| 1 | jmc | 1.4 | % $Header: /u/gcmpack/manual/s_examples/global_oce_latlon/inp_data.templ,v 1.3 2011/05/02 12:30:44 jmc Exp $ | 
| 2 | jmc | 1.1 | % $Name:  $ | 
| 3 |  |  |  | 
| 4 |  |  | %\subsubsection{File {\it input/data}} | 
| 5 |  |  | %\label{www:tutorials} | 
| 6 |  |  |  | 
| 7 | jmc | 1.4 | This file, reproduced completely below, specifies the main parameters | 
| 8 |  |  | for the experiment. The parameters that are significant for this configuration | 
| 9 | jmc | 1.1 | are | 
| 10 |  |  |  | 
| 11 |  |  | \begin{itemize} | 
| 12 |  |  |  | 
| 13 | jmc | 1.4 | \item Lines PUT_LINE_NB:tRef=--PUT_LINE_NB:sRef= | 
| 14 |  |  | \begin{verbatim} | 
| 15 | mlosch | 1.2 | tRef= 15*20., | 
| 16 |  |  | sRef= 15*35., | 
| 17 | jmc | 1.4 | \end{verbatim} | 
| 18 |  |  | %$\cdots$ | 
| 19 | jmc | 1.3 | %\\ | 
| 20 | jmc | 1.1 | set reference values for potential | 
| 21 | jmc | 1.4 | temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and | 
| 22 | jmc | 1.1 | ${\rm ppt}$. The entries are ordered from surface to depth. | 
| 23 |  |  | Density is calculated from anomalies at each level evaluated | 
| 24 |  |  | with respect to the reference values set here.\\ | 
| 25 |  |  | \fbox{ | 
| 26 |  |  | \begin{minipage}{5.0in} | 
| 27 | mlosch | 1.2 | {\it S/R INI\_THETA}({\it ini\_theta.F}) \\ | 
| 28 |  |  | {\it S/R INI\_SALT}({\it ini\_salt.F}) | 
| 29 | jmc | 1.1 | \end{minipage} | 
| 30 |  |  | } | 
| 31 |  |  |  | 
| 32 | jmc | 1.4 | \item Line PUT_LINE_NB:viscAr=, | 
| 33 |  |  | \begin{verbatim} | 
| 34 | mlosch | 1.2 | viscAr=1.E-3, | 
| 35 |  |  | \end{verbatim} | 
| 36 | jmc | 1.1 | this line sets the vertical Laplacian dissipation coefficient to | 
| 37 |  |  | $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions | 
| 38 | mlosch | 1.2 | for this operator are specified later. | 
| 39 | jmc | 1.1 |  | 
| 40 |  |  | \fbox{ | 
| 41 |  |  | \begin{minipage}{5.0in} | 
| 42 |  |  | {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F}) | 
| 43 |  |  | \end{minipage} | 
| 44 |  |  | } | 
| 45 |  |  |  | 
| 46 | jmc | 1.4 | \item Line PUT_LINE_NB:viscAh=, | 
| 47 | jmc | 1.1 | \begin{verbatim} | 
| 48 |  |  | viscAh=5.E5, | 
| 49 | jmc | 1.4 | \end{verbatim} | 
| 50 | jmc | 1.1 | this line sets the horizontal Laplacian frictional dissipation coefficient to | 
| 51 |  |  | $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions | 
| 52 |  |  | for this operator are specified later. | 
| 53 |  |  |  | 
| 54 | jmc | 1.4 | \item Lines PUT_LINE_NB:diffKhT= and PUT_LINE_NB:diffKhS=, | 
| 55 | jmc | 1.1 | \begin{verbatim} | 
| 56 | jmc | 1.4 | diffKhT=0., | 
| 57 |  |  | diffKhS=0., | 
| 58 | jmc | 1.1 | \end{verbatim} | 
| 59 | mlosch | 1.2 | set the horizontal diffusion coefficient for temperature and salinity | 
| 60 |  |  | to 0, since package GMREDI is used. | 
| 61 | jmc | 1.1 |  | 
| 62 | jmc | 1.4 | \item Lines PUT_LINE_NB:diffKrT= and PUT_LINE_NB:diffKrS=, | 
| 63 | jmc | 1.1 | \begin{verbatim} | 
| 64 | mlosch | 1.2 | diffKrT=3.E-5, | 
| 65 |  |  | diffKrS=3.E-5, | 
| 66 | jmc | 1.1 | \end{verbatim} | 
| 67 | mlosch | 1.2 | set the vertical diffusion coefficient for temperature and salinity | 
| 68 | jmc | 1.4 | to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary | 
