| 1 | 
jmc | 
1.18 | 
% $Header: /u/gcmpack/manual/s_examples/rotating_tank/tank.tex,v 1.17 2010/08/27 13:25:32 jmc Exp $ | 
| 2 | 
afe | 
1.1 | 
% $Name:  $ | 
| 3 | 
  | 
  | 
 | 
| 4 | 
  | 
  | 
\bodytext{bgcolor="#FFFFFFFF"} | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
%\begin{center}  | 
| 7 | 
afe | 
1.3 | 
%{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical | 
| 8 | 
  | 
  | 
%Coordinates} | 
| 9 | 
afe | 
1.1 | 
% | 
| 10 | 
  | 
  | 
%\vspace*{4mm} | 
| 11 | 
  | 
  | 
% | 
| 12 | 
  | 
  | 
%\vspace*{3mm} | 
| 13 | 
afe | 
1.3 | 
%{\large May 2001} | 
| 14 | 
afe | 
1.1 | 
%\end{center} | 
| 15 | 
  | 
  | 
 | 
| 16 | 
afe | 
1.3 | 
\section{A Rotating Tank in Cylindrical Coordinates} | 
| 17 | 
jmc | 
1.18 | 
\label{sec:eg-tank} | 
| 18 | 
  | 
  | 
%\label{www:tutorials} | 
| 19 | 
edhill | 
1.11 | 
\begin{rawhtml} | 
| 20 | 
  | 
  | 
<!-- CMIREDIR:eg-tank: --> | 
| 21 | 
  | 
  | 
\end{rawhtml} | 
| 22 | 
jmc | 
1.16 | 
\begin{center} | 
| 23 | 
  | 
  | 
(in directory: {\it verification/rotating\_tank/}) | 
| 24 | 
  | 
  | 
\end{center} | 
| 25 | 
afe | 
1.2 | 
 | 
| 26 | 
afe | 
1.4 | 
\subsection{Overview} | 
| 27 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 28 | 
afe | 
1.12 | 
                                                                           | 
| 29 | 
  | 
  | 
This example configuration demonstrates using the MITgcm to simulate a | 
| 30 | 
  | 
  | 
laboratory demonstration using a differentially heated rotating | 
| 31 | 
  | 
  | 
annulus of water.  The simulation is configured for a laboratory scale | 
| 32 | 
edhill | 
1.14 | 
on a $3^{\circ}\times1\mathrm{cm}$ cyclindrical grid with twenty-nine | 
| 33 | 
afe | 
1.12 | 
vertical levels of 0.5cm each.  This is a typical laboratory setup for | 
| 34 | 
  | 
  | 
illustration principles of GFD, as well as for a laboratory data | 
| 35 | 
molod | 
1.15 | 
assimilation project. The files for this experiment can be found in | 
| 36 | 
  | 
  | 
the verification directory under rotating\_tank. | 
| 37 | 
afe | 
1.4 | 
\\ | 
| 38 | 
afe | 
1.12 | 
 | 
| 39 | 
afe | 
1.10 | 
example illustration from GFD lab here | 
| 40 | 
  | 
  | 
\\ | 
| 41 | 
afe | 
1.4 | 
 | 
| 42 | 
  | 
  | 
 | 
| 43 | 
afe | 
1.2 | 
 | 
| 44 | 
afe | 
1.3 | 
  | 
| 45 | 
  | 
  | 
 | 
| 46 | 
  | 
  | 
\subsection{Equations Solved} | 
| 47 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 48 | 
afe | 
1.1 | 
 | 
| 49 | 
afe | 
1.3 | 
 | 
| 50 | 
  | 
  | 
\subsection{Discrete Numerical Configuration} | 
| 51 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 52 | 
afe | 
1.3 | 
 | 
| 53 | 
afe | 
1.12 | 
 The domain is discretised with a uniform cylindrical grid spacing in | 
| 54 | 
  | 
  | 
the horizontal set to $\Delta a=1$~cm and $\Delta \phi=3^{\circ}$, so | 
| 55 | 
  | 
  | 
that there are 120 grid cells in the azimuthal direction and | 
| 56 | 
  | 
  | 
thirty-one grid cells in the radial, representing a tank 62cm in | 
| 57 | 
  | 
  | 
diameter.  The bathymetry file sets the depth=0 in the nine lowest | 
| 58 | 
  | 
  | 
radial rows to represent the central of the annulus.  Vertically the | 
| 59 | 
  | 
  | 
model is configured with twenty-nine layers of uniform 0.5cm | 
