| 1 | 
jmc | 
1.1 | 
 | 
| 2 | 
  | 
  | 
%\subsubsection{File {\it input/data}} | 
| 3 | 
  | 
  | 
%\label{www:tutorials} | 
| 4 | 
  | 
  | 
 | 
| 5 | 
  | 
  | 
This file, reproduced completely below, specifies the main parameters  | 
| 6 | 
  | 
  | 
for the experiment.  | 
| 7 | 
  | 
  | 
The parameters that are significant for this configuration are: | 
| 8 | 
  | 
  | 
 | 
| 9 | 
  | 
  | 
\begin{itemize} | 
| 10 | 
  | 
  | 
 | 
| 11 | 
  | 
  | 
\item Lines PUT_LINE_NB:tRef=, | 
| 12 | 
  | 
  | 
\begin{verbatim}  | 
| 13 | 
  | 
  | 
 tRef=295.2, 295.5, 295.9, 296.3, 296.7, 297.1, 297.6, 298.1, 298.7, 299.3, | 
| 14 | 
  | 
  | 
\end{verbatim}  | 
| 15 | 
  | 
  | 
$\cdots$ \\ | 
| 16 | 
jmc | 
1.2 | 
set reference values for potential temperature (in Kelvin units)  | 
| 17 | 
  | 
  | 
at each model level. | 
| 18 | 
jmc | 
1.1 | 
The entries are ordered like model level, from surface up to the top. | 
| 19 | 
  | 
  | 
Density is calculated from anomalies at each level evaluated | 
| 20 | 
  | 
  | 
with respect to the reference values set here. | 
| 21 | 
  | 
  | 
\\ \fbox{ | 
| 22 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 23 | 
  | 
  | 
{\it S/R INI\_THETA}({\it ini\_theta.F}) | 
| 24 | 
  | 
  | 
\end{minipage} | 
| 25 | 
  | 
  | 
} | 
| 26 | 
  | 
  | 
 | 
| 27 | 
  | 
  | 
 | 
| 28 | 
  | 
  | 
\item Line PUT_LINE_NB:no_slip_sides=, | 
| 29 | 
  | 
  | 
\begin{verbatim} | 
| 30 | 
  | 
  | 
 no_slip_sides=.FALSE., | 
| 31 | 
  | 
  | 
\end{verbatim} | 
| 32 | 
  | 
  | 
this line selects a free-slip lateral boundary condition for | 
| 33 | 
  | 
  | 
the horizontal Laplacian friction operator  | 
| 34 | 
  | 
  | 
e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and | 
| 35 | 
  | 
  | 
$\frac{\partial v}{\partial x}$=0 along boundaries in $x$. | 
| 36 | 
  | 
  | 
 | 
| 37 | 
  | 
  | 
\item Lines PUT_LINE_NB:no_slip_bottom=, | 
| 38 | 
  | 
  | 
\begin{verbatim} | 
| 39 | 
  | 
  | 
 no_slip_bottom=.FALSE., | 
| 40 | 
  | 
  | 
\end{verbatim} | 
| 41 | 
  | 
  | 
this line selects a free-slip boundary condition at the top, | 
| 42 | 
  | 
  | 
in the vertical Laplacian friction operator  | 
| 43 | 
  | 
  | 
e.g. $\frac{\partial u}{\partial p} = \frac{\partial v}{\partial p} = 0$ | 
| 44 | 
  | 
  | 
 | 
| 45 | 
  | 
  | 
\item Line PUT_LINE_NB:buoyancyRelation=, | 
| 46 | 
  | 
  | 
\begin{verbatim} | 
| 47 | 
  | 
  | 
 buoyancyRelation='ATMOSPHERIC', | 
| 48 | 
  | 
  | 
\end{verbatim} | 
| 49 | 
  | 
  | 
this line sets the type of fluid and the type of vertical coordinate to use, | 
| 50 | 
  | 
  | 
which, in this case, is air with a pressure like coordinate ($p$ or $p^*$). | 
| 51 | 
  | 
  | 
 | 
| 52 | 
  | 
  | 
\item Line PUT_LINE_NB:eosType=, | 
| 53 | 
  | 
  | 
\begin{verbatim} | 
| 54 | 
jmc | 
1.6 | 
 eosType='IDEALG', | 
| 55 | 
jmc | 
1.1 | 
\end{verbatim} | 