| 69 | jmc | 1.1 | condition on this operator is $\frac{\partial}{\partial z}=0$ at both | 
| 70 |  |  | the upper and lower boundaries. | 
| 71 |  |  |  | 
| 72 | jmc | 1.4 | \item Lines PUT_LINE_NB:rhonil=--PUT_LINE_NB:eosType= | 
| 73 |  |  | \begin{verbatim} | 
| 74 | mlosch | 1.2 | rhonil=1035., | 
| 75 |  |  | rhoConstFresh=1000., | 
| 76 | jmc | 1.4 | eosType = 'JMD95Z', | 
| 77 | jmc | 1.1 | \end{verbatim} | 
| 78 | mlosch | 1.2 | set the reference densities for sea water and fresh water, and selects | 
| 79 |  |  | the equation of state \citep{jackett95} | 
| 80 | jmc | 1.1 | \fbox{ | 
| 81 |  |  | \begin{minipage}{5.0in} | 
| 82 | mlosch | 1.2 | {\it S/R FIND\_RHO}~({\it find\_rho.F})\\ | 
| 83 |  |  | {\it S/R FIND\_ALPHA}~({\it find\_alpha.F}) \\ | 
| 84 | jmc | 1.1 | {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\ | 
| 85 |  |  | {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\ | 
| 86 |  |  | {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\ | 
| 87 |  |  | {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\ | 
| 88 |  |  | {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F}) | 
| 89 |  |  | \end{minipage} | 
| 90 |  |  | } | 
| 91 |  |  |  | 
| 92 |  |  |  | 
| 93 | jmc | 1.4 | \item Lines PUT_LINE_NB:ivdc_kappa=--PUT_LINE_NB:implicitDiffusion=, | 
| 94 | jmc | 1.1 | \begin{verbatim} | 
| 95 | mlosch | 1.2 | ivdc_kappa=100., | 
| 96 |  |  | implicitDiffusion=.TRUE., | 
| 97 | jmc | 1.1 | \end{verbatim} | 
| 98 | mlosch | 1.2 | specify an ``implicit diffusion'' scheme with increased vertical | 
| 99 |  |  | diffusivity of 100~m$^2$/s in case of instable stratification. | 
| 100 | jmc | 1.1 | \fbox{ | 
| 101 |  |  | \begin{minipage}{5.0in} | 
| 102 |  |  | \end{minipage} | 
| 103 |  |  | } | 
| 104 |  |  |  | 
| 105 | mlosch | 1.2 | \item \ldots | 
| 106 |  |  |  | 
| 107 | jmc | 1.4 | \item Line PUT_LINE_NB:readBinaryPrec=, | 
| 108 | jmc | 1.1 | \begin{verbatim} | 
| 109 |  |  | readBinaryPrec=32, | 
| 110 |  |  | \end{verbatim} | 
| 111 |  |  | Sets format for reading binary input datasets holding model fields to | 
| 112 |  |  | use 32-bit representation for floating-point numbers.\\ | 
| 113 |  |  | \fbox{ | 
| 114 |  |  | \begin{minipage}{5.0in} | 
| 115 |  |  | {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\ | 
| 116 |  |  | {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F}) | 
| 117 |  |  | \end{minipage} | 
| 118 |  |  | } | 
| 119 |  |  |  | 
| 120 | jmc | 1.4 | \item Line PUT_LINE_NB:cg2dMaxIters=, | 
| 121 | jmc | 1.1 | \begin{verbatim} | 
| 122 | mlosch | 1.2 | cg2dMaxIters=500, | 
| 123 | jmc | 1.1 | \end{verbatim} | 
| 124 |  |  | Sets maximum number of iterations the two-dimensional, conjugate | 
| 125 | jmc | 1.4 | gradient solver will use, {\bf irrespective of convergence | 
| 126 | jmc | 1.1 | criteria being met}.\\ | 
| 127 |  |  | \fbox{ | 
| 128 |  |  | \begin{minipage}{5.0in} | 
| 129 |  |  | {\it S/R CG2D}~({\it cg2d.F}) | 
| 130 |  |  | \end{minipage} | 
| 131 |  |  | } | 
| 132 |  |  |  | 
| 133 | jmc | 1.4 | \item Line PUT_LINE_NB:cg2dTargetResidual=, | 
| 134 | jmc | 1.1 | \begin{verbatim} | 
| 135 |  |  | cg2dTargetResidual=1.E-13, | 
| 136 |  |  | \end{verbatim} | 
