/[MITgcm]/manual/s_examples/rotating_tank/tank.tex
ViewVC logotype

Annotation of /manual/s_examples/rotating_tank/tank.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (hide annotations) (download) (as text)
Wed Jun 15 14:54:58 2005 UTC (20 years, 1 month ago) by afe
Branch: MAIN
CVS Tags: checkpoint57l_post
Changes since 1.12: +3 -3 lines
File MIME type: application/x-tex
updated input/data, more proofreading

1 afe 1.13 % $Header: /u/gcmpack/manual/part3/case_studies/rotating_tank/tank.tex,v 1.12 2005/06/14 20:09:04 afe Exp $
2 afe 1.1 % $Name: $
3    
4     \bodytext{bgcolor="#FFFFFFFF"}
5    
6     %\begin{center}
7 afe 1.3 %{\Large \bf Using MITgcm to Simulate a Rotating Tank in Cylindrical
8     %Coordinates}
9 afe 1.1 %
10     %\vspace*{4mm}
11     %
12     %\vspace*{3mm}
13 afe 1.3 %{\large May 2001}
14 afe 1.1 %\end{center}
15    
16 afe 1.3 \section{A Rotating Tank in Cylindrical Coordinates}
17     \label{sect:eg-tank}
18 afe 1.2 \label{www:tutorials}
19 edhill 1.11 \begin{rawhtml}
20     <!-- CMIREDIR:eg-tank: -->
21     \end{rawhtml}
22 afe 1.2
23 afe 1.4 This section illustrates an example of MITgcm simulating a laboratory
24 afe 1.10 experiment on much smaller scales than those commonly considered in
25     geophysical
26 afe 1.4 fluid dynamics.
27    
28     \subsection{Overview}
29     \label{www:tutorials}
30 afe 1.12
31     This example configuration demonstrates using the MITgcm to simulate a
32     laboratory demonstration using a differentially heated rotating
33     annulus of water. The simulation is configured for a laboratory scale
34     on a $3^{\circ}$ $\times$ 1cm cyclindrical grid with twenty-nine
35     vertical levels of 0.5cm each. This is a typical laboratory setup for
36     illustration principles of GFD, as well as for a laboratory data
37     assimilation project.
38 afe 1.4 \\
39 afe 1.12
40 afe 1.10 example illustration from GFD lab here
41     \\
42 afe 1.4
43    
44 afe 1.2
45 afe 1.3
46    
47     \subsection{Equations Solved}
48     \label{www:tutorials}
49 afe 1.1
50 afe 1.3
51     \subsection{Discrete Numerical Configuration}
52     \label{www:tutorials}
53    
54 afe 1.12 The domain is discretised with a uniform cylindrical grid spacing in
55     the horizontal set to $\Delta a=1$~cm and $\Delta \phi=3^{\circ}$, so
56     that there are 120 grid cells in the azimuthal direction and
57     thirty-one grid cells in the radial, representing a tank 62cm in
58     diameter. The bathymetry file sets the depth=0 in the nine lowest
59     radial rows to represent the central of the annulus. Vertically the
60     model is configured with twenty-nine layers of uniform 0.5cm
61     thickness.
62 afe 1.10 \\
63     something about heat flux
64 afe 1.2
65 afe 1.3 \subsection{Code Configuration}
66 afe 1.1 \label{www:tutorials}
67 afe 1.3 \label{SEC:eg-baro-code_config}
68 afe 1.1
69 afe 1.5 The model configuration for this experiment resides under the
70     directory {\it verification/rotatingi\_tank/}. The experiment files
71 afe 1.1 \begin{itemize}
72     \item {\it input/data}
73     \item {\it input/data.pkg}
74     \item {\it input/eedata},
75 afe 1.5 \item {\it input/bathyPol.bin},
76     \item {\it input/thetaPol.bin},
77 afe 1.1 \item {\it code/CPP\_EEOPTIONS.h}
78     \item {\it code/CPP\_OPTIONS.h},
79 afe 1.5 \item {\it code/SIZE.h}.
80 afe 1.1 \end{itemize}
81 afe 1.5
82 afe 1.3 contain the code customizations and parameter settings for this
83 afe 1.1 experiments. Below we describe the customizations
84     to these files associated with this experiment.