| 56 | 
  | 
  | 
Selects the Ideal gas equation of state. | 
| 57 | 
  | 
  | 
%\\ \fbox{ | 
| 58 | 
  | 
  | 
%\begin{minipage}{5.0in} | 
| 59 | 
  | 
  | 
%{\it S/R FIND\_RHO}~({\it find\_rho.F})\\ | 
| 60 | 
  | 
  | 
%{\it S/R FIND\_ALPHA}~({\it find\_alpha.F}) | 
| 61 | 
  | 
  | 
%\end{minipage} | 
| 62 | 
  | 
  | 
%} | 
| 63 | 
  | 
  | 
 | 
| 64 | 
  | 
  | 
\item Line PUT_LINE_NB:implicitFreeSurface=, | 
| 65 | 
  | 
  | 
\begin{verbatim} | 
| 66 | 
  | 
  | 
 implicitFreeSurface=.TRUE., | 
| 67 | 
  | 
  | 
\end{verbatim} | 
| 68 | 
  | 
  | 
Selects the way the barotropic equation is solved, using here the implicit  | 
| 69 | 
  | 
  | 
free-surface formulation. | 
| 70 | 
  | 
  | 
\\ \fbox{ | 
| 71 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 72 | 
  | 
  | 
{\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F}) | 
| 73 | 
  | 
  | 
\end{minipage} | 
| 74 | 
  | 
  | 
} | 
| 75 | 
  | 
  | 
 | 
| 76 | 
  | 
  | 
\item Line PUT_LINE_NB:exactConserv=, | 
| 77 | 
  | 
  | 
\begin{verbatim} | 
| 78 | 
  | 
  | 
 exactConserv=.TRUE., | 
| 79 | 
  | 
  | 
\end{verbatim} | 
| 80 | 
  | 
  | 
Explicitly calculate again the surface pressure changes from  | 
| 81 | 
  | 
  | 
the divergence of the vertically integrated horizontal flow, | 
| 82 | 
  | 
  | 
after the implicit free surface solver and filters are applied. | 
| 83 | 
  | 
  | 
\\ \fbox{ | 
| 84 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 85 | 
  | 
  | 
{\it S/R INTEGR\_CONTINUITY}~({\it integr\_continuity.F}) | 
| 86 | 
  | 
  | 
\end{minipage} | 
| 87 | 
  | 
  | 
} | 
| 88 | 
  | 
  | 
 | 
| 89 | 
  | 
  | 
\item Line PUT_LINE_NB:nonlinFreeSurf= | 
| 90 | 
  | 
  | 
 and Line PUT_LINE_NB:select_rStar=, | 
| 91 | 
  | 
  | 
\begin{verbatim} | 
| 92 | 
  | 
  | 
 nonlinFreeSurf=4, | 
| 93 | 
  | 
  | 
 select_rStar=2, | 
| 94 | 
  | 
  | 
\end{verbatim} | 
| 95 | 
  | 
  | 
Select the Non-Linear free surface formulation, using $r^*$ vertical coordinate | 
| 96 | 
  | 
  | 
(here $p^*$). | 
| 97 | 
  | 
  | 
Note that, except for the default ($= 0$), other values of those 2 parameters | 
| 98 | 
  | 
  | 
are only permitted for testing/debuging purpose. | 
| 99 | 
  | 
  | 
\\ \fbox{ | 
| 100 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 101 | 
  | 
  | 
{\it S/R CALC\_R\_STAR}~({\it calc\_r\_star.F})\\ | 
| 102 | 
  | 
  | 
{\it S/R UPDATE\_R\_STAR}~({\it update\_r\_star.F}) | 
| 103 | 
  | 
  | 
\end{minipage} | 
| 104 | 
  | 
  | 
} | 
| 105 | 
  | 
  | 
 | 
| 106 | 
  | 
  | 
\item Line PUT_LINE_NB:uniformLin_PhiSurf= | 
| 107 | 
  | 
  | 
\begin{verbatim} | 
| 108 | 
  | 
  | 
 uniformLin_PhiSurf=.FALSE., | 
| 109 | 
  | 
  | 
\end{verbatim} | 
| 110 | 
  | 
  | 
Select the linear relation between surface geopotential anomaly  | 
| 111 | 
  | 
  | 
and surface pressure anomaly to be evaluated from  | 
| 112 | 
jmc | 