| 137 |  |  | Sets the tolerance which the two-dimensional, conjugate | 
| 138 | jmc | 1.4 | gradient solver will use to test for convergence in equation | 
| 139 | jmc | 1.1 | %- note: Description of Conjugate gradient method (& related params) is missing | 
| 140 |  |  | %  in the mean time, substitute this eq ref: | 
| 141 | jmc | 1.4 | \ref{eq:elliptic-backward-free-surface} %\ref{eq:congrad_2d_resid} | 
| 142 | jmc | 1.1 | to $1 \times 10^{-13}$. | 
| 143 | jmc | 1.4 | Solver will iterate until tolerance falls below this value or until the | 
| 144 | jmc | 1.1 | maximum number of solver iterations is reached.\\ | 
| 145 |  |  | \fbox{ | 
| 146 |  |  | \begin{minipage}{5.0in} | 
| 147 |  |  | {\it S/R CG2D}~({\it cg2d.F}) | 
| 148 |  |  | \end{minipage} | 
| 149 |  |  | } | 
| 150 |  |  |  | 
| 151 | jmc | 1.4 | \item Line PUT_LINE_NB:nIter0=, | 
| 152 | jmc | 1.1 | \begin{verbatim} | 
| 153 | mlosch | 1.2 | nIter0=0, | 
| 154 | jmc | 1.1 | \end{verbatim} | 
| 155 |  |  | Sets the starting time for the model internal time counter. | 
| 156 | jmc | 1.4 | When set to non-zero this option implicitly requests a | 
| 157 | jmc | 1.1 | checkpoint file be read for initial state. | 
| 158 |  |  | By default the checkpoint file is named according to | 
| 159 | mlosch | 1.2 | the integer number of time step value \verb+nIter0+. | 
| 160 |  |  | The internal time counter works in seconds. Alternatively, | 
| 161 |  |  | \verb+startTime+ can be set. | 
| 162 | jmc | 1.1 |  | 
| 163 | jmc | 1.4 | \item Line PUT_LINE_NB:nTimeSteps=, | 
| 164 | jmc | 1.1 | \begin{verbatim} | 
| 165 | jmc | 1.4 | nTimeSteps=20, | 
| 166 | jmc | 1.1 | \end{verbatim} | 
| 167 | mlosch | 1.2 | Sets the time step number at which this simulation will terminate. | 
| 168 | jmc | 1.1 | At the end of a simulation a checkpoint file is automatically | 
| 169 |  |  | written so that a numerical experiment can consist of multiple | 
| 170 | mlosch | 1.2 | stages. Alternatively \verb+endTime+ can be set. | 
| 171 | jmc | 1.1 |  | 
| 172 | jmc | 1.4 | \item Line PUT_LINE_NB:deltaTmom=, | 
| 173 | jmc | 1.1 | \begin{verbatim} | 
| 174 | jmc | 1.4 | deltaTmom=1800., | 
| 175 | jmc | 1.1 | \end{verbatim} | 
| 176 |  |  | Sets the timestep $\delta t_{v}$ used in the momentum equations to | 
| 177 | mlosch | 1.2 | $30~{\rm mins}$. | 
| 178 | jmc | 1.1 | %- note: Distord Physics (using different time-steps) is not described | 
| 179 |  |  | %  in the mean time, put this section ref: | 
| 180 |  |  | See section \ref{sec:time_stepping}. %\ref{sec:mom_time_stepping}. | 
| 181 |  |  |  | 
| 182 |  |  | \fbox{ | 
| 183 |  |  | \begin{minipage}{5.0in} | 
| 184 |  |  | {\it S/R TIMESTEP}({\it timestep.F}) | 
| 185 |  |  | \end{minipage} | 
| 186 |  |  | } | 
| 187 |  |  |  | 
| 188 | jmc | 1.4 | \item Line PUT_LINE_NB:tauCD=, | 
| 189 | jmc | 1.1 | \begin{verbatim} | 
| 190 |  |  | tauCD=321428., | 
| 191 |  |  | \end{verbatim} | 
| 192 | jmc | 1.4 | Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ | 
| 193 | jmc | 1.1 | used in the momentum equations. | 
| 194 |  |  | %- note: description of CD-scheme pkg (and related params) is missing; | 
| 195 |  |  | %  in the mean time, comment out this ref. | 
