/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Contents of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (show annotations) (download) (as text)
Thu May 16 15:54:37 2002 UTC (23 years, 2 months ago) by adcroft
Branch: MAIN
Changes since 1.8: +16 -1 lines
File MIME type: application/x-tex
Added \label{www:tutorials} to every section/subsection/subsubsection for
pages that need to appear in the Tutorials sectio of the web-site.

1 % $Header: /u/gcmpack/mitgcmdoc/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.8 2002/02/28 19:32:19 cnh Exp $
2 % $Name: $
3
4 \section{Global Ocean Simulation at 4$^\circ$ Resolution}
5 \label{www:tutorials}
6 \label{sect:eg-global}
7
8 \bodytext{bgcolor="#FFFFFFFF"}
9
10 %\begin{center}
11 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
12 %At Four Degree Resolution with Asynchronous Time Stepping}
13 %
14 %\vspace*{4mm}
15 %
16 %\vspace*{3mm}
17 %{\large May 2001}
18 %\end{center}
19
20
21 This example experiment demonstrates using the MITgcm to simulate
22 the planetary ocean circulation. The simulation is configured
23 with realistic geography and bathymetry on a
24 $4^{\circ} \times 4^{\circ}$ spherical polar grid.
25 Twenty levels are used in the vertical, ranging in thickness
26 from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
27 giving a maximum model depth of $6\,{\rm km}$.
28 At this resolution, the configuration
29 can be integrated forward for thousands of years on a single
30 processor desktop computer.
31 \\
32 \subsection{Overview}
33 \label{www:tutorials}
34
35 The model is forced with climatological wind stress data and surface
36 flux data from DaSilva \cite{DaSilva94}. Climatological data
37 from Levitus \cite{Levitus94} is used to initialize the model hydrography.
38 Levitus seasonal climatology data is also used throughout the calculation
39 to provide additional air-sea fluxes.
40 These fluxes are combined with the DaSilva climatological estimates of
41 surface heat flux and fresh water, resulting in a mixed boundary
42 condition of the style described in Haney \cite{Haney}.
43 Altogether, this yields the following forcing applied
44 in the model surface layer.
45
46 \begin{eqnarray}
47 \label{EQ:eg-global-global_forcing}
48 \label{EQ:eg-global-global_forcing_fu}
49 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
50 \\
51 \label{EQ:eg-global-global_forcing_fv}
52 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
53 \\
54 \label{EQ:eg-global-global_forcing_ft}
55 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
56 - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
57 \\
58 \label{EQ:eg-global-global_forcing_fs}
59 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
60 + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
61 \end{eqnarray}
62
63 \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
64 ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
65 momentum and in the potential temperature and salinity
66 equations respectively.
67 The term $\Delta z_{s}$ represents the top ocean layer thickness in
68 meters.
69 It is used in conjunction with a reference density, $\rho_{0}$
70 (here set to $999.8\,{\rm kg\,m^{-3}}$), a
71 reference salinity, $S_{0}$ (here set to 35~ppt),
72 and a specific heat capacity, $C_{p}$ (here set to
73 $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
74 input dataset values into time tendencies of
75 potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
76 salinity (with units ${\rm ppt}~s^{-1}$) and
77 velocity (with units ${\rm m}~{\rm s}^{-2}$).
78 The externally supplied forcing fields used in this
79 experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
80 $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
81 have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
82 ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
83 respectively. The salinity forcing fields ($S^{\ast}$ and
84 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
85 respectively. The source files and procedures for ingesting this data into the
86 simulation are described in the experiment configuration discussion in section
87 \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
88
89
90 \subsection{Discrete Numerical Configuration}
91 \label{www:tutorials}
92
93
94 The model is configured in hydrostatic form. The domain is discretised with
95 a uniform grid spacing in latitude and longitude on the sphere
96 $\Delta \phi=\Delta \lambda=4^{\circ}$, so
97 that there are ninety grid cells in the zonal and forty in the
98 meridional direction. The internal model coordinate variables
99 $x$ and $y$ are initialized according to
100 \begin{eqnarray}
101 x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
102 y=r\lambda,~\Delta y &= &r\Delta \lambda
103 \end{eqnarray}
104
105 Arctic polar regions are not
106 included in this experiment. Meridionally the model extends from
107 $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
108 Vertically the model is configured with twenty layers with the
109 following thicknesses
110 $\Delta z_{1} = 50\,{\rm m},\,
111 \Delta z_{2} = 50\,{\rm m},\,
112 \Delta z_{3} = 55\,{\rm m},\,
113 \Delta z_{4} = 60\,{\rm m},\,
114 \Delta z_{5} = 65\,{\rm m},\,
115 $
116 $
117 \Delta z_{6}~=~70\,{\rm m},\,
118 \Delta z_{7}~=~80\,{\rm m},\,
119 \Delta z_{8}~=95\,{\rm m},\,
120 \Delta z_{9}=120\,{\rm m},\,
121 \Delta z_{10}=155\,{\rm m},\,
122 $
123 $
124 \Delta z_{11}=200\,{\rm m},\,
125 \Delta z_{12}=260\,{\rm m},\,
126 \Delta z_{13}=320\,{\rm m},\,
127 \Delta z_{14}=400\,{\rm m},\,
128 \Delta z_{15}=480\,{\rm m},\,
129 $
130 $
131 \Delta z_{16}=570\,{\rm m},\,
132 \Delta z_{17}=655\,{\rm m},\,
133 \Delta z_{18}=725\,{\rm m},\,
134 \Delta z_{19}=775\,{\rm m},\,
135 \Delta z_{20}=815\,{\rm m}
136 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
137 give a total depth, $H$, of $-5450{\rm m}$.