| 60 | 
  | 
  | 
thickness. | 
| 61 | 
afe | 
1.10 | 
\\ | 
| 62 | 
  | 
  | 
something about heat flux | 
| 63 | 
afe | 
1.2 | 
 | 
| 64 | 
afe | 
1.3 | 
\subsection{Code Configuration} | 
| 65 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 66 | 
  | 
  | 
\label{sec:eg-tank-code_config} | 
| 67 | 
afe | 
1.1 | 
 | 
| 68 | 
afe | 
1.5 | 
The model configuration for this experiment resides under the | 
| 69 | 
  | 
  | 
directory {\it verification/rotatingi\_tank/}.  The experiment files | 
| 70 | 
afe | 
1.1 | 
\begin{itemize} | 
| 71 | 
  | 
  | 
\item {\it input/data} | 
| 72 | 
  | 
  | 
\item {\it input/data.pkg} | 
| 73 | 
  | 
  | 
\item {\it input/eedata}, | 
| 74 | 
afe | 
1.5 | 
\item {\it input/bathyPol.bin}, | 
| 75 | 
  | 
  | 
\item {\it input/thetaPol.bin}, | 
| 76 | 
afe | 
1.1 | 
\item {\it code/CPP\_EEOPTIONS.h} | 
| 77 | 
  | 
  | 
\item {\it code/CPP\_OPTIONS.h}, | 
| 78 | 
afe | 
1.5 | 
\item {\it code/SIZE.h}. | 
| 79 | 
afe | 
1.1 | 
\end{itemize} | 
| 80 | 
afe | 
1.5 | 
 | 
| 81 | 
afe | 
1.3 | 
contain the code customizations and parameter settings for this  | 
| 82 | 
afe | 
1.1 | 
experiments. Below we describe the customizations | 
| 83 | 
  | 
  | 
to these files associated with this experiment. | 
| 84 | 
  | 
  | 
 | 
| 85 | 
  | 
  | 
\subsubsection{File {\it input/data}} | 
| 86 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 87 | 
afe | 
1.1 | 
 | 
| 88 | 
  | 
  | 
This file, reproduced completely below, specifies the main parameters  | 
| 89 | 
  | 
  | 
for the experiment. The parameters that are significant for this configuration | 
| 90 | 
  | 
  | 
are | 
| 91 | 
  | 
  | 
 | 
| 92 | 
  | 
  | 
\begin{itemize} | 
| 93 | 
  | 
  | 
 | 
| 94 | 
afe | 
1.12 | 
\item Lines 9-10, \begin{verbatim}  | 
| 95 | 
  | 
  | 
viscAh=5.0E-6,  | 
| 96 | 
  | 
  | 
viscAz=5.0E-6, | 
| 97 | 
  | 
  | 
\end{verbatim}  | 
| 98 | 
  | 
  | 
 | 
| 99 | 
  | 
  | 
 | 
| 100 | 
  | 
  | 
These lines set the Laplacian friction coefficient in the horizontal | 
| 101 | 
  | 
  | 
and vertical, respectively.  Note that they are several orders of | 
| 102 | 
  | 
  | 
magnitude smaller than the other examples due to the small scale of | 
| 103 | 
  | 
  | 
this example. | 
| 104 | 
  | 
  | 
 | 
| 105 | 
  | 
  | 
\item Lines 13-16, \begin{verbatim}  | 
| 106 | 
  | 
  | 
 diffKhT=2.5E-6, | 
| 107 | 
  | 
  | 
 diffKzT=2.5E-6, | 
| 108 | 
  | 
  | 
 diffKhS=1.0E-6, | 
| 109 | 
  | 
  | 
 diffKzS=1.0E-6, | 
| 110 | 
  | 
  | 
 | 
| 111 | 
  | 
  | 
\end{verbatim}  | 
| 112 | 
  | 
  | 
 | 
| 113 | 
  | 
  | 
 | 
| 114 | 
  | 
  | 
These lines set horizontal and vertical diffusion coefficients for | 
| 115 | 
  | 
  | 
temperature and salinity.  Similarly to the friction coefficients, the | 
| 116 | 
  | 
  | 
values are a couple of orders of magnitude less than most | 
| 117 | 
  | 
  | 
 configurations. | 
| 118 | 
  | 
  | 
 | 
| 119 | 
afe | 
1.3 | 
 | 
| 120 | 
afe | 
1.12 | 
\item Line 17, \begin{verbatim}f0=0.5 , \end{verbatim} this line sets the  | 
| 121 | 
  | 
  | 
coriolis term, and represents a tank spinning at about 2.4 rpm. | 
| 122 | 
  | 
  | 
 | 
| 123 | 
  | 
  | 
\item Lines 23 and 24 | 
