/[MITgcm]/manual/s_examples/global_oce_latlon/inp_data.templ
ViewVC logotype

Contents of /manual/s_examples/global_oce_latlon/inp_data.templ

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download)
Thu Apr 21 20:05:12 2011 UTC (14 years, 3 months ago) by jmc
Branch: MAIN
use script tools/preprocess.sh to get updated parameter files from MITgcm tree
(similar to manual/s_examples/held_suarez_cs)

1 % $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex,v 1.19 2010/08/30 23:09:20 jmc Exp $
2 % $Name: $
3
4 %\subsubsection{File {\it input/data}}
5 %\label{www:tutorials}
6
7 This file, reproduced completely below, specifies the main parameters
8 for the experiment. The parameters that are significant for this configuration
9 are
10
11 \begin{itemize}
12
13 \item Lines 7-10 and 11-14
14 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
15 $\cdots$ \\
16 set reference values for potential
17 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and
18 ${\rm ppt}$. The entries are ordered from surface to depth.
19 Density is calculated from anomalies at each level evaluated
20 with respect to the reference values set here.\\
21 \fbox{
22 \begin{minipage}{5.0in}
23 {\it S/R INI\_THETA}({\it ini\_theta.F})
24 \end{minipage}
25 }
26
27
28 \item Line 15,
29 \begin{verbatim} viscAz=1.E-3, \end{verbatim}
30 this line sets the vertical Laplacian dissipation coefficient to
31 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
32 for this operator are specified later. This variable is copied into
33 model general vertical coordinate variable {\bf viscAr}.
34
35 \fbox{
36 \begin{minipage}{5.0in}
37 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
38 \end{minipage}
39 }
40
41 \item Line 16,
42 \begin{verbatim}
43 viscAh=5.E5,
44 \end{verbatim}
45 this line sets the horizontal Laplacian frictional dissipation coefficient to
46 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
47 for this operator are specified later.
48
49 \item Lines 17,
50 \begin{verbatim}
51 no_slip_sides=.FALSE.
52 \end{verbatim}
53 this line selects a free-slip lateral boundary condition for
54 the horizontal Laplacian friction operator
55 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
56 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
57
58 \item Lines 9,
59 \begin{verbatim}
60 no_slip_bottom=.TRUE.
61 \end{verbatim}
62 this line selects a no-slip boundary condition for bottom
63 boundary condition in the vertical Laplacian friction operator
64 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
65
66 \item Line 19,
67 \begin{verbatim}
68 diffKhT=1.E3,
69 \end{verbatim}
70 this line sets the horizontal diffusion coefficient for temperature
71 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
72 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
73 all boundaries.
74
75 \item Line 20,
76 \begin{verbatim}
77 diffKzT=3.E-5,
78 \end{verbatim}
79 this line sets the vertical diffusion coefficient for temperature
80 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
81 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
82 the upper and lower boundaries.
83
84 \item Line 21,
85 \begin{verbatim}
86 diffKhS=1.E3,
87 \end{verbatim}
88 this line sets the horizontal diffusion coefficient for salinity
89 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
90 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
91 all boundaries.
92
93 \item Line 22,
94 \begin{verbatim}
95 diffKzS=3.E-5,
96 \end{verbatim}
97 this line sets the vertical diffusion coefficient for salinity
98 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
99 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
100 the upper and lower boundaries.
101
102 \item Lines 23-26
103 \begin{verbatim}
104 beta=1.E-11,
105 \end{verbatim}
106 \vspace{-5mm}$\cdots$\\
107 These settings do not apply for this experiment.
108
109 \item Line 27,
110 \begin{verbatim}
111 gravity=9.81,
112 \end{verbatim}
113 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
114 \fbox{
115 \begin{minipage}{5.0in}
116 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
117 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
118 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
119 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
120 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
121 \end{minipage}
122 }
123
124
125 \item Line 28-29,
126 \begin{verbatim}
127 rigidLid=.FALSE.,
128 implicitFreeSurface=.TRUE.,
129 \end{verbatim}
130 Selects the barotropic pressure equation to be the implicit free surface
131 formulation.
132
133 \item Line 30,
134 \begin{verbatim}
135 eosType='POLY3',
136 \end{verbatim}
137 Selects the third order polynomial form of the equation of state.\\
138 \fbox{
139 \begin{minipage}{5.0in}
140 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
141 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
142 \end{minipage}
143 }
144
145 \item Line 31,
146 \begin{verbatim}
147 readBinaryPrec=32,
148 \end{verbatim}
149 Sets format for reading binary input datasets holding model fields to
150 use 32-bit representation for floating-point numbers.\\
151 \fbox{