138 The implicit free surface form of the pressure equation described in Marshall et. al
139 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
140 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
141
142 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
143 for both the zonal flow, $u$ and the meridional flow $v$, according to equations
144 (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
145 Thermodynamic forcing inputs are added to the equations
146 in (\ref{EQ:eg-global-model_equations}) for
147 potential temperature, $\theta$, and salinity, $S$, according to equations
148 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
149 This produces a set of equations solved in this configuration as follows:
150
151 \begin{eqnarray}
152 \label{EQ:eg-global-model_equations}
153 \frac{Du}{Dt} - fv +
154 \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
155 \nabla_{h}\cdot A_{h}\nabla_{h}u -
156 \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
157 & = &
158 \begin{cases}
159 {\cal F}_u & \text{(surface)} \\
160 0 & \text{(interior)}
161 \end{cases}
162 \\
163 \frac{Dv}{Dt} + fu +
164 \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
165 \nabla_{h}\cdot A_{h}\nabla_{h}v -
166 \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
167 & = &
168 \begin{cases}
169 {\cal F}_v & \text{(surface)} \\
170 0 & \text{(interior)}
171 \end{cases}
172 \\
173 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
174 &=&
175 0
176 \\
177 \frac{D\theta}{Dt} -
178 \nabla_{h}\cdot K_{h}\nabla_{h}\theta
179 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
180 & = &
181 \begin{cases}
182 {\cal F}_\theta & \text{(surface)} \\
183 0 & \text{(interior)}
184 \end{cases}
185 \\
186 \frac{D s}{Dt} -
187 \nabla_{h}\cdot K_{h}\nabla_{h}s
188 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
189 & = &
190 \begin{cases}
191 {\cal F}_s & \text{(surface)} \\
192 0 & \text{(interior)}
193 \end{cases}
194 \\
195 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
196 \end{eqnarray}
197
198 \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
199 $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
200 are the zonal and meridional components of the
201 flow vector, $\vec{u}$, on the sphere. As described in
202 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
203 evolution of potential temperature, $\theta$, equation is solved prognostically.
204 The total pressure, $p$, is diagnosed by summing pressure due to surface
205 elevation $\eta$ and the hydrostatic pressure.
206 \\
207
208 \subsubsection{Numerical Stability Criteria}
209 \label{www:tutorials}
210
211 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
212 This value is chosen to yield a Munk layer width \cite{adcroft:95},
213 \begin{eqnarray}
214 \label{EQ:eg-global-munk_layer}
215 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
216 \end{eqnarray}
217
218 \noindent of $\approx 600$km. This is greater than the model
219 resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
220 boundary layer is adequately resolved.
221 \\
222
223 \noindent The model is stepped forward with a
224 time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
225 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
226 parameter to the horizontal Laplacian friction \cite{adcroft:95}
227 \begin{eqnarray}
228 \label{EQ:eg-global-laplacian_stability}
229 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
230 \end{eqnarray}
231
232 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
233 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
234 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
235 \\
236
237 \noindent The vertical dissipation coefficient, $A_{z}$, is set to
238 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
239 \begin{eqnarray}
240 \label{EQ:eg-global-laplacian_stability_z}
241 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
242 \end{eqnarray}
243
244 \noindent evaluates to $0.015$ for the smallest model
245 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
246 the upper stability limit.
247 \\
248
249 The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
250 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
251 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
252 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
253 Here the stability parameter
254 \begin{eqnarray}
255 \label{EQ:eg-global-laplacian_stability_xtheta}
256 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
257 \end{eqnarray}
258 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
259 stability parameter related to $K_{z}$
260 \begin{eqnarray}
261 \label{EQ:eg-global-laplacian_stability_ztheta}
262 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
263 \end{eqnarray}
264 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
265 of $S_{l} \approx 0.5$.
