/[MITgcm]/manual/s_examples/plume_on_slope/plume_on_slope.tex
ViewVC logotype

Annotation of /manual/s_examples/plume_on_slope/plume_on_slope.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download) (as text)
Tue Jun 27 19:08:23 2006 UTC (19 years ago) by molod
Branch: MAIN
Changes since 1.7: +2 -1 lines
File MIME type: application/x-tex
Add cross references between tutorials and verification file system directories

1 cnh 1.4 \section{Gravity Plume On a Continental Slope}
2 adcroft 1.5 \label{www:tutorials}
3 cnh 1.4 \label{sect:eg-gravityplume}
4 edhill 1.6 \begin{rawhtml}
5     <!-- CMIREDIR:eg-gravityplume: -->
6     \end{rawhtml}
7 adcroft 1.2
8 cnh 1.4 \begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN T-plume-on-slope\end{rawhtml}
9 adcroft 1.1 \begin{figure}
10     \begin{center}
11     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/billows.eps}
12     \end{center}
13     \caption{Temperature after 23~hours of cooling. The cold dense water is
14     mixed with ambient water as it accelerates down the slope and hence
15     is warmed than the unmixed plume.
16     }
17     \label{fig:T-plume-on-slope}
18     \end{figure}
19 cnh 1.4 \begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml}
20 adcroft 1.1
21     An important test of any ocean model is the ability to represent the
22     flow of dense fluid down a slope. One example of such a flow is a
23     non-rotating gravity plume on a continental slope, forced by a limited
24     area of surface cooling above a continental shelf. Because the flow is
25     non-rotating, a two dimensional model can be used in the across slope
26     direction. The experiment is non-hydrostatic and uses open-boundaries
27     to radiate transients at the deep water end. (Dense flow down a slope
28     can also be forced by a dense inflow prescribed on the continental
29     shelf; this configuration is being implemented by the DOME (Dynamics
30     of Overflow Mixing and Entrainment) collaboration to compare solutions
31 molod 1.8 in different models). The files for this experiment can be found in
32     the verification directory under tutorial\_plume\_on\_slope.
33 adcroft 1.1
34     The fluid is initially unstratified. The surface buoyancy loss $B_0$
35     (dimensions of L$^2$T$^{-3}$) over a cross-shelf distance $R$ causes
36     vertical convective mixing and modifies the density of the fluid by an
37     amount
38     \begin{equation}
39     \Delta \rho = \frac{B_0 \rho_0 t}{g H}
40     \end{equation}
41     where $H$ is the depth of the shelf, $g$ is the acceleration due to
42     gravity, $t$ is time since onset of cooling and $\rho_0$ is the
43     reference density. Dense fluid slumps under gravity, with a flow speed
44     close to the gravity wave speed:
45     \begin{equation}
46     U
47     \sim \sqrt{g' H}
48     \sim \sqrt{ \frac{g \Delta \rho H}{\rho_0} }
49     \sim \sqrt{B_0 t}
50     \end{equation}
51     A steady state is rapidly established in which the buoyancy flux out of
52     the cooling region is balanced by the surface buoyancy loss.
53     Then
54     \begin{equation}
55     U \sim (B_0 R)^{1/3} \mbox{ ; } \Delta \rho \sim \frac{\rho_0}{g H} (B_0 R)^{2/3}
56     \end{equation}
57     The Froude number of the flow on the shelf is close to unity (but in
58     practice slightly less than unity, giving subcritical flow).
59     When the flow reaches the slope, it accelerates, so that it may become
60     supercritical (provided the slope angle $ \alpha $ is steep enough).
61     In this case, a hydraulic control is established at
62     the shelf break. On the slope, where the Froude number is greater
63     than one, and gradient Richardson number
64     (defined as $Ri \sim g' h^*/U^2$ where $h^*$ is the thickness of the
65     interface between dense and ambient fluid) is reduced
66     below 1/4, Kelvin-Helmholtz instability is possible, and leads to
67     entrainment of ambient fluid into the plume, modifying the
68     density, and hence the acceleration down the slope.
69     Kelvin-Helmholtz instability is suppressed at low Reynolds and
70     Peclet numbers given by
71     \begin{equation}
72     Re \sim \frac{U h}{ \nu} \sim \frac{(B_0 R)^{1/3} h}{\nu} \mbox{ ; } Pe = Re Pr
73     \end{equation}
74     where $h$ is the depth of the dense fluid on the slope.
75     Hence this experiment is carried out in the high Re, Pe regime.
76     A further constraint is that the convective heat flux must be much greater
77     than the diffusive heat flux (Nusselt number $>> 1$).
78     Then
79     \begin{equation}
80     Nu = \frac{U h^* }{\kappa} >> 1
81     \end{equation}
82     Finally, since we have assumed that the convective mixing on the shelf
83     occurs in a much shorter time than the horizontal equilibration,
84     this implies $H/R << 1$.