1.2 | 
$\frac{\partial \Phi_s}{\partial p_s} = 1/\rho(\theta_{Ref})$ | 
| 113 | 
jmc | 
1.5 | 
(see section \ref{sec:phi-freesurface}). | 
| 114 | 
jmc | 
1.1 | 
Note that using the default (=TRUE), the constant $1/\rho_0$ is | 
| 115 | 
  | 
  | 
used instead, and is not necessary consistent with other  | 
| 116 | 
  | 
  | 
parts of the geopotential that relies on $\theta_{Ref}$. | 
| 117 | 
  | 
  | 
\\ \fbox{ | 
| 118 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 119 | 
  | 
  | 
{\it S/R INI\_LINEAR\_PHISURF}~({\it ini\_linear\_phisurf.F}) | 
| 120 | 
  | 
  | 
\end{minipage} | 
| 121 | 
  | 
  | 
} | 
| 122 | 
  | 
  | 
 | 
| 123 | 
  | 
  | 
\item Line PUT_LINE_NB:saltStepping= and Line PUT_LINE_NB:momViscosity= | 
| 124 | 
  | 
  | 
\begin{verbatim} | 
| 125 | 
  | 
  | 
 saltStepping=.FALSE., | 
| 126 | 
  | 
  | 
 momViscosity=.FALSE., | 
| 127 | 
  | 
  | 
\end{verbatim} | 
| 128 | 
  | 
  | 
Do not step forward Water vapour and do not compute viscous terms. | 
| 129 | 
  | 
  | 
This allow to save some computer time. | 
| 130 | 
  | 
  | 
 | 
| 131 | 
  | 
  | 
\item Line PUT_LINE_NB:vectorInvariantMomentum= | 
| 132 | 
  | 
  | 
\begin{verbatim} | 
| 133 | 
  | 
  | 
 vectorInvariantMomentum=.TRUE., | 
| 134 | 
  | 
  | 
\end{verbatim} | 
| 135 | 
  | 
  | 
Select the vector-invariant form to solve the momentum equation. | 
| 136 | 
  | 
  | 
\\ \fbox{ | 
| 137 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 138 | 
  | 
  | 
{\it S/R MOM\_VECINV}~({\it mom\_vecinv.F}) | 
| 139 | 
  | 
  | 
\end{minipage} | 
| 140 | 
  | 
  | 
} | 
| 141 | 
  | 
  | 
 | 
| 142 | 
  | 
  | 
\item Line PUT_LINE_NB:staggerTimeStep= | 
| 143 | 
  | 
  | 
\begin{verbatim} | 
| 144 | 
  | 
  | 
 staggerTimeStep=.TRUE., | 
| 145 | 
  | 
  | 
\end{verbatim} | 
| 146 | 
  | 
  | 
Select the staggered time-stepping (rather than syncronous time stepping). | 
| 147 | 
  | 
  | 
 | 
| 148 | 
  | 
  | 
\item Line PUT_LINE_NB:readBinaryPrec= and PUT_LINE_NB:writeBinaryPrec= | 
| 149 | 
  | 
  | 
\begin{verbatim} | 
| 150 | 
  | 
  | 
 readBinaryPrec=64, | 
| 151 | 
  | 
  | 
 writeBinaryPrec=64, | 
| 152 | 
  | 
  | 
\end{verbatim} | 
| 153 | 
  | 
  | 
Sets format for reading binary input datasets and writing output fields to | 
| 154 | 
  | 
  | 
use 64-bit representation for floating-point numbers. | 
| 155 | 
  | 
  | 
\\ \fbox{ | 
| 156 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 157 | 
  | 
  | 
{\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\ | 
| 158 | 
  | 
  | 
{\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F}) | 
| 159 | 
  | 
  | 
\end{minipage} | 
| 160 | 
  | 
  | 
} | 
| 161 | 
  | 
  | 
 | 
| 162 | 
  | 
  | 
\item Line PUT_LINE_NB:cg2dMaxIters=, | 
| 163 | 
  | 
  | 
\begin{verbatim} | 
| 164 | 
  | 
  | 
 cg2dMaxIters=200, | 
| 165 | 
  | 
  | 
\end{verbatim} | 
| 166 | 
  | 
