/[MITgcm]/manual/s_examples/plume_on_slope/plume_on_slope.tex
ViewVC logotype

Annotation of /manual/s_examples/plume_on_slope/plume_on_slope.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Mon Nov 26 20:43:37 2001 UTC (23 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.2: +30 -30 lines
File MIME type: application/x-tex
Ooops

1 adcroft 1.2 \section{Example: Gravity plume on a continental slope}
2    
3 adcroft 1.1 \begin{figure}
4     \begin{center}
5     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/billows.eps}
6     \end{center}
7     \caption{Temperature after 23~hours of cooling. The cold dense water is
8     mixed with ambient water as it accelerates down the slope and hence
9     is warmed than the unmixed plume.
10     }
11     \label{fig:T-plume-on-slope}
12     \end{figure}
13    
14     An important test of any ocean model is the ability to represent the
15     flow of dense fluid down a slope. One example of such a flow is a
16     non-rotating gravity plume on a continental slope, forced by a limited
17     area of surface cooling above a continental shelf. Because the flow is
18     non-rotating, a two dimensional model can be used in the across slope
19     direction. The experiment is non-hydrostatic and uses open-boundaries
20     to radiate transients at the deep water end. (Dense flow down a slope
21     can also be forced by a dense inflow prescribed on the continental
22     shelf; this configuration is being implemented by the DOME (Dynamics
23     of Overflow Mixing and Entrainment) collaboration to compare solutions
24     in different models).
25    
26     The fluid is initially unstratified. The surface buoyancy loss $B_0$
27     (dimensions of L$^2$T$^{-3}$) over a cross-shelf distance $R$ causes
28     vertical convective mixing and modifies the density of the fluid by an
29     amount
30     \begin{equation}
31     \Delta \rho = \frac{B_0 \rho_0 t}{g H}
32     \end{equation}
33     where $H$ is the depth of the shelf, $g$ is the acceleration due to
34     gravity, $t$ is time since onset of cooling and $\rho_0$ is the
35     reference density. Dense fluid slumps under gravity, with a flow speed
36     close to the gravity wave speed:
37     \begin{equation}
38     U
39     \sim \sqrt{g' H}
40     \sim \sqrt{ \frac{g \Delta \rho H}{\rho_0} }
41     \sim \sqrt{B_0 t}
42     \end{equation}
43     A steady state is rapidly established in which the buoyancy flux out of
44     the cooling region is balanced by the surface buoyancy loss.
45     Then
46     \begin{equation}
47     U \sim (B_0 R)^{1/3} \mbox{ ; } \Delta \rho \sim \frac{\rho_0}{g H} (B_0 R)^{2/3}
48     \end{equation}
49     The Froude number of the flow on the shelf is close to unity (but in
50     practice slightly less than unity, giving subcritical flow).
51     When the flow reaches the slope, it accelerates, so that it may become
52     supercritical (provided the slope angle $ \alpha $ is steep enough).
53     In this case, a hydraulic control is established at
54     the shelf break. On the slope, where the Froude number is greater
55     than one, and gradient Richardson number
56     (defined as $Ri \sim g' h^*/U^2$ where $h^*$ is the thickness of the
57     interface between dense and ambient fluid) is reduced
58     below 1/4, Kelvin-Helmholtz instability is possible, and leads to
59     entrainment of ambient fluid into the plume, modifying the
60     density, and hence the acceleration down the slope.
61     Kelvin-Helmholtz instability is suppressed at low Reynolds and
62     Peclet numbers given by
63     \begin{equation}
64     Re \sim \frac{U h}{ \nu} \sim \frac{(B_0 R)^{1/3} h}{\nu} \mbox{ ; } Pe = Re Pr
65     \end{equation}
66     where $h$ is the depth of the dense fluid on the slope.
67     Hence this experiment is carried out in the high Re, Pe regime.
68     A further constraint is that the convective heat flux must be much greater
69     than the diffusive heat flux (Nusselt number $>> 1$).
70     Then
71     \begin{equation}
72     Nu = \frac{U h^* }{\kappa} >> 1
73     \end{equation}
74     Finally, since we have assumed that the convective mixing on the shelf
75     occurs in a much shorter time than the horizontal equilibration,
76     this implies $H/R << 1$.
77    
78     Hence to summarize the important nondimensional parameters, and
79     the limits we are considering:
80     \begin{equation}
81     \frac{H}{R} << 1 \mbox{ ; } Re >> 1 \mbox{ ; } Pe >> 1 \mbox{ ; } Nu >> 1
82     \mbox{ ; } \mbox{ ; } Ri < 1/4
83     \end{equation}
84     In addition we are assuming that the slope is steep enough to provide
85     sufficient acceleration to the gravity plume, but nonetheless much less
86     that $1:1$, since many Kelvin-Helmholtz billows appear on the slope,
87     implying horizontal lengthscale of the slope $>>$ the depth of the
88     dense fluid.
