/[MITgcm]/manual/s_examples/plume_on_slope/plume_on_slope.tex
ViewVC logotype

Annotation of /manual/s_examples/plume_on_slope/plume_on_slope.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download) (as text)
Thu May 16 15:54:37 2002 UTC (23 years, 2 months ago) by adcroft
Branch: MAIN
Changes since 1.4: +6 -0 lines
File MIME type: application/x-tex
Added \label{www:tutorials} to every section/subsection/subsubsection for
pages that need to appear in the Tutorials sectio of the web-site.

1 cnh 1.4 \section{Gravity Plume On a Continental Slope}
2 adcroft 1.5 \label{www:tutorials}
3 cnh 1.4 \label{sect:eg-gravityplume}
4 adcroft 1.2
5 cnh 1.4 \begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN T-plume-on-slope\end{rawhtml}
6 adcroft 1.1 \begin{figure}
7     \begin{center}
8     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/billows.eps}
9     \end{center}
10     \caption{Temperature after 23~hours of cooling. The cold dense water is
11     mixed with ambient water as it accelerates down the slope and hence
12     is warmed than the unmixed plume.
13     }
14     \label{fig:T-plume-on-slope}
15     \end{figure}
16 cnh 1.4 \begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml}
17 adcroft 1.1
18     An important test of any ocean model is the ability to represent the
19     flow of dense fluid down a slope. One example of such a flow is a
20     non-rotating gravity plume on a continental slope, forced by a limited
21     area of surface cooling above a continental shelf. Because the flow is
22     non-rotating, a two dimensional model can be used in the across slope
23     direction. The experiment is non-hydrostatic and uses open-boundaries
24     to radiate transients at the deep water end. (Dense flow down a slope
25     can also be forced by a dense inflow prescribed on the continental
26     shelf; this configuration is being implemented by the DOME (Dynamics
27     of Overflow Mixing and Entrainment) collaboration to compare solutions
28     in different models).
29    
30     The fluid is initially unstratified. The surface buoyancy loss $B_0$
31     (dimensions of L$^2$T$^{-3}$) over a cross-shelf distance $R$ causes
32     vertical convective mixing and modifies the density of the fluid by an
33     amount
34     \begin{equation}
35     \Delta \rho = \frac{B_0 \rho_0 t}{g H}
36     \end{equation}
37     where $H$ is the depth of the shelf, $g$ is the acceleration due to
38     gravity, $t$ is time since onset of cooling and $\rho_0$ is the
39     reference density. Dense fluid slumps under gravity, with a flow speed
40     close to the gravity wave speed:
41     \begin{equation}
42     U
43     \sim \sqrt{g' H}
44     \sim \sqrt{ \frac{g \Delta \rho H}{\rho_0} }
45     \sim \sqrt{B_0 t}
46     \end{equation}
47     A steady state is rapidly established in which the buoyancy flux out of
48     the cooling region is balanced by the surface buoyancy loss.
49     Then
50     \begin{equation}
51     U \sim (B_0 R)^{1/3} \mbox{ ; } \Delta \rho \sim \frac{\rho_0}{g H} (B_0 R)^{2/3}
52     \end{equation}
53     The Froude number of the flow on the shelf is close to unity (but in
54     practice slightly less than unity, giving subcritical flow).
55     When the flow reaches the slope, it accelerates, so that it may become
56     supercritical (provided the slope angle $ \alpha $ is steep enough).
57     In this case, a hydraulic control is established at
58     the shelf break. On the slope, where the Froude number is greater
59     than one, and gradient Richardson number
60     (defined as $Ri \sim g' h^*/U^2$ where $h^*$ is the thickness of the
61     interface between dense and ambient fluid) is reduced
62     below 1/4, Kelvin-Helmholtz instability is possible, and leads to
63     entrainment of ambient fluid into the plume, modifying the
64     density, and hence the acceleration down the slope.
65     Kelvin-Helmholtz instability is suppressed at low Reynolds and
66     Peclet numbers given by
67     \begin{equation}
68     Re \sim \frac{U h}{ \nu} \sim \frac{(B_0 R)^{1/3} h}{\nu} \mbox{ ; } Pe = Re Pr
69     \end{equation}
70     where $h$ is the depth of the dense fluid on the slope.
71     Hence this experiment is carried out in the high Re, Pe regime.
72     A further constraint is that the convective heat flux must be much greater
73     than the diffusive heat flux (Nusselt number $>> 1$).
74     Then
75     \begin{equation}
76     Nu = \frac{U h^* }{\kappa} >> 1
77     \end{equation}
78     Finally, since we have assumed that the convective mixing on the shelf
79     occurs in a much shorter time than the horizontal equilibration,
80     this implies $H/R << 1$.