85    
86     Hence to summarize the important nondimensional parameters, and
87     the limits we are considering:
88     \begin{equation}
89     \frac{H}{R} << 1 \mbox{ ; } Re >> 1 \mbox{ ; } Pe >> 1 \mbox{ ; } Nu >> 1
90     \mbox{ ; } \mbox{ ; } Ri < 1/4
91     \end{equation}
92     In addition we are assuming that the slope is steep enough to provide
93     sufficient acceleration to the gravity plume, but nonetheless much less
94     that $1:1$, since many Kelvin-Helmholtz billows appear on the slope,
95     implying horizontal lengthscale of the slope $>>$ the depth of the
96     dense fluid.
97    
98     \subsection{Configuration}
99 adcroft 1.5 \label{www:tutorials}
100 adcroft 1.1
101     The topography, spatial grid, forcing and initial conditions are all
102     specified in binary data files generated using a {\em Matlab} script
103     called {\tt gendata.m} and detailed in
104     section~\ref{sect:plume-generating}. Other model parameters are
105     specified in file {\tt data} and {\tt data.obcs} and detailed in
106     section~\ref{sect:plume-params}.
107    
108 adcroft 1.3 \subsection{Binary input data}
109 adcroft 1.5 \label{www:tutorials}
110 adcroft 1.1 \label{sect:plume-generating}
111    
112 adcroft 1.3 \begin{figure}
113     \begin{center}
114     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/dx.eps}
115     \end{center}
116     \caption{Horizontal grid spacing, $\Delta x$, in the across-slope
117     direction for the gravity plume experiment.}
118     \label{fig:dx-plume-on-slope}
119     \end{figure}
120    
121     \begin{figure}
122     \begin{center}
123     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/Depth.eps}
124     \end{center}
125     \caption{Topography, $h(x)$, used for the gravity plume experiment.}
126     \label{fig:depth-plume-on-slope}
127     \end{figure}
128    
129     \begin{figure}
130     \begin{center}
131     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/Qsurf.eps}
132     \end{center}
133     \caption{Upward surface heat flux, $Q(x)$, used as forcing in the
134     gravity plume experiment.}
135     \label{fig:Q-plume-on-slope}
136     \end{figure}
137    
138 adcroft 1.1 The domain is $200$~m deep and $6.4$~km across. Uniform resolution of
139     $60\times3^1/_3$~m is used in the vertical and variable resolution of
140     the form shown in Fig.~\ref{fig:dx-plume-on-slope} with $320$ points
141     is usedin the horizontal. The formula for $\Delta x$ is:
142     \begin{displaymath}
143     \Delta x(i) = \Delta x_1 + ( \Delta x_2 - \Delta x_1 )
144     ( 1 + \tanh{\left(\frac{i-i_s}{w}\right)} ) /2
145     \end{displaymath}
146     where
147     \begin{eqnarray*}
148     Nx & = & 320 \\
149     Lx & = & 6400 \;\; \mbox{(m)} \\
150     \Delta x_1 & = & \frac{2}{3} \frac{Lx}{Nx} \;\; \mbox{(m)} \\
151     \Delta x_2 & = & \frac{Lx/2}{Nx-Lx/2 \Delta x_1} \;\; \mbox{(m)} \\
152     i_s & = & Lx/( 2 \Delta x_1 ) \\
153     w & = & 40
154     \end{eqnarray*}
155     Here, $\Delta x_1$ is the resolution on the shelf, $\Delta x_2$ is the
156     resolution in deep water and $Nx$ is the number of points in the
157     horizontal.
158    
159     The topography, shown in Fig.~\ref{fig:depth-plume-on-slope}, is given
160     by:
161     \begin{displaymath}
162     H(x) = -H_o + (H_o - h_s) ( 1 + \tanh{\left(\frac{x-x_s}{L_s}\right)} ) / 2
163     \end{displaymath}
164     where
165     \begin{eqnarray*}
166     H_o & = & 200 \;\; \mbox{(m)} \\
167     h_s & = & 40 \;\; \mbox{(m)} \\
168     x_s & = & 1500 + Lx/2 \;\; \mbox{(m)} \\
169     L_s & = & \frac{(H_o - h_s)}{2 s} \;\; \mbox{(m)} \\
170     s & = & 0.15
171     \end{eqnarray*}
172     Here, $s$ is the maximum slope, $H_o$ is the maximum depth, $h_s$ is
173     the shelf depth, $x_s$ is the lateral position of the shelf-break and
174     $L_s$ is the length-scale of the slope.
175    
176     The forcing is through heat loss over the shelf, shown in
177     Fig.~\ref{fig:Q-plume-on-slope} and takes the form of a fixed flux
178     with profile:
179     \begin{displaymath}
180     Q(x) = Q_o ( 1 + \tanh{\left(\frac{x - x_q}{L_q}\right)} ) / 2
181     \end{displaymath}
182     where
183     \begin{eqnarray*}
184     Q_o & = & 200 \;\; \mbox{(W m$^{-2}$)} \\
185     x_q & = & 2500 + Lx/2 \;\; \mbox{(m)} \\
186     L_q & = & 100 \;\; \mbox{(m)}
187     \end{eqnarray*}
188     Here, $Q_o$, is the maximum heat flux, $x_q$ is the position of the
189     cut-off and $L_q$ is the width of the cut-off.