266 \\
267
268 \noindent The numerical stability for inertial oscillations
269 \cite{adcroft:95}
270
271 \begin{eqnarray}
272 \label{EQ:eg-global-inertial_stability}
273 S_{i} = f^{2} {\delta t_v}^2
274 \end{eqnarray}
275
276 \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
277 the $S_{i} < 1$ upper limit for stability.
278 \\
279
280 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
281 horizontal flow
282 speed of $ | \vec{u} | = 2 ms^{-1}$
283
284 \begin{eqnarray}
285 \label{EQ:eg-global-cfl_stability}
286 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
287 \end{eqnarray}
288
289 \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
290 limit of 0.5.
291 \\
292
293 \noindent The stability parameter for internal gravity waves propagating
294 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
295 \cite{adcroft:95}
296
297 \begin{eqnarray}
298 \label{EQ:eg-global-gfl_stability}
299 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
300 \end{eqnarray}
301
302 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
303 stability limit of 0.5.
304
305 \subsection{Experiment Configuration}
306 \label{www:tutorials}
307 \label{SEC:eg-global-clim_ocn_examp_exp_config}
308
309 The model configuration for this experiment resides under the
310 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
311 The experiment files
312
313 \begin{itemize}
314 \item {\it input/data}
315 \item {\it input/data.pkg}
316 \item {\it input/eedata},
317 \item {\it input/windx.bin},
318 \item {\it input/windy.bin},
319 \item {\it input/salt.bin},
320 \item {\it input/theta.bin},
321 \item {\it input/SSS.bin},
322 \item {\it input/SST.bin},
323 \item {\it input/topog.bin},
324 \item {\it code/CPP\_EEOPTIONS.h}
325 \item {\it code/CPP\_OPTIONS.h},
326 \item {\it code/SIZE.h}.
327 \end{itemize}
328 contain the code customizations and parameter settings for these
329 experiments. Below we describe the customizations
330 to these files associated with this experiment.
331
332 \subsubsection{Driving Datasets}
333 \label{www:tutorials}
334
335 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
336 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
337 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
338 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
339 in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
340 also indicate the lateral extent and coastline used in the experiment.
341 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
342 domain.
343
344
345 \subsubsection{File {\it input/data}}
346 \label{www:tutorials}
347
348 This file, reproduced completely below, specifies the main parameters
349 for the experiment. The parameters that are significant for this configuration
350 are
351
352 \begin{itemize}
353
354 \item Lines 7-10 and 11-14
355 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
356 $\cdots$ \\
357 set reference values for potential
358 temperature and salinity at each model level in units of $^{\circ}$C and
359 ${\rm ppt}$. The entries are ordered from surface to depth.
360 Density is calculated from anomalies at each level evaluated
361 with respect to the reference values set here.\\
362 \fbox{
363 \begin{minipage}{5.0in}
364 {\it S/R INI\_THETA}({\it ini\_theta.F})
365 \end{minipage}
366 }
367
368
369 \item Line 15,
370 \begin{verbatim} viscAz=1.E-3, \end{verbatim}
371 this line sets the vertical Laplacian dissipation coefficient to
372 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
373 for this operator are specified later. This variable is copied into
374 model general vertical coordinate variable {\bf viscAr}.
375
376 \fbox{
377 \begin{minipage}{5.0in}
378 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
379 \end{minipage}
380 }
381
382 \item Line 16,
383 \begin{verbatim}
384 viscAh=5.E5,
385 \end{verbatim}
386 this line sets the horizontal Laplacian frictional dissipation coefficient to
387 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
388 for this operator are specified later.
389
390 \item Lines 17,
391 \begin{verbatim}
392 no_slip_sides=.FALSE.
393 \end{verbatim}
394 this line selects a free-slip lateral boundary condition for
395 the horizontal Laplacian friction operator
396 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
397 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
398
399 \item Lines 9,
400 \begin{verbatim}
401 no_slip_bottom=.TRUE.
402 \end{verbatim}
403 this line selects a no-slip boundary condition for bottom
404 boundary condition in the vertical Laplacian friction operator
405 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
406
407 \item Line 19,
408 \begin{verbatim}
409 diffKhT=1.E3,
410 \end{verbatim}
411 this line sets the horizontal diffusion coefficient for temperature
412 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
413 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
414 all boundaries.