81    
82     Hence to summarize the important nondimensional parameters, and
83     the limits we are considering:
84     \begin{equation}
85     \frac{H}{R} << 1 \mbox{ ; } Re >> 1 \mbox{ ; } Pe >> 1 \mbox{ ; } Nu >> 1
86     \mbox{ ; } \mbox{ ; } Ri < 1/4
87     \end{equation}
88     In addition we are assuming that the slope is steep enough to provide
89     sufficient acceleration to the gravity plume, but nonetheless much less
90     that $1:1$, since many Kelvin-Helmholtz billows appear on the slope,
91     implying horizontal lengthscale of the slope $>>$ the depth of the
92     dense fluid.
93    
94     \subsection{Configuration}
95 adcroft 1.5 \label{www:tutorials}
96 adcroft 1.1
97     The topography, spatial grid, forcing and initial conditions are all
98     specified in binary data files generated using a {\em Matlab} script
99     called {\tt gendata.m} and detailed in
100     section~\ref{sect:plume-generating}. Other model parameters are
101     specified in file {\tt data} and {\tt data.obcs} and detailed in
102     section~\ref{sect:plume-params}.
103    
104 adcroft 1.3 \subsection{Binary input data}
105 adcroft 1.5 \label{www:tutorials}
106 adcroft 1.1 \label{sect:plume-generating}
107    
108 adcroft 1.3 \begin{figure}
109     \begin{center}
110     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/dx.eps}
111     \end{center}
112     \caption{Horizontal grid spacing, $\Delta x$, in the across-slope
113     direction for the gravity plume experiment.}
114     \label{fig:dx-plume-on-slope}
115     \end{figure}
116    
117     \begin{figure}
118     \begin{center}
119     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/Depth.eps}
120     \end{center}
121     \caption{Topography, $h(x)$, used for the gravity plume experiment.}
122     \label{fig:depth-plume-on-slope}
123     \end{figure}
124    
125     \begin{figure}
126     \begin{center}
127     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/Qsurf.eps}
128     \end{center}
129     \caption{Upward surface heat flux, $Q(x)$, used as forcing in the
130     gravity plume experiment.}
131     \label{fig:Q-plume-on-slope}
132     \end{figure}
133    
134 adcroft 1.1 The domain is $200$~m deep and $6.4$~km across. Uniform resolution of
135     $60\times3^1/_3$~m is used in the vertical and variable resolution of
136     the form shown in Fig.~\ref{fig:dx-plume-on-slope} with $320$ points
137     is usedin the horizontal. The formula for $\Delta x$ is:
138     \begin{displaymath}
139     \Delta x(i) = \Delta x_1 + ( \Delta x_2 - \Delta x_1 )
140     ( 1 + \tanh{\left(\frac{i-i_s}{w}\right)} ) /2
141     \end{displaymath}
142     where
143     \begin{eqnarray*}
144     Nx & = & 320 \\
145     Lx & = & 6400 \;\; \mbox{(m)} \\
146     \Delta x_1 & = & \frac{2}{3} \frac{Lx}{Nx} \;\; \mbox{(m)} \\
147     \Delta x_2 & = & \frac{Lx/2}{Nx-Lx/2 \Delta x_1} \;\; \mbox{(m)} \\
148     i_s & = & Lx/( 2 \Delta x_1 ) \\
149     w & = & 40
150     \end{eqnarray*}
151     Here, $\Delta x_1$ is the resolution on the shelf, $\Delta x_2$ is the
152     resolution in deep water and $Nx$ is the number of points in the
153     horizontal.
154    
155     The topography, shown in Fig.~\ref{fig:depth-plume-on-slope}, is given
156     by:
157     \begin{displaymath}
158     H(x) = -H_o + (H_o - h_s) ( 1 + \tanh{\left(\frac{x-x_s}{L_s}\right)} ) / 2
159     \end{displaymath}
160     where
161     \begin{eqnarray*}
162     H_o & = & 200 \;\; \mbox{(m)} \\
163     h_s & = & 40 \;\; \mbox{(m)} \\
164     x_s & = & 1500 + Lx/2 \;\; \mbox{(m)} \\
165     L_s & = & \frac{(H_o - h_s)}{2 s} \;\; \mbox{(m)} \\
166     s & = & 0.15
167     \end{eqnarray*}
168     Here, $s$ is the maximum slope, $H_o$ is the maximum depth, $h_s$ is
169     the shelf depth, $x_s$ is the lateral position of the shelf-break and
170     $L_s$ is the length-scale of the slope.
171    
172     The forcing is through heat loss over the shelf, shown in
173     Fig.~\ref{fig:Q-plume-on-slope} and takes the form of a fixed flux
174     with profile:
175     \begin{displaymath}
176     Q(x) = Q_o ( 1 + \tanh{\left(\frac{x - x_q}{L_q}\right)} ) / 2
177     \end{displaymath}
178     where
179     \begin{eqnarray*}
180     Q_o & = & 200 \;\; \mbox{(W m$^{-2}$)} \\
181     x_q & = & 2500 + Lx/2 \;\; \mbox{(m)} \\
182     L_q & = & 100 \;\; \mbox{(m)}
183     \end{eqnarray*}
184     Here, $Q_o$, is the maximum heat flux, $x_q$ is the position of the
185     cut-off and $L_q$ is the width of the cut-off.
