/[MITgcm]/manual/s_examples/plume_on_slope/plume_on_slope.tex
ViewVC logotype

Annotation of /manual/s_examples/plume_on_slope/plume_on_slope.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download) (as text)
Thu Feb 28 19:32:19 2002 UTC (22 years, 3 months ago) by cnh
Branch: MAIN
Changes since 1.3: +4 -1 lines
File MIME type: application/x-tex
Updates for special on-line version with
hyperlinked and animated figures

Separating tutorials and reference material

1 cnh 1.4 \section{Gravity Plume On a Continental Slope}
2     \label{sect:eg-gravityplume}
3 adcroft 1.2
4 cnh 1.4 \begin{rawhtml}MITGCM_INSERT_FIGURE_BEGIN T-plume-on-slope\end{rawhtml}
5 adcroft 1.1 \begin{figure}
6     \begin{center}
7     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/billows.eps}
8     \end{center}
9     \caption{Temperature after 23~hours of cooling. The cold dense water is
10     mixed with ambient water as it accelerates down the slope and hence
11     is warmed than the unmixed plume.
12     }
13     \label{fig:T-plume-on-slope}
14     \end{figure}
15 cnh 1.4 \begin{rawhtml}MITGCM_INSERT_FIGURE_END\end{rawhtml}
16 adcroft 1.1
17     An important test of any ocean model is the ability to represent the
18     flow of dense fluid down a slope. One example of such a flow is a
19     non-rotating gravity plume on a continental slope, forced by a limited
20     area of surface cooling above a continental shelf. Because the flow is
21     non-rotating, a two dimensional model can be used in the across slope
22     direction. The experiment is non-hydrostatic and uses open-boundaries
23     to radiate transients at the deep water end. (Dense flow down a slope
24     can also be forced by a dense inflow prescribed on the continental
25     shelf; this configuration is being implemented by the DOME (Dynamics
26     of Overflow Mixing and Entrainment) collaboration to compare solutions
27     in different models).
28    
29     The fluid is initially unstratified. The surface buoyancy loss $B_0$
30     (dimensions of L$^2$T$^{-3}$) over a cross-shelf distance $R$ causes
31     vertical convective mixing and modifies the density of the fluid by an
32     amount
33     \begin{equation}
34     \Delta \rho = \frac{B_0 \rho_0 t}{g H}
35     \end{equation}
36     where $H$ is the depth of the shelf, $g$ is the acceleration due to
37     gravity, $t$ is time since onset of cooling and $\rho_0$ is the
38     reference density. Dense fluid slumps under gravity, with a flow speed
39     close to the gravity wave speed:
40     \begin{equation}
41     U
42     \sim \sqrt{g' H}
43     \sim \sqrt{ \frac{g \Delta \rho H}{\rho_0} }
44     \sim \sqrt{B_0 t}
45     \end{equation}
46     A steady state is rapidly established in which the buoyancy flux out of
47     the cooling region is balanced by the surface buoyancy loss.
48     Then
49     \begin{equation}
50     U \sim (B_0 R)^{1/3} \mbox{ ; } \Delta \rho \sim \frac{\rho_0}{g H} (B_0 R)^{2/3}
51     \end{equation}
52     The Froude number of the flow on the shelf is close to unity (but in
53     practice slightly less than unity, giving subcritical flow).
54     When the flow reaches the slope, it accelerates, so that it may become
55     supercritical (provided the slope angle $ \alpha $ is steep enough).
56     In this case, a hydraulic control is established at
57     the shelf break. On the slope, where the Froude number is greater
58     than one, and gradient Richardson number
59     (defined as $Ri \sim g' h^*/U^2$ where $h^*$ is the thickness of the
60     interface between dense and ambient fluid) is reduced
61     below 1/4, Kelvin-Helmholtz instability is possible, and leads to
62     entrainment of ambient fluid into the plume, modifying the
63     density, and hence the acceleration down the slope.
64     Kelvin-Helmholtz instability is suppressed at low Reynolds and
65     Peclet numbers given by
66     \begin{equation}
67     Re \sim \frac{U h}{ \nu} \sim \frac{(B_0 R)^{1/3} h}{\nu} \mbox{ ; } Pe = Re Pr
68     \end{equation}
69     where $h$ is the depth of the dense fluid on the slope.
70     Hence this experiment is carried out in the high Re, Pe regime.
71     A further constraint is that the convective heat flux must be much greater
72     than the diffusive heat flux (Nusselt number $>> 1$).
73     Then
74     \begin{equation}
75     Nu = \frac{U h^* }{\kappa} >> 1
76     \end{equation}
77     Finally, since we have assumed that the convective mixing on the shelf
78     occurs in a much shorter time than the horizontal equilibration,
79     this implies $H/R << 1$.