152 \begin{minipage}{5.0in}
153 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
154 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
155 \end{minipage}
156 }
157
158 \item Line 36,
159 \begin{verbatim}
160 cg2dMaxIters=1000,
161 \end{verbatim}
162 Sets maximum number of iterations the two-dimensional, conjugate
163 gradient solver will use, {\bf irrespective of convergence
164 criteria being met}.\\
165 \fbox{
166 \begin{minipage}{5.0in}
167 {\it S/R CG2D}~({\it cg2d.F})
168 \end{minipage}
169 }
170
171 \item Line 37,
172 \begin{verbatim}
173 cg2dTargetResidual=1.E-13,
174 \end{verbatim}
175 Sets the tolerance which the two-dimensional, conjugate
176 gradient solver will use to test for convergence in equation
177 %- note: Description of Conjugate gradient method (& related params) is missing
178 % in the mean time, substitute this eq ref:
179 \ref{eq:elliptic-backward-free-surface} %\ref{eq:congrad_2d_resid}
180 to $1 \times 10^{-13}$.
181 Solver will iterate until tolerance falls below this value or until the
182 maximum number of solver iterations is reached.\\
183 \fbox{
184 \begin{minipage}{5.0in}
185 {\it S/R CG2D}~({\it cg2d.F})
186 \end{minipage}
187 }
188
189 \item Line 42,
190 \begin{verbatim}
191 startTime=0,
192 \end{verbatim}
193 Sets the starting time for the model internal time counter.
194 When set to non-zero this option implicitly requests a
195 checkpoint file be read for initial state.
196 By default the checkpoint file is named according to
197 the integer number of time steps in the {\bf startTime} value.
198 The internal time counter works in seconds.
199
200 \item Line 43,
201 \begin{verbatim}
202 endTime=2808000.,
203 \end{verbatim}
204 Sets the time (in seconds) at which this simulation will terminate.
205 At the end of a simulation a checkpoint file is automatically
206 written so that a numerical experiment can consist of multiple
207 stages.
208
209 \item Line 44,
210 \begin{verbatim}
211 #endTime=62208000000,
212 \end{verbatim}
213 A commented out setting for endTime for a 2000 year simulation.
214
215 \item Line 45,
216 \begin{verbatim}
217 deltaTmom=2400.0,
218 \end{verbatim}
219 Sets the timestep $\delta t_{v}$ used in the momentum equations to
220 $20~{\rm mins}$.
221 %- note: Distord Physics (using different time-steps) is not described
222 % in the mean time, put this section ref:
223 See section \ref{sec:time_stepping}. %\ref{sec:mom_time_stepping}.
224
225 \fbox{
226 \begin{minipage}{5.0in}
227 {\it S/R TIMESTEP}({\it timestep.F})
228 \end{minipage}
229 }
230
231 \item Line 46,
232 \begin{verbatim}
233 tauCD=321428.,
234 \end{verbatim}
235 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$
236 used in the momentum equations.
237 %- note: description of CD-scheme pkg (and related params) is missing;
238 % in the mean time, comment out this ref.
239 %See section \ref{sec:cd_scheme}.
240
241 \fbox{
242 \begin{minipage}{5.0in}
243 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
244 {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F})
245 \end{minipage}
246 }
247
248 \item Line 47,
249 \begin{verbatim}
250 deltaTtracer=108000.,
251 \end{verbatim}
252 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
253 $30~{\rm hours}$.
254 %- note: Distord Physics (using different time-steps) is not described
255 % in the mean time, put this section ref:
256 See section \ref{sec:time_stepping}. %\ref{sec:tracer_time_stepping}.
257
258 \fbox{
259 \begin{minipage}{5.0in}
260 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
261 \end{minipage}
262 }
263
264 \item Line 47,
265 \begin{verbatim}
266 bathyFile='topog.box'
267 \end{verbatim}
268 This line specifies the name of the file from which the domain
269 bathymetry is read. This file is a two-dimensional ($x,y$) map of
270 depths. This file is assumed to contain 64-bit binary numbers
271 giving the depth of the model at each grid cell, ordered with the x
272 coordinate varying fastest. The points are ordered from low coordinate
273 to high coordinate for both axes. The units and orientation of the
274 depths in this file are the same as used in the MITgcm code. In this
275 experiment, a depth of $0m$ indicates a solid wall and a depth
276 of $-2000m$ indicates open ocean. The matlab program
277 {\it input/gendata.m} shows an example of how to generate a
278 bathymetry file.
279
280
281 \item Line 50,
282 \begin{verbatim}
283 zonalWindFile='windx.sin_y'
284 \end{verbatim}
285 This line specifies the name of the file from which the x-direction
286 surface wind stress is read. This file is also a two-dimensional
287 ($x,y$) map and is enumerated and formatted in the same manner as the
288 bathymetry file. The matlab program {\it input/gendata.m} includes example
289 code to generate a valid
290 {\bf zonalWindFile}
291 file.
292
293 \end{itemize}
294
295 \noindent other lines in the file {\it input/data} are standard values
296 that are described in the MITgcm Getting Started and MITgcm Parameters
297 notes.
298
299 \begin{small}
300 \input{s_examples/global_oce_latlon/input/data}
301 \end{small}

  ViewVC Help
Powered by ViewVC 1.1.22