/[MITgcm]/manual/s_examples/global_oce_latlon/inp_data.templ
ViewVC logotype

Annotation of /manual/s_examples/global_oce_latlon/inp_data.templ

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download)
Wed May 15 22:47:12 2013 UTC (12 years, 1 month ago) by jmc
Branch: MAIN
CVS Tags: checkpoint01, HEAD
Changes since 1.4: +3 -3 lines
fix "Delta t" notation ; cut line defining vertical resolution (to get
 reasonable html page width); add ref for convergence accelarator (different
time-steps).

1 jmc 1.5 % $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/inp_data.templ,v 1.4 2011/05/08 15:17:07 jmc Exp $
2 jmc 1.1 % $Name: $
3    
4     %\subsubsection{File {\it input/data}}
5     %\label{www:tutorials}
6    
7 jmc 1.4 This file, reproduced completely below, specifies the main parameters
8     for the experiment. The parameters that are significant for this configuration
9 jmc 1.1 are
10    
11     \begin{itemize}
12    
13 jmc 1.4 \item Lines PUT_LINE_NB:tRef=--PUT_LINE_NB:sRef=
14     \begin{verbatim}
15 mlosch 1.2 tRef= 15*20.,
16     sRef= 15*35.,
17 jmc 1.4 \end{verbatim}
18     %$\cdots$
19 jmc 1.3 %\\
20 jmc 1.1 set reference values for potential
21 jmc 1.4 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and
22 jmc 1.1 ${\rm ppt}$. The entries are ordered from surface to depth.
23     Density is calculated from anomalies at each level evaluated
24     with respect to the reference values set here.\\
25     \fbox{
26     \begin{minipage}{5.0in}
27 mlosch 1.2 {\it S/R INI\_THETA}({\it ini\_theta.F}) \\
28     {\it S/R INI\_SALT}({\it ini\_salt.F})
29 jmc 1.1 \end{minipage}
30     }
31    
32 jmc 1.4 \item Line PUT_LINE_NB:viscAr=,
33     \begin{verbatim}
34 mlosch 1.2 viscAr=1.E-3,
35     \end{verbatim}
36 jmc 1.1 this line sets the vertical Laplacian dissipation coefficient to
37     $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
38 mlosch 1.2 for this operator are specified later.
39 jmc 1.1
40     \fbox{
41     \begin{minipage}{5.0in}
42     {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
43     \end{minipage}
44     }
45    
46 jmc 1.4 \item Line PUT_LINE_NB:viscAh=,
47 jmc 1.1 \begin{verbatim}
48     viscAh=5.E5,
49 jmc 1.4 \end{verbatim}
50 jmc 1.1 this line sets the horizontal Laplacian frictional dissipation coefficient to
51     $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
52     for this operator are specified later.
53    
54 jmc 1.4 \item Lines PUT_LINE_NB:diffKhT= and PUT_LINE_NB:diffKhS=,
55 jmc 1.1 \begin{verbatim}
56 jmc 1.4 diffKhT=0.,
57     diffKhS=0.,
58 jmc 1.1 \end{verbatim}
59 mlosch 1.2 set the horizontal diffusion coefficient for temperature and salinity
60     to 0, since package GMREDI is used.
61 jmc 1.1
62 jmc 1.4 \item Lines PUT_LINE_NB:diffKrT= and PUT_LINE_NB:diffKrS=,
63 jmc 1.1 \begin{verbatim}
64 mlosch 1.2 diffKrT=3.E-5,
65     diffKrS=3.E-5,
66 jmc 1.1 \end{verbatim}
67 mlosch 1.2 set the vertical diffusion coefficient for temperature and salinity
68 jmc 1.4 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
69 jmc 1.1 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
70     the upper and lower boundaries.