  | 
Sets maximum number of iterations the two-dimensional, conjugate | 
| 167 | 
  | 
  | 
gradient solver will use, {\bf irrespective of convergence  | 
| 168 | 
  | 
  | 
criteria being met}. | 
| 169 | 
  | 
  | 
\\ \fbox{ | 
| 170 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 171 | 
  | 
  | 
{\it S/R CG2D}~({\it cg2d.F}) | 
| 172 | 
  | 
  | 
\end{minipage} | 
| 173 | 
  | 
  | 
} | 
| 174 | 
  | 
  | 
 | 
| 175 | 
  | 
  | 
\item Line PUT_LINE_NB:cg2dTargetResWunit=, | 
| 176 | 
  | 
  | 
\begin{verbatim} | 
| 177 | 
  | 
  | 
 cg2dTargetResWunit=1.E-17, | 
| 178 | 
  | 
  | 
\end{verbatim} | 
| 179 | 
jmc | 
1.5 | 
Sets the tolerance (in units of $\omega$) which the two-dimensional,  | 
| 180 | 
  | 
  | 
conjugate gradient solver will use to test for convergence in equation  | 
| 181 | 
  | 
  | 
%- note: Description of Conjugate gradient method (& related params) is missing | 
| 182 | 
  | 
  | 
%  in the mean time, substitute this eq ref: | 
| 183 | 
  | 
  | 
\ref{eq:elliptic-backward-free-surface} %\ref{eq:eg-hs-congrad_2d_resid}  | 
| 184 | 
  | 
  | 
to $1 \times 10^{-17} Pa/s$. | 
| 185 | 
  | 
  | 
Solver will iterate until tolerance falls below this value or until the  | 
| 186 | 
  | 
  | 
maximum number of solver iterations is reached. | 
| 187 | 
jmc | 
1.1 | 
\\ \fbox{ | 
| 188 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 189 | 
  | 
  | 
{\it S/R CG2D}~({\it cg2d.F}) | 
| 190 | 
  | 
  | 
\end{minipage} | 
| 191 | 
  | 
  | 
} | 
| 192 | 
  | 
  | 
 | 
| 193 | 
  | 
  | 
\item Line PUT_LINE_NB:deltaT=, | 
| 194 | 
  | 
  | 
\begin{verbatim} | 
| 195 | 
  | 
  | 
 deltaT=450., | 
| 196 | 
  | 
  | 
\end{verbatim} | 
| 197 | 
  | 
  | 
Sets the timestep $\Delta t$ used in the model to | 
| 198 | 
  | 
  | 
$450~{\rm s}$ ($= 1/8 {\rm h}$). | 
| 199 | 
  | 
  | 
\\ \fbox{ | 
| 200 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 201 | 
  | 
  | 
{\it S/R TIMESTEP}({\it timestep.F})\\ | 
| 202 | 
  | 
  | 
{\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F}) | 
| 203 | 
  | 
  | 
\end{minipage} | 
| 204 | 
  | 
  | 
} | 
| 205 | 
  | 
  | 
 | 
| 206 | 
  | 
  | 
\item Line PUT_LINE_NB:startTime=, | 
| 207 | 
  | 
  | 
\begin{verbatim} | 
| 208 | 
  | 
  | 
 startTime=124416000., | 
| 209 | 
  | 
  | 
\end{verbatim} | 
| 210 | 
  | 
  | 
Sets the starting time, in seconds, for the model time counter. | 
| 211 | 
  | 
  | 
A non-zero starting time requires to read the initial state | 
| 212 | 
  | 
  | 
from a pickup file. By default the pickup file is named according  | 
| 213 | 
  | 
  | 
to the integer number ({\it nIter0}) of time steps  | 
| 214 | 
jmc | 
1.2 | 
in the {\it startTime} value ($ nIter0 = startTime / deltaT $). | 
| 215 | 
jmc | 
1.1 | 
 | 
| 216 | 
  | 
  | 
\item Line PUT_LINE_NB:#nTimeSteps=, | 
| 217 | 
  | 
  | 
\begin{verbatim} | 
| 218 | 
  | 
  | 
