     \end{eqnarray}
191    
192     \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
193     $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
194     are the zonal and meridional components of the
195     flow vector, $\vec{u}$, on the sphere. As described in
196     MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
197     evolution of potential temperature, $\theta$, equation is solved prognostically.
198     The total pressure, $p$, is diagnosed by summing pressure due to surface
199     elevation $\eta$ and the hydrostatic pressure.
200     \\
201 afe 1.1
202     \subsubsection{Numerical Stability Criteria}
203     \label{www:tutorials}
204    
205 afe 1.2 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
206     This value is chosen to yield a Munk layer width \cite{adcroft:95},
207     \begin{eqnarray}
208     \label{EQ:eg-hs-munk_layer}
209     M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
210     \end{eqnarray}
211    
212     \noindent of $\approx 600$km. This is greater than the model
213     resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
214     boundary layer is adequately resolved.
215     \\
216    
217     \noindent The model is stepped forward with a
218     time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
219     $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
220     parameter to the horizontal Laplacian friction \cite{adcroft:95}
221     \begin{eqnarray}
222     \label{EQ:eg-hs-laplacian_stability}
223     S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
224     \end{eqnarray}
225    
226     \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
227     0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
228     $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
229     \\
230    
231     \noindent The vertical dissipation coefficient, $A_{z}$, is set to
232     $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
233     \begin{eqnarray}
234     \label{EQ:eg-hs-laplacian_stability_z}
235     S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
236     \end{eqnarray}
237    
238     \noindent evaluates to $0.015$ for the smallest model
239     level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
240     the upper stability limit.
241     \\
242    
243     The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
244     for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
245     and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
246     related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
247     Here the stability parameter
248     \begin{eqnarray}
249     \label{EQ:eg-hs-laplacian_stability_xtheta}
250     S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
251     \end{eqnarray}
252     evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
253     stability parameter related to $K_{z}$
254     \begin{eqnarray}
255     \label{EQ:eg-hs-laplacian_stability_ztheta}
256     S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
257     \end{eqnarray}
258     evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
259     of $S_{l} \approx 0.5$.
260     \\
261    
262     \noindent The numerical stability for inertial oscillations
263     \cite{adcroft:95}
264    
265     \begin{eqnarray}
266     \label{EQ:eg-hs-inertial_stability}
267     S_{i} = f^{2} {\delta t_v}^2
268     \end{eqnarray}
269    
270     \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
271     the $S_{i} < 1$ upper limit for stability.
272     \\
273    
274     \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
275     horizontal flow
276     speed of $ | \vec{u} | = 2 ms^{-1}$
277    
278     \begin{eqnarray}
279     \label{EQ:eg-hs-cfl_stability}
280     S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
281     \end{eqnarray}
282    
283     \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
284     limit of 0.5.
285     \\
286    
287     \noindent The stability parameter for internal gravity waves propagating
288     with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
289     \cite{adcroft:95}
290    
291     \begin{eqnarray}
292     \label{EQ:eg-hs-gfl_stability}
293     S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
294     \end{eqnarray}
295    
296     \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
297     stability limit of 0.5.
298    
299     \subsection{Experiment Configuration}
300 afe 1.1 \label{www:tutorials}
301 afe 1.2 \label{SEC:eg-hs_examp_exp_config}
302 afe 1.1
303     The model configuration for this experiment resides under the
304 afe 1.2 directory {\it verification/hs94.128x64x5}. The experiment files
305 afe 1.1 \begin{itemize}
306     \item {\it input/data}
307     \item {\it input/data.pkg}
308     \item {\it input/eedata},
309 afe 1.2 \item {\it input/windx.bin},
310     \item {\it input/windy.bin},
311     \item {\it input/salt.bin},
312     \item {\it input/theta.bin},
313     \item {\it input/SSS.bin},
314     \item {\it input/SST.bin},
315     \item {\it input/topog.bin},
316 afe 1.1 \item {\it code/CPP\_EEOPTIONS.h}
317     \item {\it code/CPP\_OPTIONS.h},
318     \item {\it code/SIZE.h}.
319     \end{itemize}
320 afe 1.2 contain the code customizations and parameter settings for these
321 afe 1.1 experiments. Below we describe the customizations
322     to these files associated with this experiment.