71    
72 jmc 1.4 \item Lines PUT_LINE_NB:rhonil=--PUT_LINE_NB:eosType=
73     \begin{verbatim}
74 mlosch 1.2 rhonil=1035.,
75     rhoConstFresh=1000.,
76 jmc 1.4 eosType = 'JMD95Z',
77 jmc 1.1 \end{verbatim}
78 mlosch 1.2 set the reference densities for sea water and fresh water, and selects
79     the equation of state \citep{jackett95}
80 jmc 1.1 \fbox{
81     \begin{minipage}{5.0in}
82 mlosch 1.2 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
83     {\it S/R FIND\_ALPHA}~({\it find\_alpha.F}) \\
84 jmc 1.1 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
85     {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
86     {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
87     {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
88     {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
89     \end{minipage}
90     }
91    
92    
93 jmc 1.4 \item Lines PUT_LINE_NB:ivdc_kappa=--PUT_LINE_NB:implicitDiffusion=,
94 jmc 1.1 \begin{verbatim}
95 mlosch 1.2 ivdc_kappa=100.,
96     implicitDiffusion=.TRUE.,
97 jmc 1.1 \end{verbatim}
98 mlosch 1.2 specify an ``implicit diffusion'' scheme with increased vertical
99     diffusivity of 100~m$^2$/s in case of instable stratification.
100 jmc 1.1 \fbox{
101     \begin{minipage}{5.0in}
102     \end{minipage}
103     }
104    
105 mlosch 1.2 \item \ldots
106    
107 jmc 1.4 \item Line PUT_LINE_NB:readBinaryPrec=,
108 jmc 1.1 \begin{verbatim}
109     readBinaryPrec=32,
110     \end{verbatim}
111     Sets format for reading binary input datasets holding model fields to
112     use 32-bit representation for floating-point numbers.\\
113     \fbox{
114     \begin{minipage}{5.0in}
115     {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
116     {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
117     \end{minipage}
118     }
119    
120 jmc 1.4 \item Line PUT_LINE_NB:cg2dMaxIters=,
121 jmc 1.1 \begin{verbatim}
122 mlosch 1.2 cg2dMaxIters=500,
123 jmc 1.1 \end{verbatim}
124     Sets maximum number of iterations the two-dimensional, conjugate
125 jmc 1.4 gradient solver will use, {\bf irrespective of convergence
126 jmc 1.1 criteria being met}.\\
127     \fbox{
128     \begin{minipage}{5.0in}
129     {\it S/R CG2D}~({\it cg2d.F})
130     \end{minipage}
131     }
132    
133 jmc 1.4 \item Line PUT_LINE_NB:cg2dTargetResidual=,
134 jmc 1.1 \begin{verbatim}
135     cg2dTargetResidual=1.E-13,
136     \end{verbatim}
137     Sets the tolerance which the two-dimensional, conjugate
138 jmc 1.4 gradient solver will use to test for convergence in equation
139 jmc 1.1 %- note: Description of Conjugate gradient method (& related params) is missing
140     % in the mean time, substitute this eq ref:
141 jmc 1.4 \ref{eq:elliptic-backward-free-surface} %\ref{eq:congrad_2d_resid}
142 jmc 1.1 to $1 \times 10^{-13}$.
143 jmc 1.4 Solver will iterate until tolerance falls below this value or until the
144 jmc 1.1 maximum number of solver iterations is reached.\\
145     \fbox{
146     \begin{minipage}{5.0in}
147     {\it S/R CG2D}~({\it cg2d.F})
148     \end{minipage}
149     }
150    
151 jmc 1.4 \item Line PUT_LINE_NB:nIter0=,
152 jmc 1.1 \begin{verbatim}
153 mlosch 1.2 nIter0=0,
154 jmc 1.1 \end{verbatim}
155     Sets the starting time for the model internal time counter.
156 jmc 1.4 When set to non-zero this option implicitly requests a
157 jmc 1.1 checkpoint file be read for initial state.
158     By default the checkpoint file is named according to
159 mlosch 1.2 the integer number of time step value \verb+nIter0+.
160     The internal time counter works in seconds. Alternatively,
161     \verb+startTime+ can be set.
162 jmc 1.1
163 jmc 1.4 \item Line PUT_LINE_NB:nTimeSteps=,
164 jmc 1.1 \begin{verbatim}
165 jmc 1.4 nTimeSteps=20,
166 jmc 1.1 \end{verbatim}
167 mlosch 1.2 Sets the time step number at which this simulation will terminate.
168 jmc 1.1 At the end of a simulation a checkpoint file is automatically
169     written so that a numerical experiment can consist of multiple
170 mlosch 1.2 stages. Alternatively \verb+endTime+ can be set.