89    
90     \subsection{Configuration}
91    
92     The topography, spatial grid, forcing and initial conditions are all
93     specified in binary data files generated using a {\em Matlab} script
94     called {\tt gendata.m} and detailed in
95     section~\ref{sect:plume-generating}. Other model parameters are
96     specified in file {\tt data} and {\tt data.obcs} and detailed in
97     section~\ref{sect:plume-params}.
98    
99 adcroft 1.3 \subsection{Binary input data}
100 adcroft 1.1 \label{sect:plume-generating}
101    
102 adcroft 1.3 \begin{figure}
103     \begin{center}
104     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/dx.eps}
105     \end{center}
106     \caption{Horizontal grid spacing, $\Delta x$, in the across-slope
107     direction for the gravity plume experiment.}
108     \label{fig:dx-plume-on-slope}
109     \end{figure}
110    
111     \begin{figure}
112     \begin{center}
113     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/Depth.eps}
114     \end{center}
115     \caption{Topography, $h(x)$, used for the gravity plume experiment.}
116     \label{fig:depth-plume-on-slope}
117     \end{figure}
118    
119     \begin{figure}
120     \begin{center}
121     \includegraphics[width=\textwidth,height=.3\textheight]{part3/case_studies/plume_on_slope/Qsurf.eps}
122     \end{center}
123     \caption{Upward surface heat flux, $Q(x)$, used as forcing in the
124     gravity plume experiment.}
125     \label{fig:Q-plume-on-slope}
126     \end{figure}
127    
128 adcroft 1.1 The domain is $200$~m deep and $6.4$~km across. Uniform resolution of
129     $60\times3^1/_3$~m is used in the vertical and variable resolution of
130     the form shown in Fig.~\ref{fig:dx-plume-on-slope} with $320$ points
131     is usedin the horizontal. The formula for $\Delta x$ is:
132     \begin{displaymath}
133     \Delta x(i) = \Delta x_1 + ( \Delta x_2 - \Delta x_1 )
134     ( 1 + \tanh{\left(\frac{i-i_s}{w}\right)} ) /2
135     \end{displaymath}
136     where
137     \begin{eqnarray*}
138     Nx & = & 320 \\
139     Lx & = & 6400 \;\; \mbox{(m)} \\
140     \Delta x_1 & = & \frac{2}{3} \frac{Lx}{Nx} \;\; \mbox{(m)} \\
141     \Delta x_2 & = & \frac{Lx/2}{Nx-Lx/2 \Delta x_1} \;\; \mbox{(m)} \\
142     i_s & = & Lx/( 2 \Delta x_1 ) \\
143     w & = & 40
144     \end{eqnarray*}
145     Here, $\Delta x_1$ is the resolution on the shelf, $\Delta x_2$ is the
146     resolution in deep water and $Nx$ is the number of points in the
147     horizontal.
148    
149     The topography, shown in Fig.~\ref{fig:depth-plume-on-slope}, is given
150     by:
151     \begin{displaymath}
152     H(x) = -H_o + (H_o - h_s) ( 1 + \tanh{\left(\frac{x-x_s}{L_s}\right)} ) / 2
153     \end{displaymath}
154     where
155     \begin{eqnarray*}
156     H_o & = & 200 \;\; \mbox{(m)} \\
157     h_s & = & 40 \;\; \mbox{(m)} \\
158     x_s & = & 1500 + Lx/2 \;\; \mbox{(m)} \\
159     L_s & = & \frac{(H_o - h_s)}{2 s} \;\; \mbox{(m)} \\
160     s & = & 0.15
161     \end{eqnarray*}
162     Here, $s$ is the maximum slope, $H_o$ is the maximum depth, $h_s$ is
163     the shelf depth, $x_s$ is the lateral position of the shelf-break and
164     $L_s$ is the length-scale of the slope.
165    
166     The forcing is through heat loss over the shelf, shown in
167     Fig.~\ref{fig:Q-plume-on-slope} and takes the form of a fixed flux
168     with profile:
169     \begin{displaymath}
170     Q(x) = Q_o ( 1 + \tanh{\left(\frac{x - x_q}{L_q}\right)} ) / 2
171     \end{displaymath}
172     where
173     \begin{eqnarray*}
174     Q_o & = & 200 \;\; \mbox{(W m$^{-2}$)} \\
175     x_q & = & 2500 + Lx/2 \;\; \mbox{(m)} \\
176     L_q & = & 100 \;\; \mbox{(m)}
177     \end{eqnarray*}
178     Here, $Q_o$, is the maximum heat flux, $x_q$ is the position of the
179     cut-off and $L_q$ is the width of the cut-off.