| 124 | 
afe | 
1.3 | 
\begin{verbatim} | 
| 125 | 
afe | 
1.6 | 
rigidLid=.TRUE., | 
| 126 | 
  | 
  | 
implicitFreeSurface=.FALSE., | 
| 127 | 
afe | 
1.3 | 
\end{verbatim} | 
| 128 | 
afe | 
1.6 | 
 | 
| 129 | 
afe | 
1.12 | 
These lines activate  the rigid lid formulation of the surface | 
| 130 | 
  | 
  | 
pressure inverter and suppress the implicit free surface form | 
| 131 | 
afe | 
1.3 | 
of the pressure inverter. | 
| 132 | 
afe | 
1.1 | 
 | 
| 133 | 
afe | 
1.12 | 
\item Line 40, | 
| 134 | 
afe | 
1.1 | 
\begin{verbatim} | 
| 135 | 
afe | 
1.10 | 
nIter=0, | 
| 136 | 
afe | 
1.1 | 
\end{verbatim} | 
| 137 | 
afe | 
1.12 | 
This line indicates that the experiment should start from $t=0$ and | 
| 138 | 
  | 
  | 
implicitly suppresses searching for checkpoint files associated with | 
| 139 | 
  | 
  | 
restarting an numerical integration from a previously saved state. | 
| 140 | 
  | 
  | 
Instead, the file thetaPol.bin will be loaded to initialized the | 
| 141 | 
  | 
  | 
temperature fields as indicated below, and other variables will be | 
| 142 | 
  | 
  | 
initialized to their defaults. | 
| 143 | 
  | 
  | 
 | 
| 144 | 
afe | 
1.2 | 
 | 
| 145 | 
afe | 
1.12 | 
\item Line 43, | 
| 146 | 
afe | 
1.1 | 
\begin{verbatim} | 
| 147 | 
afe | 
1.6 | 
deltaT=0.1, | 
| 148 | 
afe | 
1.1 | 
\end{verbatim} | 
| 149 | 
afe | 
1.12 | 
This line sets the integration timestep to $0.1s$.  This is an | 
| 150 | 
  | 
  | 
unsually small value among the examples due to the small physical | 
| 151 | 
  | 
  | 
scale of the experiment.  Using the ensemble Kalman filter to produce | 
| 152 | 
  | 
  | 
input fields can necessitate even shorter timesteps. | 
| 153 | 
afe | 
1.1 | 
 | 
| 154 | 
afe | 
1.12 | 
\item Line 56, | 
| 155 | 
afe | 
1.1 | 
\begin{verbatim} | 
| 156 | 
afe | 
1.6 | 
usingCylindricalGrid=.TRUE., | 
| 157 | 
afe | 
1.1 | 
\end{verbatim} | 
| 158 | 
afe | 
1.3 | 
This line requests that the simulation be performed in a  | 
| 159 | 
afe | 
1.7 | 
cylindrical coordinate system. | 
| 160 | 
afe | 
1.1 | 
 | 
| 161 | 
afe | 
1.12 | 
\item Line 57, | 
| 162 | 
afe | 
1.1 | 
\begin{verbatim} | 
| 163 | 
afe | 
1.7 | 
dXspacing=3, | 
| 164 | 
afe | 
1.1 | 
\end{verbatim} | 
| 165 | 
afe | 
1.10 | 
This line sets the azimuthal grid spacing between each $x$-coordinate line | 
| 166 | 
afe | 
1.3 | 
in the discrete grid. The syntax indicates that the discrete grid | 
| 167 | 
afe | 
1.12 | 
should be comprised of $120$ grid lines each separated by $3^{\circ}$. | 
| 168 | 
  | 
  | 
                                                                                | 
| 169 | 
afe | 
1.7 | 
 | 
| 170 | 
afe | 
1.12 | 
\item Line 58, | 
| 171 | 
afe | 
1.1 | 
\begin{verbatim} | 
| 172 | 
afe | 
1.7 | 
dYspacing=0.01, | 
| 173 | 
afe | 
1.1 | 
\end{verbatim} | 
| 174 | 
  | 
  | 
 | 
| 175 | 
afe | 
1.12 | 
This line sets the radial cylindrical grid spacing between each | 
| 176 | 
  | 
  | 
$a$-coordinate line in the discrete grid to $1cm$. | 
| 177 | 
  | 
  | 
 | 
| 178 | 
  | 
  | 
\item Line 59, | 
| 179 | 
afe | 
1.1 | 
\begin{verbatim} | 
| 180 | 
afe | 
1.7 | 
delZ=29*0.005, | 
| 181 | 
afe | 
1.2 | 
\end{verbatim} | 
| 182 | 
afe | 
1.1 | 