323    
324     \subsubsection{File {\it input/data}}
325     \label{www:tutorials}
326    
327     This file, reproduced completely below, specifies the main parameters
328     for the experiment. The parameters that are significant for this configuration
329     are
330    
331     \begin{itemize}
332    
333 afe 1.2 \item Lines 7-10 and 11-14
334     \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
335     $\cdots$ \\
336     set reference values for potential
337     temperature and salinity at each model level in units of $^{\circ}$C and
338     ${\rm ppt}$. The entries are ordered from surface to depth.
339     Density is calculated from anomalies at each level evaluated
340     with respect to the reference values set here.\\
341     \fbox{
342     \begin{minipage}{5.0in}
343     {\it S/R INI\_THETA}({\it ini\_theta.F})
344     \end{minipage}
345     }
346    
347    
348     \item Line 15,
349     \begin{verbatim} viscAz=1.E-3, \end{verbatim}
350     this line sets the vertical Laplacian dissipation coefficient to
351     $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
352     for this operator are specified later. This variable is copied into
353     model general vertical coordinate variable {\bf viscAr}.
354    
355     \fbox{
356     \begin{minipage}{5.0in}
357     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
358     \end{minipage}
359     }
360    
361     \item Line 16,
362     \begin{verbatim}
363     viscAh=5.E5,
364     \end{verbatim}
365     this line sets the horizontal Laplacian frictional dissipation coefficient to
366     $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
367     for this operator are specified later.
368    
369     \item Lines 17,
370     \begin{verbatim}
371     no_slip_sides=.FALSE.
372     \end{verbatim}
373     this line selects a free-slip lateral boundary condition for
374     the horizontal Laplacian friction operator
375     e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
376     $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
377    
378     \item Lines 9,
379     \begin{verbatim}
380     no_slip_bottom=.TRUE.
381     \end{verbatim}
382     this line selects a no-slip boundary condition for bottom
383     boundary condition in the vertical Laplacian friction operator
384     e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
385    
386     \item Line 19,
387     \begin{verbatim}
388     diffKhT=1.E3,
389     \end{verbatim}
390     this line sets the horizontal diffusion coefficient for temperature
391     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
392     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
393     all boundaries.
394    
395     \item Line 20,
396     \begin{verbatim}
397     diffKzT=3.E-5,
398     \end{verbatim}
399     this line sets the vertical diffusion coefficient for temperature
400     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
401     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
402     the upper and lower boundaries.
403    
404     \item Line 21,
405     \begin{verbatim}
406     diffKhS=1.E3,
407     \end{verbatim}
408     this line sets the horizontal diffusion coefficient for salinity
409     to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
410     operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
411     all boundaries.
412    
413     \item Line 22,
414     \begin{verbatim}
415     diffKzS=3.E-5,
416     \end{verbatim}
417     this line sets the vertical diffusion coefficient for salinity
418     to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
419     condition on this operator is $\frac{\partial}{\partial z}=0$ at both
420     the upper and lower boundaries.
421    
422     \item Lines 23-26
423     \begin{verbatim}
424     beta=1.E-11,
425     \end{verbatim}
426     \vspace{-5mm}$\cdots$\\
427     These settings do not apply for this experiment.
428 afe 1.1
429     \item Line 27,
430     \begin{verbatim}
431 afe 1.2 gravity=9.81,
432 afe 1.1 \end{verbatim}
433 afe 1.2 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
434     \fbox{
435     \begin{minipage}{5.0in}
436     {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
437     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
438     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
439     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
440     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
441     \end{minipage}
442     }
443    
444 afe 1.1
445 afe 1.2 \item Line 28-29,
446 afe 1.1 \begin{verbatim}
447 afe 1.2 rigidLid=.FALSE.,
448     implicitFreeSurface=.TRUE.,
449 afe 1.1 \end{verbatim}
450 afe 1.2 Selects the barotropic pressure equation to be the implicit free surface
451     formulation.