85    
86     \subsubsection{File {\it input/data}}
87     \label{www:tutorials}
88    
89     This file, reproduced completely below, specifies the main parameters
90     for the experiment. The parameters that are significant for this configuration
91     are
92    
93     \begin{itemize}
94    
95 afe 1.12 \item Lines 9-10, \begin{verbatim}
96     viscAh=5.0E-6,
97     viscAz=5.0E-6,
98     \end{verbatim}
99    
100    
101     These lines set the Laplacian friction coefficient in the horizontal
102     and vertical, respectively. Note that they are several orders of
103     magnitude smaller than the other examples due to the small scale of
104     this example.
105    
106     \item Lines 13-16, \begin{verbatim}
107     diffKhT=2.5E-6,
108     diffKzT=2.5E-6,
109     diffKhS=1.0E-6,
110     diffKzS=1.0E-6,
111    
112     \end{verbatim}
113    
114    
115     These lines set horizontal and vertical diffusion coefficients for
116     temperature and salinity. Similarly to the friction coefficients, the
117     values are a couple of orders of magnitude less than most
118     configurations.
119    
120 afe 1.3
121 afe 1.12 \item Line 17, \begin{verbatim}f0=0.5 , \end{verbatim} this line sets the
122     coriolis term, and represents a tank spinning at about 2.4 rpm.
123    
124     \item Lines 23 and 24
125 afe 1.3 \begin{verbatim}
126 afe 1.6 rigidLid=.TRUE.,
127     implicitFreeSurface=.FALSE.,
128 afe 1.3 \end{verbatim}
129 afe 1.6
130 afe 1.12 These lines activate the rigid lid formulation of the surface
131     pressure inverter and suppress the implicit free surface form
132 afe 1.3 of the pressure inverter.
133 afe 1.1
134 afe 1.12 \item Line 40,
135 afe 1.1 \begin{verbatim}
136 afe 1.10 nIter=0,
137 afe 1.1 \end{verbatim}
138 afe 1.12 This line indicates that the experiment should start from $t=0$ and
139     implicitly suppresses searching for checkpoint files associated with
140     restarting an numerical integration from a previously saved state.
141     Instead, the file thetaPol.bin will be loaded to initialized the
142     temperature fields as indicated below, and other variables will be
143     initialized to their defaults.
144    
145 afe 1.2
146 afe 1.12 \item Line 43,
147 afe 1.1 \begin{verbatim}
148 afe 1.6 deltaT=0.1,
149 afe 1.1 \end{verbatim}
150 afe 1.12 This line sets the integration timestep to $0.1s$. This is an
151     unsually small value among the examples due to the small physical
152     scale of the experiment. Using the ensemble Kalman filter to produce
153     input fields can necessitate even shorter timesteps.
154 afe 1.1
155 afe 1.12 \item Line 56,
156 afe 1.1 \begin{verbatim}
157 afe 1.6 usingCylindricalGrid=.TRUE.,
158 afe 1.1 \end{verbatim}
159 afe 1.3 This line requests that the simulation be performed in a
160 afe 1.7 cylindrical coordinate system.
161 afe 1.1
162 afe 1.12 \item Line 57,
163 afe 1.1 \begin{verbatim}
164 afe 1.7 dXspacing=3,
165 afe 1.1 \end{verbatim}
166 afe 1.10 This line sets the azimuthal grid spacing between each $x$-coordinate line
167 afe 1.3 in the discrete grid. The syntax indicates that the discrete grid
168 afe 1.12 should be comprised of $120$ grid lines each separated by $3^{\circ}$.
169    
170 afe 1.7
171 afe 1.12 \item Line 58,
172 afe 1.1 \begin{verbatim}
173 afe 1.7 dYspacing=0.01,
174 afe 1.1 \end{verbatim}
175    
176 afe 1.12 This line sets the radial cylindrical grid spacing between each
177     $a$-coordinate line in the discrete grid to $1cm$.
178    
179     \item Line 59,
180 afe 1.1 \begin{verbatim}
181 afe 1.7 delZ=29*0.005,
182 afe 1.2 \end{verbatim}
183 afe 1.1
184 afe 1.12 This line sets the vertical grid spacing between each of 29
185     z-coordinate lines in the discrete grid to $0.005m$ ($5$~mm).