 | 
| 183 | 
afe | 
1.12 | 
This line sets the vertical grid spacing between each of 29 | 
| 184 | 
  | 
  | 
z-coordinate lines in the discrete grid to $0.005m$ ($5$~mm). | 
| 185 | 
  | 
  | 
 | 
| 186 | 
  | 
  | 
\item Line 64, | 
| 187 | 
afe | 
1.1 | 
\begin{verbatim} | 
| 188 | 
afe | 
1.7 | 
bathyFile='bathyPol.bin', | 
| 189 | 
afe | 
1.1 | 
\end{verbatim} | 
| 190 | 
  | 
  | 
This line specifies the name of the file from which the domain | 
| 191 | 
afe | 
1.7 | 
``bathymetry'' (tank depth) is read. This file is a two-dimensional  | 
| 192 | 
afe | 
1.10 | 
($a,\phi$) map of | 
| 193 | 
afe | 
1.1 | 
depths. This file is assumed to contain 64-bit binary numbers  | 
| 194 | 
afe | 
1.10 | 
giving the depth of the model at each grid cell, ordered with the $\phi$  | 
| 195 | 
afe | 
1.1 | 
coordinate varying fastest. The points are ordered from low coordinate | 
| 196 | 
afe | 
1.7 | 
to high coordinate for both axes.  The units and orientation of the | 
| 197 | 
afe | 
1.1 | 
depths in this file are the same as used in the MITgcm code. In this | 
| 198 | 
afe | 
1.7 | 
experiment, a depth of $0m$ indicates an area outside of the tank | 
| 199 | 
  | 
  | 
and a depth | 
| 200 | 
  | 
  | 
f $-0.145m$ indicates the tank itself.  | 
| 201 | 
afe | 
1.1 | 
 | 
| 202 | 
afe | 
1.12 | 
\item Line 65, | 
| 203 | 
afe | 
1.7 | 
\begin{verbatim} | 
| 204 | 
  | 
  | 
hydrogThetaFile='thetaPol.bin', | 
| 205 | 
  | 
  | 
\end{verbatim} | 
| 206 | 
  | 
  | 
This line specifies the name of the file from which the initial values  | 
| 207 | 
afe | 
1.10 | 
of temperature | 
| 208 | 
afe | 
1.7 | 
are read. This file is a three-dimensional | 
| 209 | 
  | 
  | 
($x,y,z$) map and is enumerated and formatted in the same manner as the  | 
| 210 | 
  | 
  | 
bathymetry file.  | 
| 211 | 
afe | 
1.1 | 
 | 
| 212 | 
afe | 
1.13 | 
\item Lines 66 and 67 | 
| 213 | 
afe | 
1.1 | 
\begin{verbatim} | 
| 214 | 
afe | 
1.12 | 
 tCylIn  = 0 | 
| 215 | 
  | 
  | 
 tCylOut  = 20 | 
| 216 | 
afe | 
1.1 | 
\end{verbatim} | 
| 217 | 
afe | 
1.12 | 
These line specify the temperatures in degrees Celsius of the interior | 
| 218 | 
  | 
  | 
and exterior walls of the tank -- typically taken to be icewater on | 
| 219 | 
afe | 
1.13 | 
the inside and room temperature on the outside. | 
| 220 | 
afe | 
1.7 | 
 | 
| 221 | 
afe | 
1.1 | 
 | 
| 222 | 
  | 
  | 
\end{itemize} | 
| 223 | 
  | 
  | 
 | 
| 224 | 
afe | 
1.12 | 
\noindent Other lines in the file {\it input/data} are standard values | 
| 225 | 
afe | 
1.1 | 
that are described in the MITgcm Getting Started and MITgcm Parameters | 
| 226 | 
  | 
  | 
notes. | 
| 227 | 
  | 
  | 
 | 
| 228 | 
afe | 
1.2 | 
\begin{small} | 
| 229 | 
jmc | 
1.17 | 
\input{s_examples/rotating_tank/input/data} | 
| 230 | 
afe | 
1.2 | 
\end{small} | 
| 231 | 
afe | 
1.1 | 
 | 
| 232 | 
  | 
  | 
\subsubsection{File {\it input/data.pkg}} | 
| 233 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 234 | 
afe | 
1.1 | 
 | 
| 235 | 
  | 
  | 
This file uses standard default values and does not contain | 
| 236 | 
afe | 
1.3 | 
customizations for this experiment. | 
| 237 | 
afe | 
1.1 | 
 | 
| 238 | 
  | 
  | 
\subsubsection{File {\it input/eedata}} | 