452 afe 1.1
453     \item Line 30,
454     \begin{verbatim}
455 afe 1.2 eosType='POLY3',
456 afe 1.1 \end{verbatim}
457 afe 1.2 Selects the third order polynomial form of the equation of state.\\
458     \fbox{
459     \begin{minipage}{5.0in}
460     {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
461     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
462     \end{minipage}
463     }
464 afe 1.1
465 afe 1.2 \item Line 31,
466 afe 1.1 \begin{verbatim}
467 afe 1.2 readBinaryPrec=32,
468 afe 1.1 \end{verbatim}
469 afe 1.2 Sets format for reading binary input datasets holding model fields to
470     use 32-bit representation for floating-point numbers.\\
471     \fbox{
472     \begin{minipage}{5.0in}
473     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
474     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
475     \end{minipage}
476     }
477 afe 1.1
478 afe 1.2 \item Line 36,
479 afe 1.1 \begin{verbatim}
480 afe 1.2 cg2dMaxIters=1000,
481 afe 1.1 \end{verbatim}
482 afe 1.2 Sets maximum number of iterations the two-dimensional, conjugate
483     gradient solver will use, {\bf irrespective of convergence
484     criteria being met}.\\
485     \fbox{
486     \begin{minipage}{5.0in}
487     {\it S/R CG2D}~({\it cg2d.F})
488     \end{minipage}
489     }
490    
491     \item Line 37,
492     \begin{verbatim}
493     cg2dTargetResidual=1.E-13,
494     \end{verbatim}
495     Sets the tolerance which the two-dimensional, conjugate
496     gradient solver will use to test for convergence in equation
497     \ref{EQ:eg-hs-congrad_2d_resid} to $1 \times 10^{-13}$.
498     Solver will iterate until
499     tolerance falls below this value or until the maximum number of
500     solver iterations is reached.\\
501     \fbox{
502     \begin{minipage}{5.0in}
503     {\it S/R CG2D}~({\it cg2d.F})
504     \end{minipage}
505     }
506 afe 1.1
507     \item Line 42,
508     \begin{verbatim}
509 afe 1.2 startTime=0,
510 afe 1.1 \end{verbatim}
511 afe 1.2 Sets the starting time for the model internal time counter.
512     When set to non-zero this option implicitly requests a
513     checkpoint file be read for initial state.
514     By default the checkpoint file is named according to
515     the integer number of time steps in the {\bf startTime} value.
516     The internal time counter works in seconds.
517 afe 1.1
518     \item Line 43,
519     \begin{verbatim}
520 afe 1.2 endTime=2808000.,
521 afe 1.1 \end{verbatim}
522 afe 1.2 Sets the time (in seconds) at which this simulation will terminate.
523     At the end of a simulation a checkpoint file is automatically
524     written so that a numerical experiment can consist of multiple
525     stages.
526    
527     \item Line 44,
528     \begin{verbatim}
529     #endTime=62208000000,
530     \end{verbatim}
531     A commented out setting for endTime for a 2000 year simulation.
532    
533     \item Line 45,
534     \begin{verbatim}
535     deltaTmom=2400.0,
536     \end{verbatim}
537     Sets the timestep $\delta t_{v}$ used in the momentum equations to
538     $20~{\rm mins}$.
539     See section \ref{SEC:mom_time_stepping}.
540    
541     \fbox{
542     \begin{minipage}{5.0in}
543     {\it S/R TIMESTEP}({\it timestep.F})
544     \end{minipage}
545     }
546 afe 1.1
547     \item Line 46,
548     \begin{verbatim}
549 afe 1.2 tauCD=321428.,
550     \end{verbatim}
551     Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
552     See section \ref{SEC:cd_scheme}.
553    
554     \fbox{
555     \begin{minipage}{5.0in}
556     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
557     {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
558     \end{minipage}
559     }
560    
561     \item Line 47,
562     \begin{verbatim}
563     deltaTtracer=108000.,
564     \end{verbatim}
565     Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
566     $30~{\rm hours}$.
567     See section \ref{SEC:tracer_time_stepping}.
568    
569     \fbox{
570     \begin{minipage}{5.0in}
571     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
572     \end{minipage}
573     }
574    
575     \item Line 47,
576     \begin{verbatim}
577 afe 1.1 bathyFile='topog.box'
578     \end{verbatim}
579     This line specifies the name of the file from which the domain
580     bathymetry is read. This file is a two-dimensional ($x,y$) map of
581     depths. This file is assumed to contain 64-bit binary numbers
582     giving the depth of the model at each grid cell, ordered with the x
583     coordinate varying fastest. The points are ordered from low coordinate
584     to high coordinate for both axes. The units and orientation of the
585     depths in this file are the same as used in the MITgcm code. In this
586     experiment, a depth of $0m$ indicates a solid wall and a depth
587 afe 1.2 of $-2000m$ indicates open ocean. The matlab program
588 afe 1.1 {\it input/gendata.m} shows an example of how to generate a
589     bathymetry file.