80    
81     Hence to summarize the important nondimensional parameters, and
82     the limits we are considering:
83     \begin{equation}
84     \frac{H}{R} << 1 \mbox{ ; } Re >> 1 \mbox{ ; } Pe >> 1 \mbox{ ; } Nu >> 1
85     \mbox{ ; } \mbox{ ; } Ri < 1/4
86     \end{equation}
87     In addition we are assuming that the slope is steep enough to provide
88     sufficient acceleration to the gravity plume, but nonetheless much less
89     that $1:1$, since many Kelvin-Helmholtz billows appear on the slope,
90     implying horizontal lengthscale of the slope $>>$ the depth of the
91     dense fluid.
92    
93     \subsection{Configuration}
94    
95     The topography, spatial grid, forcing and initial conditions are all
96     specified in binary data files generated using a {\em Matlab} script
97     called {\tt gendata.m} and detailed in
98     section~\ref{sect:plume-generating}. Other model parameters are
99     specified in file {\tt data} and {\tt data.obcs} and detailed in
100     section~\ref{sect:plume-params}.
101    
102 adcroft 1.3 \subsection{Binary input data}
103 adcroft 1.1 \label{sect:plume-generating}
104    
105 adcroft 1.3 \begin{figure}
106     \begin{center}
107     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/dx.eps}
108     \end{center}
109     \caption{Horizontal grid spacing, $\Delta x$, in the across-slope
110     direction for the gravity plume experiment.}
111     \label{fig:dx-plume-on-slope}
112     \end{figure}
113    
114     \begin{figure}
115     \begin{center}
116     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/Depth.eps}
117     \end{center}
118     \caption{Topography, $h(x)$, used for the gravity plume experiment.}
119     \label{fig:depth-plume-on-slope}
120     \end{figure}
121    
122     \begin{figure}
123     \begin{center}
124     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/Qsurf.eps}
125     \end{center}
126     \caption{Upward surface heat flux, $Q(x)$, used as forcing in the
127     gravity plume experiment.}
128     \label{fig:Q-plume-on-slope}
129     \end{figure}
130    
131 adcroft 1.1 The domain is $200$~m deep and $6.4$~km across. Uniform resolution of
132     $60\times3^1/_3$~m is used in the vertical and variable resolution of
133     the form shown in Fig.~\ref{fig:dx-plume-on-slope} with $320$ points
134     is usedin the horizontal. The formula for $\Delta x$ is:
135     \begin{displaymath}
136     \Delta x(i) = \Delta x_1 + ( \Delta x_2 - \Delta x_1 )
137     ( 1 + \tanh{\left(\frac{i-i_s}{w}\right)} ) /2
138     \end{displaymath}
139     where
140     \begin{eqnarray*}
141     Nx & = & 320 \\
142     Lx & = & 6400 \;\; \mbox{(m)} \\
143     \Delta x_1 & = & \frac{2}{3} \frac{Lx}{Nx} \;\; \mbox{(m)} \\
144     \Delta x_2 & = & \frac{Lx/2}{Nx-Lx/2 \Delta x_1} \;\; \mbox{(m)} \\
145     i_s & = & Lx/( 2 \Delta x_1 ) \\
146     w & = & 40
147     \end{eqnarray*}
148     Here, $\Delta x_1$ is the resolution on the shelf, $\Delta x_2$ is the
149     resolution in deep water and $Nx$ is the number of points in the
150     horizontal.
151    
152     The topography, shown in Fig.~\ref{fig:depth-plume-on-slope}, is given
153     by:
154     \begin{displaymath}
155     H(x) = -H_o + (H_o - h_s) ( 1 + \tanh{\left(\frac{x-x_s}{L_s}\right)} ) / 2
156     \end{displaymath}
157     where
158     \begin{eqnarray*}
159     H_o & = & 200 \;\; \mbox{(m)} \\
160     h_s & = & 40 \;\; \mbox{(m)} \\
161     x_s & = & 1500 + Lx/2 \;\; \mbox{(m)} \\
162     L_s & = & \frac{(H_o - h_s)}{2 s} \;\; \mbox{(m)} \\
163     s & = & 0.15
164     \end{eqnarray*}
165     Here, $s$ is the maximum slope, $H_o$ is the maximum depth, $h_s$ is
166     the shelf depth, $x_s$ is the lateral position of the shelf-break and
167     $L_s$ is the length-scale of the slope.
168    
169     The forcing is through heat loss over the shelf, shown in
170     Fig.~\ref{fig:Q-plume-on-slope} and takes the form of a fixed flux
171     with profile:
172     \begin{displaymath}
173     Q(x) = Q_o ( 1 + \tanh{\left(\frac{x - x_q}{L_q}\right)} ) / 2
174     \end{displaymath}
175     where
176     \begin{eqnarray*}
177     Q_o & = & 200 \;\; \mbox{(W m$^{-2}$)} \\
178     x_q & = & 2500 + Lx/2 \;\; \mbox{(m)} \\
179     L_q & = & 100 \;\; \mbox{(m)}
180     \end{eqnarray*}
181     Here, $Q_o$, is the maximum heat flux, $x_q$ is the position of the
182     cut-off and $L_q$ is the width of the cut-off.