| 239 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 240 | 
afe | 
1.1 | 
 | 
| 241 | 
  | 
  | 
This file uses standard default values and does not contain | 
| 242 | 
afe | 
1.3 | 
customizations for this experiment. | 
| 243 | 
afe | 
1.1 | 
 | 
| 244 | 
afe | 
1.6 | 
\subsubsection{File {\it input/thetaPol.bin}} | 
| 245 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 246 | 
afe | 
1.1 | 
 | 
| 247 | 
afe | 
1.6 | 
The {\it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$)  | 
| 248 | 
afe | 
1.10 | 
map of initial values of $\theta$ in degrees Celsius.  This particular  | 
| 249 | 
  | 
  | 
experiment is set to random values x around 20C to provide initial  | 
| 250 | 
  | 
  | 
perturbations. | 
| 251 | 
afe | 
1.1 | 
 | 
| 252 | 
afe | 
1.6 | 
\subsubsection{File {\it input/bathyPol.bin}} | 
| 253 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 254 | 
afe | 
1.1 | 
 | 
| 255 | 
  | 
  | 
 | 
| 256 | 
afe | 
1.6 | 
The {\it input/bathyPol.bin} file specifies a two-dimensional ($x,y$)  | 
| 257 | 
afe | 
1.1 | 
map of depth values. For this experiment values are either | 
| 258 | 
afe | 
1.6 | 
$0m$ or {\bf -delZ}m, corresponding respectively to outside or inside of | 
| 259 | 
  | 
  | 
the tank. The file contains a raw binary stream of data that is enumerated | 
| 260 | 
afe | 
1.1 | 
in the same way as standard MITgcm two-dimensional, horizontal arrays. | 
| 261 | 
  | 
  | 
 | 
| 262 | 
  | 
  | 
\subsubsection{File {\it code/SIZE.h}} | 
| 263 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 264 | 
afe | 
1.1 | 
 | 
| 265 | 
  | 
  | 
Two lines are customized in this file for the current experiment | 
| 266 | 
  | 
  | 
 | 
| 267 | 
  | 
  | 
\begin{itemize} | 
| 268 | 
  | 
  | 
 | 
| 269 | 
  | 
  | 
\item Line 39,  | 
| 270 | 
afe | 
1.7 | 
\begin{verbatim} sNx=120, \end{verbatim} this line sets | 
| 271 | 
afe | 
1.1 | 
the lateral domain extent in grid points for the | 
| 272 | 
  | 
  | 
axis aligned with the x-coordinate. | 
| 273 | 
  | 
  | 
 | 
| 274 | 
  | 
  | 
\item Line 40,  | 
| 275 | 
afe | 
1.7 | 
\begin{verbatim} sNy=31, \end{verbatim} this line sets | 
| 276 | 
afe | 
1.1 | 
the lateral domain extent in grid points for the | 
| 277 | 
  | 
  | 
axis aligned with the y-coordinate. | 
| 278 | 
  | 
  | 
 | 
| 279 | 
  | 
  | 
\end{itemize} | 
| 280 | 
  | 
  | 
 | 
| 281 | 
  | 
  | 
\begin{small} | 
| 282 | 
jmc | 
1.17 | 
\input{s_examples/rotating_tank/code/SIZE.h} | 
| 283 | 
afe | 
1.1 | 
\end{small} | 
| 284 | 
  | 
  | 
 | 
| 285 | 
  | 
  | 
\subsubsection{File {\it code/CPP\_OPTIONS.h}} | 
| 286 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 287 | 
afe | 
1.1 | 
 | 
| 288 | 
  | 
  | 
This file uses standard default values and does not contain | 
| 289 | 
afe | 
1.3 | 
customizations for this experiment. | 
| 290 | 
afe | 
1.1 | 
 | 
| 291 | 
  | 
  | 
 | 
| 292 | 
  | 
  | 
\subsubsection{File {\it code/CPP\_EEOPTIONS.h}} | 
| 293 | 
jmc | 
1.18 | 
%\label{www:tutorials} | 
| 294 | 
afe | 
1.1 | 
 | 
| 295 | 
  | 
  | 
This file uses standard default values and does not contain | 
| 296 | 
afe | 
1.3 | 
customizations for this experiment. | 
| 297 | 
afe | 
1.2 | 
 |