#nTimeSteps=69120, | 
| 219 | 
  | 
  | 
\end{verbatim} | 
| 220 | 
  | 
  | 
A commented out setting for the length of the simulation  | 
| 221 | 
  | 
  | 
(in number of time-step) that corresponds to 1 year simulation. | 
| 222 | 
  | 
  | 
 | 
| 223 | 
  | 
  | 
\item Line PUT_LINE_NB:nTimeSteps= and PUT_LINE_NB:monitorFreq=, | 
| 224 | 
  | 
  | 
\begin{verbatim} | 
| 225 | 
  | 
  | 
 nTimeSteps=16, | 
| 226 | 
  | 
  | 
 monitorFreq=1., | 
| 227 | 
  | 
  | 
\end{verbatim} | 
| 228 | 
  | 
  | 
Sets the length of the simulation (in number of time-step) | 
| 229 | 
  | 
  | 
and the frequency (in seconds) for "monitor" output. | 
| 230 | 
  | 
  | 
to 16 iterations and 1 seconds respectively. This choice | 
| 231 | 
  | 
  | 
corresponds to a short simulation test. | 
| 232 | 
  | 
  | 
 | 
| 233 | 
  | 
  | 
\item Line PUT_LINE_NB:pChkptFreq=, | 
| 234 | 
  | 
  | 
\begin{verbatim} | 
| 235 | 
  | 
  | 
 pChkptFreq=31104000., | 
| 236 | 
  | 
  | 
\end{verbatim} | 
| 237 | 
  | 
  | 
Sets the time interval, in seconds, bewteen 2 consecutive  | 
| 238 | 
  | 
  | 
"permanent" pickups ("permanent checkpoint frequency") | 
| 239 | 
  | 
  | 
that are used to restart the simuilation, to 1 year. | 
| 240 | 
  | 
  | 
 | 
| 241 | 
  | 
  | 
\item Line PUT_LINE_NB:chkptFreq=, | 
| 242 | 
  | 
  | 
\begin{verbatim} | 
| 243 | 
  | 
  | 
 chkptFreq=2592000., | 
| 244 | 
  | 
  | 
\end{verbatim} | 
| 245 | 
  | 
  | 
Sets the time interval, in seconds, bewteen 2 consecutive  | 
| 246 | 
  | 
  | 
"temporary" pickups ("checkpoint frequency") to 1 month.  | 
| 247 | 
  | 
  | 
The "temporary" pickup file name is alternatively "ckptA"  | 
| 248 | 
jmc | 
1.2 | 
and "ckptB" ; thoses pickup (as opposed to the permanent ones) | 
| 249 | 
  | 
  | 
are designed to be over-written by the model as the simulation | 
| 250 | 
  | 
  | 
progresses. | 
| 251 | 
jmc | 
1.1 | 
 | 
| 252 | 
  | 
  | 
\item Line PUT_LINE_NB:dumpFreq=, | 
| 253 | 
  | 
  | 
\begin{verbatim} | 
| 254 | 
  | 
  | 
 dumpFreq=2592000., | 
| 255 | 
  | 
  | 
\end{verbatim} | 
| 256 | 
  | 
  | 
Set the frequencies (in seconds) for the snap-shot output | 
| 257 | 
  | 
  | 
to 1 month. | 
| 258 | 
  | 
  | 
 | 
| 259 | 
  | 
  | 
\item Line PUT_LINE_NB:#monitorFreq=, | 
| 260 | 
  | 
  | 
\begin{verbatim} | 
| 261 | 
  | 
  | 
#monitorFreq=43200., | 
| 262 | 
  | 
  | 
\end{verbatim} | 
| 263 | 
  | 
  | 
A commented out line setting the frequency (in seconds) for the  | 
| 264 | 
jmc | 
1.2 | 
"monitor" output to 12.h. This frequency fits  | 
| 265 | 
jmc | 
1.1 | 
better the longer simulation of 1 year. | 
| 266 | 
  | 
  | 
 | 
| 267 | 
  | 
  | 
\item Line PUT_LINE_NB:usingCurvilinearGrid=, | 
| 268 | 
  | 
  | 
\begin{verbatim} | 
| 269 | 
  | 
  | 
 usingCurvilinearGrid=.TRUE., | 
| 270 | 
  | 
  | 
\end{verbatim} | 
| 271 | 
  | 
  | 