| 196 |  |  | %See section \ref{sec:cd_scheme}. | 
| 197 |  |  |  | 
| 198 |  |  | \fbox{ | 
| 199 |  |  | \begin{minipage}{5.0in} | 
| 200 |  |  | {\it S/R INI\_PARMS}({\it ini\_parms.F})\\ | 
| 201 |  |  | {\it S/R MOM\_FLUXFORM}({\it mom\_fluxform.F}) | 
| 202 |  |  | \end{minipage} | 
| 203 |  |  | } | 
| 204 |  |  |  | 
| 205 | jmc | 1.4 | \item Lines PUT_LINE_NB:deltaTtracer=--PUT_LINE_NB:deltaTfreesurf=, | 
| 206 | jmc | 1.1 | \begin{verbatim} | 
| 207 | mlosch | 1.2 | deltaTtracer=86400., | 
| 208 |  |  | deltaTClock = 86400., | 
| 209 |  |  | deltaTfreesurf= 86400., | 
| 210 |  |  | \end{verbatim} | 
| 211 |  |  | Sets the default timestep, $\delta t_{\theta}$, for tracer equations | 
| 212 |  |  | and implicit free surface equations to | 
| 213 |  |  | $24~{\rm hours}$. | 
| 214 |  |  | % - note: Distord Physics (using different time-steps) is not | 
| 215 |  |  | % described in the mean time, put this section ref: | 
| 216 | jmc | 1.1 | See section \ref{sec:time_stepping}. %\ref{sec:tracer_time_stepping}. | 
| 217 |  |  |  | 
| 218 |  |  | \fbox{ | 
| 219 |  |  | \begin{minipage}{5.0in} | 
| 220 |  |  | {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F}) | 
| 221 |  |  | \end{minipage} | 
| 222 |  |  | } | 
| 223 |  |  |  | 
| 224 | jmc | 1.4 | \item Line PUT_LINE_NB:bathyFile=, | 
| 225 | jmc | 1.1 | \begin{verbatim} | 
| 226 | mlosch | 1.2 | bathyFile='bathymetry.bin' | 
| 227 | jmc | 1.1 | \end{verbatim} | 
| 228 |  |  | This line specifies the name of the file from which the domain | 
| 229 |  |  | bathymetry is read. This file is a two-dimensional ($x,y$) map of | 
| 230 | jmc | 1.4 | depths. This file is assumed to contain 32-bit binary numbers | 
| 231 |  |  | giving the depth of the model at each grid cell, ordered with the x | 
| 232 | jmc | 1.1 | coordinate varying fastest. The points are ordered from low coordinate | 
| 233 |  |  | to high coordinate for both axes. The units and orientation of the | 
| 234 |  |  | depths in this file are the same as used in the MITgcm code. In this | 
| 235 |  |  | experiment, a depth of $0m$ indicates a solid wall and a depth | 
| 236 | mlosch | 1.2 | of $<0m$ indicates open ocean. | 
| 237 |  |  |  | 
| 238 | jmc | 1.1 |  | 
| 239 | jmc | 1.4 | \item Lines PUT_LINE_NB:zonalWindFile=--PUT_LINE_NB:meridWindFile=, | 
| 240 | mlosch | 1.2 | \begin{verbatim} | 
| 241 |  |  | zonalWindFile='trenberth_taux.bin' | 
| 242 |  |  | meridWindFile='trenberth_tauy.bin' | 
| 243 |  |  | \end{verbatim} | 
| 244 |  |  | These lines specify the names of the files from which the x- and y- | 
| 245 |  |  | direction surface wind stress is read. These files are also | 
| 246 |  |  | three-dimensional ($x,y,time$) maps and are enumerated and formatted | 
| 247 | jmc | 1.4 | in the same manner as the bathymetry file. | 
| 248 | jmc | 1.1 | \end{itemize} | 
| 249 |  |  |  | 
| 250 |  |  | \noindent other lines in the file {\it input/data} are standard values | 
| 251 |  |  | that are described in the MITgcm Getting Started and MITgcm Parameters | 
| 252 |  |  | notes. | 
| 253 |  |  |  | 
| 254 |  |  | \begin{small} | 
| 255 |  |  | \input{s_examples/global_oce_latlon/input/data} | 
| 256 |  |  | \end{small} | 
| 257 |  |  |  |