171 jmc 1.1
172 jmc 1.4 \item Line PUT_LINE_NB:deltaTmom=,
173 jmc 1.1 \begin{verbatim}
174 jmc 1.4 deltaTmom=1800.,
175 jmc 1.1 \end{verbatim}
176 jmc 1.5 Sets the timestep $\Delta t_{v}$ used in the momentum equations to
177 mlosch 1.2 $30~{\rm mins}$.
178 jmc 1.1 %- note: Distord Physics (using different time-steps) is not described
179     % in the mean time, put this section ref:
180     See section \ref{sec:time_stepping}. %\ref{sec:mom_time_stepping}.
181    
182     \fbox{
183     \begin{minipage}{5.0in}
184     {\it S/R TIMESTEP}({\it timestep.F})
185     \end{minipage}
186     }
187    
188 jmc 1.4 \item Line PUT_LINE_NB:tauCD=,
189 jmc 1.1 \begin{verbatim}
190     tauCD=321428.,
191     \end{verbatim}
192 jmc 1.4 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$
193 jmc 1.1 used in the momentum equations.
194     %- note: description of CD-scheme pkg (and related params) is missing;
195     % in the mean time, comment out this ref.
196     %See section \ref{sec:cd_scheme}.
197    
198     \fbox{
199     \begin{minipage}{5.0in}
200     {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
201     {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F})
202     \end{minipage}
203     }
204    
205 jmc 1.4 \item Lines PUT_LINE_NB:deltaTtracer=--PUT_LINE_NB:deltaTfreesurf=,
206 jmc 1.1 \begin{verbatim}
207 mlosch 1.2 deltaTtracer=86400.,
208     deltaTClock = 86400.,
209     deltaTfreesurf= 86400.,
210     \end{verbatim}
211 jmc 1.5 Sets the default timestep, $\Delta t_{\theta}$, for tracer equations
212 mlosch 1.2 and implicit free surface equations to
213     $24~{\rm hours}$.
214     % - note: Distord Physics (using different time-steps) is not
215     % described in the mean time, put this section ref:
216 jmc 1.1 See section \ref{sec:time_stepping}. %\ref{sec:tracer_time_stepping}.
217    
218     \fbox{
219     \begin{minipage}{5.0in}
220     {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
221     \end{minipage}
222     }
223    
224 jmc 1.4 \item Line PUT_LINE_NB:bathyFile=,
225 jmc 1.1 \begin{verbatim}
226 mlosch 1.2 bathyFile='bathymetry.bin'
227 jmc 1.1 \end{verbatim}
228     This line specifies the name of the file from which the domain
229     bathymetry is read. This file is a two-dimensional ($x,y$) map of
230 jmc 1.4 depths. This file is assumed to contain 32-bit binary numbers
231     giving the depth of the model at each grid cell, ordered with the x
232 jmc 1.1 coordinate varying fastest. The points are ordered from low coordinate
233     to high coordinate for both axes. The units and orientation of the
234     depths in this file are the same as used in the MITgcm code. In this
235     experiment, a depth of $0m$ indicates a solid wall and a depth
236 mlosch 1.2 of $<0m$ indicates open ocean.
237    
238 jmc 1.1
239 jmc 1.4 \item Lines PUT_LINE_NB:zonalWindFile=--PUT_LINE_NB:meridWindFile=,
240 mlosch 1.2 \begin{verbatim}
241     zonalWindFile='trenberth_taux.bin'
242     meridWindFile='trenberth_tauy.bin'
243     \end{verbatim}
244     These lines specify the names of the files from which the x- and y-
245     direction surface wind stress is read. These files are also
246     three-dimensional ($x,y,time$) maps and are enumerated and formatted
247 jmc 1.4 in the same manner as the bathymetry file.
248 jmc 1.1 \end{itemize}
249    
250     \noindent other lines in the file {\it input/data} are standard values
251     that are described in the MITgcm Getting Started and MITgcm Parameters
252     notes.
253    
254     \begin{small}
255     \input{s_examples/global_oce_latlon/input/data}
256     \end{small}
257    

  ViewVC Help
Powered by ViewVC 1.1.22