183    
184     The initial tempeture field is unstratified but with random
185     perturbations, to induce convection early on in the run. The random
186     perturbation are calculated in computational space and because of the
187     variable resolution introduce some spatial correlations but this does
188     not matter for this experiment. The perturbations have range
189     $0-0.01$~$^\circ$K.
190    
191 adcroft 1.3 \subsection{Code configuration}
192 adcroft 1.1 \label{sect:plume-config}
193    
194     The computational domain (number of points) is specified in {\tt
195     code/SIZE.h} and is configured as a single tile of dimensions
196     $320\times1\times60$. There are no experiment specific source files.
197    
198     Optional code required to for this experiment are the non-hydrostatic
199     algorithm and open-boundaries:
200     \begin{itemize}
201     \item Non-hydrostatic terms and algorithm are enabled with {\bf
202     \#define ALLOW\_NONHYDROSTATIC} in {\tt code/CPP\_OPTIONS.h} and
203     activated with {\bf nonHydrostatic=.TRUE.,} in namelist {\em PARM01}
204     of {\tt input/data}.
205     \item Open boundaries are enabled with {\bf \#define ALLOW\_OBCS} in
206     {\tt code/CPP\_OPTIONS.h} and activated with {\bf use\_OBCS=.TRUE,} in
207     namelist {\em PACKAGES} of {\tt input/data.pkg}.
208     \end{itemize}
209    
210 adcroft 1.3 \subsection{Model parameters}
211 adcroft 1.1 \label{sect:plume-params}
212    
213     \begin{table}
214     \begin{center}
215     \begin{tabular}{lll}
216     $g$ & $9.81$ m s$^{-2}$ & acceleration due to gravity \\
217     $\rho_o$ & $999.8$ kg m$^{-3}$ & reference density \\
218     $\alpha$ & $2 \times 10^{-4}$ K$^{-1}$ & expansion coefficient \\
219     $A_h$ & $1 \times 10^{-2}$ m$^2$s$^{-1}$ & horizontal viscosity \\
220     $A_v$ & $1 \times 10^{-3}$ m$^2$s$^{-1}$ & vertical viscosity \\
221     $\kappa_h$ & $0$ m$^2$s$^{-1}$ & (explicit) horizontal diffusion \\
222     $\kappa_v$ & $0$ m$^2$s$^{-1}$ & (explicit) vertical diffusion \\
223     \\
224     $\Delta t$ & $20$ s & time step \\
225     $\Delta z$ & $3.3\dot{3}$ m & vertical grid spacing \\
226     $\Delta x$ & $13.\dot{3}-39.5$ m & horizontal grid spacing
227     \end{tabular}
228     \end{center}
229     \caption{Model parameters used in the gravity plume experiment.}
230     \label{table:plume-on-slope}
231     \end{table}
232    
233     The model parameters (Table~\ref{table:plume-on-slope}) are specified
234     in {\tt input/data} and if not assume the default values defined in
235     {\tt model/src/set\_defaults.F}. A linear equation of state is used,
236     {\bf eosType='LINEAR'}, but only temperature is active, {\bf
237     sBeta=0.E-4}. For the given heat flux, $Q_o$, the buoyancy forcing is
238     $B_o = \frac{g \alpha Q}{\rho_o c_p} \sim
239     10^{-7}$~m$^2$s$^{-3}$. Using $R=10^3$~m, the shelf width, then this
240     gives a velocity scale of $U\sim 5 \times 10^{-2}$~m~s$^-1$ for the
241     initial front but will accelerate by an order of magnitude over the
242     slope. The temperature anomaly will be of order $\Delta \theta \sim 3
243     \times 10^{-2}$~K. The viscosity is constant and gives a Reynolds
244     number of $100$, using $h=20$~m for the initial front and will be an
245     order magnitude bigger over the slope. There is no explicit diffusion
246     but a non-linear advection scheme is used for temperature which adds
247     enough diffusion so as to keep the model stable. The time-step is set
248     to $20$~s and gives Courant number order one when the flow reaches the
249     bottom of the slope.
250    
251 adcroft 1.3 \subsection{Build and run the model}
252 adcroft 1.1
253     Build the model per usual. For example:
254     \begin{verbatim}
255     % cd verification/plume_on_slope
256     % mkdir build
257     % cd build
258     % ../../../tools/genmake -mods=../code -disable=gmredi,kpp,zonal_filt
259     ,shap_filt
260     % make depend
261     % make
262     \end{verbatim}
263    
264     When compilation is complete, run the model as usual, for example:
265     \begin{verbatim}
266     % cd ../
267     % mkdir run
268     % cp input/* build/mitgcmuv run/
269     % cd run
270     % ./mitgcmuv > output.txt
271     \end{verbatim}

  ViewVC Help
Powered by ViewVC 1.1.22