590    
591    
592 afe 1.2 \item Line 50,
593 afe 1.1 \begin{verbatim}
594     zonalWindFile='windx.sin_y'
595     \end{verbatim}
596     This line specifies the name of the file from which the x-direction
597     surface wind stress is read. This file is also a two-dimensional
598     ($x,y$) map and is enumerated and formatted in the same manner as the
599     bathymetry file. The matlab program {\it input/gendata.m} includes example
600 afe 1.2 code to generate a valid
601     {\bf zonalWindFile}
602     file.
603 afe 1.1
604     \end{itemize}
605    
606     \noindent other lines in the file {\it input/data} are standard values
607     that are described in the MITgcm Getting Started and MITgcm Parameters
608     notes.
609    
610 afe 1.2 \begin{small}
611     \input{part3/case_studies/climatalogical_ogcm/input/data}
612     \end{small}
613 afe 1.1
614     \subsubsection{File {\it input/data.pkg}}
615     \label{www:tutorials}
616    
617     This file uses standard default values and does not contain
618 afe 1.2 customisations for this experiment.
619 afe 1.1
620     \subsubsection{File {\it input/eedata}}
621     \label{www:tutorials}
622    
623     This file uses standard default values and does not contain
624 afe 1.2 customisations for this experiment.
625 afe 1.1
626     \subsubsection{File {\it input/windx.sin\_y}}
627     \label{www:tutorials}
628    
629     The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
630     map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
631     Although $\tau_{x}$ is only a function of $y$n in this experiment
632     this file must still define a complete two-dimensional map in order
633     to be compatible with the standard code for loading forcing fields
634     in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
635     code for creating the {\it input/windx.sin\_y} file.
636    
637     \subsubsection{File {\it input/topog.box}}
638     \label{www:tutorials}
639    
640    
641     The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
642     map of depth values. For this experiment values are either
643 afe 1.2 $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
644 afe 1.1 ocean. The file contains a raw binary stream of data that is enumerated
645     in the same way as standard MITgcm two-dimensional, horizontal arrays.
646     The included matlab program {\it input/gendata.m} gives a complete
647     code for creating the {\it input/topog.box} file.
648    
649     \subsubsection{File {\it code/SIZE.h}}
650     \label{www:tutorials}
651    
652     Two lines are customized in this file for the current experiment
653    
654     \begin{itemize}
655    
656     \item Line 39,
657     \begin{verbatim} sNx=60, \end{verbatim} this line sets
658     the lateral domain extent in grid points for the
659     axis aligned with the x-coordinate.
660    
661     \item Line 40,
662     \begin{verbatim} sNy=60, \end{verbatim} this line sets
663     the lateral domain extent in grid points for the
664     axis aligned with the y-coordinate.
665    
666 afe 1.2 \item Line 49,
667     \begin{verbatim} Nr=4, \end{verbatim} this line sets
668     the vertical domain extent in grid points.
669    
670 afe 1.1 \end{itemize}
671    
672     \begin{small}
673 afe 1.2 \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
674 afe 1.1 \end{small}
675    
676     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
677     \label{www:tutorials}
678    
679     This file uses standard default values and does not contain
680 afe 1.2 customisations for this experiment.
681 afe 1.1
682    
683     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
684     \label{www:tutorials}
685    
686     This file uses standard default values and does not contain
687 afe 1.2 customisations for this experiment.
688    
689     \subsubsection{Other Files }
690     \label{www:tutorials}
691 afe 1.1
692 afe 1.2 Other files relevant to this experiment are
693     \begin{itemize}
694     \item {\it model/src/ini\_cori.F}. This file initializes the model
695     coriolis variables {\bf fCorU}.
696     \item {\it model/src/ini\_spherical\_polar\_grid.F}
697     \item {\it model/src/ini\_parms.F},
698     \item {\it input/windx.sin\_y},
699     \end{itemize}
700     contain the code customisations and parameter settings for this
701     experiments. Below we describe the customisations
702     to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22