415
416 \item Line 20,
417 \begin{verbatim}
418 diffKzT=3.E-5,
419 \end{verbatim}
420 this line sets the vertical diffusion coefficient for temperature
421 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
422 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
423 the upper and lower boundaries.
424
425 \item Line 21,
426 \begin{verbatim}
427 diffKhS=1.E3,
428 \end{verbatim}
429 this line sets the horizontal diffusion coefficient for salinity
430 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
431 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
432 all boundaries.
433
434 \item Line 22,
435 \begin{verbatim}
436 diffKzS=3.E-5,
437 \end{verbatim}
438 this line sets the vertical diffusion coefficient for salinity
439 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
440 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
441 the upper and lower boundaries.
442
443 \item Lines 23-26
444 \begin{verbatim}
445 beta=1.E-11,
446 \end{verbatim}
447 \vspace{-5mm}$\cdots$\\
448 These settings do not apply for this experiment.
449
450 \item Line 27,
451 \begin{verbatim}
452 gravity=9.81,
453 \end{verbatim}
454 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
455 \fbox{
456 \begin{minipage}{5.0in}
457 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
458 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
459 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
460 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
461 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
462 \end{minipage}
463 }
464
465
466 \item Line 28-29,
467 \begin{verbatim}
468 rigidLid=.FALSE.,
469 implicitFreeSurface=.TRUE.,
470 \end{verbatim}
471 Selects the barotropic pressure equation to be the implicit free surface
472 formulation.
473
474 \item Line 30,
475 \begin{verbatim}
476 eosType='POLY3',
477 \end{verbatim}
478 Selects the third order polynomial form of the equation of state.\\
479 \fbox{
480 \begin{minipage}{5.0in}
481 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
482 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
483 \end{minipage}
484 }
485
486 \item Line 31,
487 \begin{verbatim}
488 readBinaryPrec=32,
489 \end{verbatim}
490 Sets format for reading binary input datasets holding model fields to
491 use 32-bit representation for floating-point numbers.\\
492 \fbox{
493 \begin{minipage}{5.0in}
494 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
495 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
496 \end{minipage}
497 }
498
499 \item Line 36,
500 \begin{verbatim}
501 cg2dMaxIters=1000,
502 \end{verbatim}
503 Sets maximum number of iterations the two-dimensional, conjugate
504 gradient solver will use, {\bf irrespective of convergence
505 criteria being met}.\\
506 \fbox{
507 \begin{minipage}{5.0in}
508 {\it S/R CG2D}~({\it cg2d.F})
509 \end{minipage}
510 }
511
512 \item Line 37,
513 \begin{verbatim}
514 cg2dTargetResidual=1.E-13,
515 \end{verbatim}
516 Sets the tolerance which the two-dimensional, conjugate
517 gradient solver will use to test for convergence in equation
518 \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
519 Solver will iterate until
520 tolerance falls below this value or until the maximum number of
521 solver iterations is reached.\\
522 \fbox{
523 \begin{minipage}{5.0in}
524 {\it S/R CG2D}~({\it cg2d.F})
525 \end{minipage}
526 }
527
528 \item Line 42,
529 \begin{verbatim}
530 startTime=0,
531 \end{verbatim}
532 Sets the starting time for the model internal time counter.
533 When set to non-zero this option implicitly requests a
534 checkpoint file be read for initial state.
535 By default the checkpoint file is named according to
536 the integer number of time steps in the {\bf startTime} value.
537 The internal time counter works in seconds.
538
539 \item Line 43,
540 \begin{verbatim}
541 endTime=2808000.,
542 \end{verbatim}
543 Sets the time (in seconds) at which this simulation will terminate.
544 At the end of a simulation a checkpoint file is automatically
545 written so that a numerical experiment can consist of multiple
546 stages.
547
548 \item Line 44,
549 \begin{verbatim}
550 #endTime=62208000000,
551 \end{verbatim}
552 A commented out setting for endTime for a 2000 year simulation.
553
554 \item Line 45,
555 \begin{verbatim}
556 deltaTmom=2400.0,
557 \end{verbatim}
558 Sets the timestep $\delta t_{v}$ used in the momentum equations to
559 $20~{\rm mins}$.
560 See section \ref{SEC:mom_time_stepping}.
561
562 \fbox{
563 \begin{minipage}{5.0in}
564 {\it S/R TIMESTEP}({\it timestep.F})
565 \end{minipage}
566 }
567
568 \item Line 46,
569 \begin{verbatim}
570 tauCD=321428.,
571 \end{verbatim}
572 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
573 See section \ref{SEC:cd_scheme}.
574
575 \fbox{
576 \begin{minipage}{5.0in}
577 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
578 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
579 \end{minipage}
580 }
581
582 \item Line 47,
583 \begin{verbatim}
584 deltaTtracer=108000.,
585 \end{verbatim}
586 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
587 $30~{\rm hours}$.