180    
181     The initial tempeture field is unstratified but with random
182     perturbations, to induce convection early on in the run. The random
183     perturbation are calculated in computational space and because of the
184     variable resolution introduce some spatial correlations but this does
185     not matter for this experiment. The perturbations have range
186     $0-0.01$~$^\circ$K.
187    
188 adcroft 1.3 \subsection{Code configuration}
189 adcroft 1.1 \label{sect:plume-config}
190    
191     The computational domain (number of points) is specified in {\tt
192     code/SIZE.h} and is configured as a single tile of dimensions
193     $320\times1\times60$. There are no experiment specific source files.
194    
195     Optional code required to for this experiment are the non-hydrostatic
196     algorithm and open-boundaries:
197     \begin{itemize}
198     \item Non-hydrostatic terms and algorithm are enabled with {\bf
199     \#define ALLOW\_NONHYDROSTATIC} in {\tt code/CPP\_OPTIONS.h} and
200     activated with {\bf nonHydrostatic=.TRUE.,} in namelist {\em PARM01}
201     of {\tt input/data}.
202     \item Open boundaries are enabled with {\bf \#define ALLOW\_OBCS} in
203     {\tt code/CPP\_OPTIONS.h} and activated with {\bf use\_OBCS=.TRUE,} in
204     namelist {\em PACKAGES} of {\tt input/data.pkg}.
205     \end{itemize}
206    
207 adcroft 1.3 \subsection{Model parameters}
208 adcroft 1.1 \label{sect:plume-params}
209    
210     \begin{table}
211     \begin{center}
212     \begin{tabular}{lll}
213     $g$ & $9.81$ m s$^{-2}$ & acceleration due to gravity \\
214     $\rho_o$ & $999.8$ kg m$^{-3}$ & reference density \\
215     $\alpha$ & $2 \times 10^{-4}$ K$^{-1}$ & expansion coefficient \\
216     $A_h$ & $1 \times 10^{-2}$ m$^2$s$^{-1}$ & horizontal viscosity \\
217     $A_v$ & $1 \times 10^{-3}$ m$^2$s$^{-1}$ & vertical viscosity \\
218     $\kappa_h$ & $0$ m$^2$s$^{-1}$ & (explicit) horizontal diffusion \\
219     $\kappa_v$ & $0$ m$^2$s$^{-1}$ & (explicit) vertical diffusion \\
220     \\
221     $\Delta t$ & $20$ s & time step \\
222     $\Delta z$ & $3.3\dot{3}$ m & vertical grid spacing \\
223     $\Delta x$ & $13.\dot{3}-39.5$ m & horizontal grid spacing
224     \end{tabular}
225     \end{center}
226     \caption{Model parameters used in the gravity plume experiment.}
227     \label{table:plume-on-slope}
228     \end{table}
229    
230     The model parameters (Table~\ref{table:plume-on-slope}) are specified
231     in {\tt input/data} and if not assume the default values defined in
232     {\tt model/src/set\_defaults.F}. A linear equation of state is used,
233     {\bf eosType='LINEAR'}, but only temperature is active, {\bf
234     sBeta=0.E-4}. For the given heat flux, $Q_o$, the buoyancy forcing is
235     $B_o = \frac{g \alpha Q}{\rho_o c_p} \sim
236     10^{-7}$~m$^2$s$^{-3}$. Using $R=10^3$~m, the shelf width, then this
237     gives a velocity scale of $U\sim 5 \times 10^{-2}$~m~s$^-1$ for the
238     initial front but will accelerate by an order of magnitude over the
239     slope. The temperature anomaly will be of order $\Delta \theta \sim 3
240     \times 10^{-2}$~K. The viscosity is constant and gives a Reynolds
241     number of $100$, using $h=20$~m for the initial front and will be an
242     order magnitude bigger over the slope. There is no explicit diffusion
243     but a non-linear advection scheme is used for temperature which adds
244     enough diffusion so as to keep the model stable. The time-step is set
245     to $20$~s and gives Courant number order one when the flow reaches the
246     bottom of the slope.
247    
248 adcroft 1.3 \subsection{Build and run the model}
249 adcroft 1.1
250     Build the model per usual. For example:
251     \begin{verbatim}
252     % cd verification/plume_on_slope
253     % mkdir build
254     % cd build
255     % ../../../tools/genmake -mods=../code -disable=gmredi,kpp,zonal_filt
256     ,shap_filt
257     % make depend
258     % make
259     \end{verbatim}
260    
261     When compilation is complete, run the model as usual, for example:
262     \begin{verbatim}
263     % cd ../
264     % mkdir run
265     % cp input/* build/mitgcmuv run/
266     % cd run
267     % ./mitgcmuv > output.txt
268     \end{verbatim}

  ViewVC Help
Powered by ViewVC 1.1.22