190    
191     The initial tempeture field is unstratified but with random
192     perturbations, to induce convection early on in the run. The random
193     perturbation are calculated in computational space and because of the
194     variable resolution introduce some spatial correlations but this does
195     not matter for this experiment. The perturbations have range
196 edhill 1.7 $0-0.01$~$^{\circ}\mathrm{K}$.
197 adcroft 1.1
198 adcroft 1.3 \subsection{Code configuration}
199 adcroft 1.5 \label{www:tutorials}
200 adcroft 1.1 \label{sect:plume-config}
201    
202     The computational domain (number of points) is specified in {\tt
203     code/SIZE.h} and is configured as a single tile of dimensions
204     $320\times1\times60$. There are no experiment specific source files.
205    
206     Optional code required to for this experiment are the non-hydrostatic
207     algorithm and open-boundaries:
208     \begin{itemize}
209     \item Non-hydrostatic terms and algorithm are enabled with {\bf
210     \#define ALLOW\_NONHYDROSTATIC} in {\tt code/CPP\_OPTIONS.h} and
211     activated with {\bf nonHydrostatic=.TRUE.,} in namelist {\em PARM01}
212     of {\tt input/data}.
213     \item Open boundaries are enabled with {\bf \#define ALLOW\_OBCS} in
214     {\tt code/CPP\_OPTIONS.h} and activated with {\bf use\_OBCS=.TRUE,} in
215     namelist {\em PACKAGES} of {\tt input/data.pkg}.
216     \end{itemize}
217    
218 adcroft 1.3 \subsection{Model parameters}
219 adcroft 1.5 \label{www:tutorials}
220 adcroft 1.1 \label{sect:plume-params}
221    
222     \begin{table}
223     \begin{center}
224     \begin{tabular}{lll}
225     $g$ & $9.81$ m s$^{-2}$ & acceleration due to gravity \\
226     $\rho_o$ & $999.8$ kg m$^{-3}$ & reference density \\
227     $\alpha$ & $2 \times 10^{-4}$ K$^{-1}$ & expansion coefficient \\
228     $A_h$ & $1 \times 10^{-2}$ m$^2$s$^{-1}$ & horizontal viscosity \\
229     $A_v$ & $1 \times 10^{-3}$ m$^2$s$^{-1}$ & vertical viscosity \\
230     $\kappa_h$ & $0$ m$^2$s$^{-1}$ & (explicit) horizontal diffusion \\
231     $\kappa_v$ & $0$ m$^2$s$^{-1}$ & (explicit) vertical diffusion \\
232     \\
233     $\Delta t$ & $20$ s & time step \\
234     $\Delta z$ & $3.3\dot{3}$ m & vertical grid spacing \\
235     $\Delta x$ & $13.\dot{3}-39.5$ m & horizontal grid spacing
236     \end{tabular}
237     \end{center}
238     \caption{Model parameters used in the gravity plume experiment.}
239     \label{table:plume-on-slope}
240     \end{table}
241    
242     The model parameters (Table~\ref{table:plume-on-slope}) are specified
243     in {\tt input/data} and if not assume the default values defined in
244     {\tt model/src/set\_defaults.F}. A linear equation of state is used,
245     {\bf eosType='LINEAR'}, but only temperature is active, {\bf
246     sBeta=0.E-4}. For the given heat flux, $Q_o$, the buoyancy forcing is
247     $B_o = \frac{g \alpha Q}{\rho_o c_p} \sim
248     10^{-7}$~m$^2$s$^{-3}$. Using $R=10^3$~m, the shelf width, then this
249     gives a velocity scale of $U\sim 5 \times 10^{-2}$~m~s$^-1$ for the
250     initial front but will accelerate by an order of magnitude over the
251     slope. The temperature anomaly will be of order $\Delta \theta \sim 3
252     \times 10^{-2}$~K. The viscosity is constant and gives a Reynolds
253     number of $100$, using $h=20$~m for the initial front and will be an
254     order magnitude bigger over the slope. There is no explicit diffusion
255     but a non-linear advection scheme is used for temperature which adds
256     enough diffusion so as to keep the model stable. The time-step is set
257     to $20$~s and gives Courant number order one when the flow reaches the
258     bottom of the slope.
259    
260 adcroft 1.3 \subsection{Build and run the model}
261 adcroft 1.5 \label{www:tutorials}
262 adcroft 1.1
263     Build the model per usual. For example:
264     \begin{verbatim}
265     % cd verification/plume_on_slope
266     % mkdir build
267     % cd build
268     % ../../../tools/genmake -mods=../code -disable=gmredi,kpp,zonal_filt
269     ,shap_filt
270     % make depend
271     % make
272     \end{verbatim}
273    
274     When compilation is complete, run the model as usual, for example:
275     \begin{verbatim}
276     % cd ../
277     % mkdir run
278     % cp input/* build/mitgcmuv run/
279     % cd run
280     % ./mitgcmuv > output.txt
281     \end{verbatim}

  ViewVC Help
Powered by ViewVC 1.1.22