186    
187     \item Line 64,
188 afe 1.1 \begin{verbatim}
189 afe 1.7 bathyFile='bathyPol.bin',
190 afe 1.1 \end{verbatim}
191     This line specifies the name of the file from which the domain
192 afe 1.7 ``bathymetry'' (tank depth) is read. This file is a two-dimensional
193 afe 1.10 ($a,\phi$) map of
194 afe 1.1 depths. This file is assumed to contain 64-bit binary numbers
195 afe 1.10 giving the depth of the model at each grid cell, ordered with the $\phi$
196 afe 1.1 coordinate varying fastest. The points are ordered from low coordinate
197 afe 1.7 to high coordinate for both axes. The units and orientation of the
198 afe 1.1 depths in this file are the same as used in the MITgcm code. In this
199 afe 1.7 experiment, a depth of $0m$ indicates an area outside of the tank
200     and a depth
201     f $-0.145m$ indicates the tank itself.
202 afe 1.1
203 afe 1.12 \item Line 65,
204 afe 1.7 \begin{verbatim}
205     hydrogThetaFile='thetaPol.bin',
206     \end{verbatim}
207     This line specifies the name of the file from which the initial values
208 afe 1.10 of temperature
209 afe 1.7 are read. This file is a three-dimensional
210     ($x,y,z$) map and is enumerated and formatted in the same manner as the
211     bathymetry file.
212 afe 1.1
213 afe 1.13 \item Lines 66 and 67
214 afe 1.1 \begin{verbatim}
215 afe 1.12 tCylIn = 0
216     tCylOut = 20
217 afe 1.1 \end{verbatim}
218 afe 1.12 These line specify the temperatures in degrees Celsius of the interior
219     and exterior walls of the tank -- typically taken to be icewater on
220 afe 1.13 the inside and room temperature on the outside.
221 afe 1.7
222 afe 1.1
223     \end{itemize}
224    
225 afe 1.12 \noindent Other lines in the file {\it input/data} are standard values
226 afe 1.1 that are described in the MITgcm Getting Started and MITgcm Parameters
227     notes.
228    
229 afe 1.2 \begin{small}
230 afe 1.5 \input{part3/case_studies/rotating_tank/input/data}
231 afe 1.2 \end{small}
232 afe 1.1
233     \subsubsection{File {\it input/data.pkg}}
234     \label{www:tutorials}
235    
236     This file uses standard default values and does not contain
237 afe 1.3 customizations for this experiment.
238 afe 1.1
239     \subsubsection{File {\it input/eedata}}
240     \label{www:tutorials}
241    
242     This file uses standard default values and does not contain
243 afe 1.3 customizations for this experiment.
244 afe 1.1
245 afe 1.6 \subsubsection{File {\it input/thetaPol.bin}}
246 afe 1.1 \label{www:tutorials}
247    
248 afe 1.6 The {\it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$)
249 afe 1.10 map of initial values of $\theta$ in degrees Celsius. This particular
250     experiment is set to random values x around 20C to provide initial
251     perturbations.
252 afe 1.1
253 afe 1.6 \subsubsection{File {\it input/bathyPol.bin}}
254 afe 1.1 \label{www:tutorials}
255    
256    
257 afe 1.6 The {\it input/bathyPol.bin} file specifies a two-dimensional ($x,y$)
258 afe 1.1 map of depth values. For this experiment values are either
259 afe 1.6 $0m$ or {\bf -delZ}m, corresponding respectively to outside or inside of
260     the tank. The file contains a raw binary stream of data that is enumerated
261 afe 1.1 in the same way as standard MITgcm two-dimensional, horizontal arrays.
262    
263     \subsubsection{File {\it code/SIZE.h}}
264     \label{www:tutorials}
265    
266     Two lines are customized in this file for the current experiment
267    
268     \begin{itemize}
269    
270     \item Line 39,
271 afe 1.7 \begin{verbatim} sNx=120, \end{verbatim} this line sets
272 afe 1.1 the lateral domain extent in grid points for the
273     axis aligned with the x-coordinate.
274    
275     \item Line 40,
276 afe 1.7 \begin{verbatim} sNy=31, \end{verbatim} this line sets
277 afe 1.1 the lateral domain extent in grid points for the
278     axis aligned with the y-coordinate.
279    
280     \end{itemize}
281    
282     \begin{small}
283 afe 1.7 \input{part3/case_studies/rotating_tank/code/SIZE.h}
284 afe 1.1 \end{small}
285    
286     \subsubsection{File {\it code/CPP\_OPTIONS.h}}
287     \label{www:tutorials}
288    
289     This file uses standard default values and does not contain
290 afe 1.3 customizations for this experiment.
291 afe 1.1
292    
293     \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
294     \label{www:tutorials}
295    
296     This file uses standard default values and does not contain
297 afe 1.3 customizations for this experiment.
298 afe 1.2

  ViewVC Help
Powered by ViewVC 1.1.22