Set the horizontal type of grid to Curvilinear-Grid. | 
| 272 | 
  | 
  | 
 | 
| 273 | 
  | 
  | 
\item Line PUT_LINE_NB:horizGridFile=, | 
| 274 | 
  | 
  | 
\begin{verbatim} | 
| 275 | 
  | 
  | 
 horizGridFile='grid_cs32', | 
| 276 | 
  | 
  | 
\end{verbatim} | 
| 277 | 
  | 
  | 
Set the root for the grid file name to "{\it grid\_cs32}". | 
| 278 | 
  | 
  | 
The grid-file names are derived from the root, adding a  | 
| 279 | 
  | 
  | 
suffix with the face number (e.g.: {\it .face001.bin},  | 
| 280 | 
  | 
  | 
{\it .face002.bin} $\cdots$ ) | 
| 281 | 
  | 
  | 
\\ \fbox{ | 
| 282 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 283 | 
  | 
  | 
{\it S/R INI\_CURVILINEAR\_GRID}~({\it ini\_curvilinear\_grid.F}) | 
| 284 | 
  | 
  | 
\end{minipage} | 
| 285 | 
  | 
  | 
} | 
| 286 | 
  | 
  | 
 | 
| 287 | 
  | 
  | 
\item Lines PUT_LINE_NB:delR= and PUT_LINE_NB:Ro_SeaLevel=, | 
| 288 | 
  | 
  | 
\begin{verbatim} | 
| 289 | 
  | 
  | 
 delR=20*50.E2, | 
| 290 | 
  | 
  | 
 Ro_SeaLevel=1.E5, | 
| 291 | 
  | 
  | 
\end{verbatim} | 
| 292 | 
  | 
  | 
Those 2 lines define the vertical discretization, in pressure units. | 
| 293 | 
  | 
  | 
The $1^{rst}$ one sets the increments in pressure units (Pa), | 
| 294 | 
  | 
  | 
to 20 equally thick levels of $50 \times 10^2 {\rm Pa}$ each. | 
| 295 | 
  | 
  | 
The $2^{nd}$ one sets the reference pressure at the sea-level,  | 
| 296 | 
  | 
  | 
to $10^5 {\rm Pa}$. This define the origin (interface $k=1$)  | 
| 297 | 
  | 
  | 
of the vertical pressure axis, with decreasing pressure  | 
| 298 | 
  | 
  | 
as the level index $k$ increases. | 
| 299 | 
  | 
  | 
\\ \fbox{ | 
| 300 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 301 | 
  | 
  | 
{\it S/R INI\_VERTICAL\_GRID}~({\it ini\_vertical\_grid.F}) | 
| 302 | 
  | 
  | 
\end{minipage} | 
| 303 | 
  | 
  | 
} | 
| 304 | 
  | 
  | 
 | 
| 305 | 
  | 
  | 
\item Line PUT_LINE_NB:#topoFile=, | 
| 306 | 
  | 
  | 
\begin{verbatim} | 
| 307 | 
  | 
  | 
#topoFile='topo.cs.bin' | 
| 308 | 
  | 
  | 
\end{verbatim} | 
| 309 | 
  | 
  | 
This commented out line would allow to set the file name  | 
| 310 | 
  | 
  | 
of a 2-D orography file, in meters units, to '{\it topo.cs.bin}'. | 
| 311 | 
  | 
  | 
\\ \fbox{ | 
| 312 | 
  | 
  | 
\begin{minipage}{5.0in} | 
| 313 | 
  | 
  | 
{\it S/R INI\_DEPTH}~({\it ini\_depth.F}) | 
| 314 | 
  | 
  | 
\end{minipage} | 
| 315 | 
  | 
  | 
} | 
| 316 | 
  | 
  | 
 | 
| 317 | 
  | 
  | 
\end{itemize} | 
| 318 | 
  | 
  | 
 | 
| 319 | 
  | 
  | 
\noindent other lines in the file {\it input/data} are standard values | 
| 320 | 
  | 
  | 
that are described in the MITgcm Getting Started and MITgcm Parameters | 
| 321 | 
  | 
  | 
notes. | 
| 322 | 
  | 
  | 
 | 
| 323 | 
jmc | 
1.3 | 
\begin{small} | 
| 324 | 
jmc | 
1.4 | 
\input{s_examples/held_suarez_cs/input/data} | 
| 325 | 
jmc | 
1.3 | 
\end{small} |