588 See section \ref{SEC:tracer_time_stepping}.
589
590 \fbox{
591 \begin{minipage}{5.0in}
592 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
593 \end{minipage}
594 }
595
596 \item Line 47,
597 \begin{verbatim}
598 bathyFile='topog.box'
599 \end{verbatim}
600 This line specifies the name of the file from which the domain
601 bathymetry is read. This file is a two-dimensional ($x,y$) map of
602 depths. This file is assumed to contain 64-bit binary numbers
603 giving the depth of the model at each grid cell, ordered with the x
604 coordinate varying fastest. The points are ordered from low coordinate
605 to high coordinate for both axes. The units and orientation of the
606 depths in this file are the same as used in the MITgcm code. In this
607 experiment, a depth of $0m$ indicates a solid wall and a depth
608 of $-2000m$ indicates open ocean. The matlab program
609 {\it input/gendata.m} shows an example of how to generate a
610 bathymetry file.
611
612
613 \item Line 50,
614 \begin{verbatim}
615 zonalWindFile='windx.sin_y'
616 \end{verbatim}
617 This line specifies the name of the file from which the x-direction
618 surface wind stress is read. This file is also a two-dimensional
619 ($x,y$) map and is enumerated and formatted in the same manner as the
620 bathymetry file. The matlab program {\it input/gendata.m} includes example
621 code to generate a valid
622 {\bf zonalWindFile}
623 file.
624
625 \end{itemize}
626
627 \noindent other lines in the file {\it input/data} are standard values
628 that are described in the MITgcm Getting Started and MITgcm Parameters
629 notes.
630
631 \begin{small}
632 \input{part3/case_studies/climatalogical_ogcm/input/data}
633 \end{small}
634
635 \subsubsection{File {\it input/data.pkg}}
636 \label{www:tutorials}
637
638 This file uses standard default values and does not contain
639 customisations for this experiment.
640
641 \subsubsection{File {\it input/eedata}}
642 \label{www:tutorials}
643
644 This file uses standard default values and does not contain
645 customisations for this experiment.
646
647 \subsubsection{File {\it input/windx.sin\_y}}
648 \label{www:tutorials}
649
650 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
651 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
652 Although $\tau_{x}$ is only a function of $y$n in this experiment
653 this file must still define a complete two-dimensional map in order
654 to be compatible with the standard code for loading forcing fields
655 in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
656 code for creating the {\it input/windx.sin\_y} file.
657
658 \subsubsection{File {\it input/topog.box}}
659 \label{www:tutorials}
660
661
662 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
663 map of depth values. For this experiment values are either
664 $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
665 ocean. The file contains a raw binary stream of data that is enumerated
666 in the same way as standard MITgcm two-dimensional, horizontal arrays.
667 The included matlab program {\it input/gendata.m} gives a complete
668 code for creating the {\it input/topog.box} file.
669
670 \subsubsection{File {\it code/SIZE.h}}
671 \label{www:tutorials}
672
673 Two lines are customized in this file for the current experiment
674
675 \begin{itemize}
676
677 \item Line 39,
678 \begin{verbatim} sNx=60, \end{verbatim} this line sets
679 the lateral domain extent in grid points for the
680 axis aligned with the x-coordinate.
681
682 \item Line 40,
683 \begin{verbatim} sNy=60, \end{verbatim} this line sets
684 the lateral domain extent in grid points for the
685 axis aligned with the y-coordinate.
686
687 \item Line 49,
688 \begin{verbatim} Nr=4, \end{verbatim} this line sets
689 the vertical domain extent in grid points.
690
691 \end{itemize}
692
693 \begin{small}
694 \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
695 \end{small}
696
697 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
698 \label{www:tutorials}
699
700 This file uses standard default values and does not contain
701 customisations for this experiment.
702
703
704 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
705 \label{www:tutorials}
706
707 This file uses standard default values and does not contain
708 customisations for this experiment.
709
710 \subsubsection{Other Files }
711 \label{www:tutorials}
712
713 Other files relevant to this experiment are
714 \begin{itemize}
715 \item {\it model/src/ini\_cori.F}. This file initializes the model
716 coriolis variables {\bf fCorU}.
717 \item {\it model/src/ini\_spherical\_polar\_grid.F}
718 \item {\it model/src/ini\_parms.F},
719 \item {\it input/windx.sin\_y},
720 \end{itemize}
721 contain the code customisations and parameter settings for this
722 experiments. Below we describe the customisations
723 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22