186    
187     The initial tempeture field is unstratified but with random
188     perturbations, to induce convection early on in the run. The random
189     perturbation are calculated in computational space and because of the
190     variable resolution introduce some spatial correlations but this does
191     not matter for this experiment. The perturbations have range
192     $0-0.01$~$^\circ$K.
193    
194 adcroft 1.3 \subsection{Code configuration}
195 adcroft 1.5 \label{www:tutorials}
196 adcroft 1.1 \label{sect:plume-config}
197    
198     The computational domain (number of points) is specified in {\tt
199     code/SIZE.h} and is configured as a single tile of dimensions
200     $320\times1\times60$. There are no experiment specific source files.
201    
202     Optional code required to for this experiment are the non-hydrostatic
203     algorithm and open-boundaries:
204     \begin{itemize}
205     \item Non-hydrostatic terms and algorithm are enabled with {\bf
206     \#define ALLOW\_NONHYDROSTATIC} in {\tt code/CPP\_OPTIONS.h} and
207     activated with {\bf nonHydrostatic=.TRUE.,} in namelist {\em PARM01}
208     of {\tt input/data}.
209     \item Open boundaries are enabled with {\bf \#define ALLOW\_OBCS} in
210     {\tt code/CPP\_OPTIONS.h} and activated with {\bf use\_OBCS=.TRUE,} in
211     namelist {\em PACKAGES} of {\tt input/data.pkg}.
212     \end{itemize}
213    
214 adcroft 1.3 \subsection{Model parameters}
215 adcroft 1.5 \label{www:tutorials}
216 adcroft 1.1 \label{sect:plume-params}
217    
218     \begin{table}
219     \begin{center}
220     \begin{tabular}{lll}
221     $g$ & $9.81$ m s$^{-2}$ & acceleration due to gravity \\
222     $\rho_o$ & $999.8$ kg m$^{-3}$ & reference density \\
223     $\alpha$ & $2 \times 10^{-4}$ K$^{-1}$ & expansion coefficient \\
224     $A_h$ & $1 \times 10^{-2}$ m$^2$s$^{-1}$ & horizontal viscosity \\
225     $A_v$ & $1 \times 10^{-3}$ m$^2$s$^{-1}$ & vertical viscosity \\
226     $\kappa_h$ & $0$ m$^2$s$^{-1}$ & (explicit) horizontal diffusion \\
227     $\kappa_v$ & $0$ m$^2$s$^{-1}$ & (explicit) vertical diffusion \\
228     \\
229     $\Delta t$ & $20$ s & time step \\
230     $\Delta z$ & $3.3\dot{3}$ m & vertical grid spacing \\
231     $\Delta x$ & $13.\dot{3}-39.5$ m & horizontal grid spacing
232     \end{tabular}
233     \end{center}
234     \caption{Model parameters used in the gravity plume experiment.}
235     \label{table:plume-on-slope}
236     \end{table}
237    
238     The model parameters (Table~\ref{table:plume-on-slope}) are specified
239     in {\tt input/data} and if not assume the default values defined in
240     {\tt model/src/set\_defaults.F}. A linear equation of state is used,
241     {\bf eosType='LINEAR'}, but only temperature is active, {\bf
242     sBeta=0.E-4}. For the given heat flux, $Q_o$, the buoyancy forcing is
243     $B_o = \frac{g \alpha Q}{\rho_o c_p} \sim
244     10^{-7}$~m$^2$s$^{-3}$. Using $R=10^3$~m, the shelf width, then this
245     gives a velocity scale of $U\sim 5 \times 10^{-2}$~m~s$^-1$ for the
246     initial front but will accelerate by an order of magnitude over the
247     slope. The temperature anomaly will be of order $\Delta \theta \sim 3
248     \times 10^{-2}$~K. The viscosity is constant and gives a Reynolds
249     number of $100$, using $h=20$~m for the initial front and will be an
250     order magnitude bigger over the slope. There is no explicit diffusion
251     but a non-linear advection scheme is used for temperature which adds
252     enough diffusion so as to keep the model stable. The time-step is set
253     to $20$~s and gives Courant number order one when the flow reaches the
254     bottom of the slope.
255    
256 adcroft 1.3 \subsection{Build and run the model}
257 adcroft 1.5 \label{www:tutorials}
258 adcroft 1.1
259     Build the model per usual. For example:
260     \begin{verbatim}
261     % cd verification/plume_on_slope
262     % mkdir build
263     % cd build
264     % ../../../tools/genmake -mods=../code -disable=gmredi,kpp,zonal_filt
265     ,shap_filt
266     % make depend
267     % make
268     \end{verbatim}
269    
270     When compilation is complete, run the model as usual, for example:
271     \begin{verbatim}
272     % cd ../
273     % mkdir run
274     % cp input/* build/mitgcmuv run/
275     % cd run
276     % ./mitgcmuv > output.txt
277     \end{verbatim}

  ViewVC Help
Powered by ViewVC 1.1.22