/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Contents of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download) (as text)
Thu Feb 28 19:32:19 2002 UTC (23 years, 4 months ago) by cnh
Branch: MAIN
Changes since 1.7: +45 -45 lines
File MIME type: application/x-tex
Updates for special on-line version with
hyperlinked and animated figures

Separating tutorials and reference material

1 % $Header: /u/u0/gcmpack/manual/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.7 2001/11/13 20:13:54 adcroft Exp $
2 % $Name: $
3
4 \section{Global Ocean Simulation at 4$^\circ$ Resolution}
5 \label{sect:eg-global}
6
7 \bodytext{bgcolor="#FFFFFFFF"}
8
9 %\begin{center}
10 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
11 %At Four Degree Resolution with Asynchronous Time Stepping}
12 %
13 %\vspace*{4mm}
14 %
15 %\vspace*{3mm}
16 %{\large May 2001}
17 %\end{center}
18
19
20 This example experiment demonstrates using the MITgcm to simulate
21 the planetary ocean circulation. The simulation is configured
22 with realistic geography and bathymetry on a
23 $4^{\circ} \times 4^{\circ}$ spherical polar grid.
24 Twenty levels are used in the vertical, ranging in thickness
25 from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
26 giving a maximum model depth of $6\,{\rm km}$.
27 At this resolution, the configuration
28 can be integrated forward for thousands of years on a single
29 processor desktop computer.
30 \\
31 \subsection{Overview}
32
33 The model is forced with climatological wind stress data and surface
34 flux data from DaSilva \cite{DaSilva94}. Climatological data
35 from Levitus \cite{Levitus94} is used to initialize the model hydrography.
36 Levitus seasonal climatology data is also used throughout the calculation
37 to provide additional air-sea fluxes.
38 These fluxes are combined with the DaSilva climatological estimates of
39 surface heat flux and fresh water, resulting in a mixed boundary
40 condition of the style described in Haney \cite{Haney}.
41 Altogether, this yields the following forcing applied
42 in the model surface layer.
43
44 \begin{eqnarray}
45 \label{EQ:eg-global-global_forcing}
46 \label{EQ:eg-global-global_forcing_fu}
47 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
48 \\
49 \label{EQ:eg-global-global_forcing_fv}
50 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
51 \\
52 \label{EQ:eg-global-global_forcing_ft}
53 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
54 - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
55 \\
56 \label{EQ:eg-global-global_forcing_fs}
57 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
58 + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
59 \end{eqnarray}
60
61 \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
62 ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
63 momentum and in the potential temperature and salinity
64 equations respectively.
65 The term $\Delta z_{s}$ represents the top ocean layer thickness in
66 meters.
67 It is used in conjunction with a reference density, $\rho_{0}$
68 (here set to $999.8\,{\rm kg\,m^{-3}}$), a
69 reference salinity, $S_{0}$ (here set to 35~ppt),
70 and a specific heat capacity, $C_{p}$ (here set to
71 $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
72 input dataset values into time tendencies of
73 potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
74 salinity (with units ${\rm ppt}~s^{-1}$) and
75 velocity (with units ${\rm m}~{\rm s}^{-2}$).
76 The externally supplied forcing fields used in this
77 experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
78 $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
79 have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
80 ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
81 respectively. The salinity forcing fields ($S^{\ast}$ and
82 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
83 respectively. The source files and procedures for ingesting this data into the
84 simulation are described in the experiment configuration discussion in section
85 \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
86
87
88 \subsection{Discrete Numerical Configuration}
89
90
91 The model is configured in hydrostatic form. The domain is discretised with
92 a uniform grid spacing in latitude and longitude on the sphere
93 $\Delta \phi=\Delta \lambda=4^{\circ}$, so
94 that there are ninety grid cells in the zonal and forty in the
95 meridional direction. The internal model coordinate variables
96 $x$ and $y$ are initialized according to
97 \begin{eqnarray}
98 x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
99 y=r\lambda,~\Delta y &= &r\Delta \lambda
100 \end{eqnarray}
101
102 Arctic polar regions are not
103 included in this experiment. Meridionally the model extends from
104 $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
105 Vertically the model is configured with twenty layers with the
106 following thicknesses
107 $\Delta z_{1} = 50\,{\rm m},\,
108 \Delta z_{2} = 50\,{\rm m},\,
109 \Delta z_{3} = 55\,{\rm m},\,
110 \Delta z_{4} = 60\,{\rm m},\,
111 \Delta z_{5} = 65\,{\rm m},\,
112 $
113 $
114 \Delta z_{6}~=~70\,{\rm m},\,
115 \Delta z_{7}~=~80\,{\rm m},\,
116 \Delta z_{8}~=95\,{\rm m},\,
117 \Delta z_{9}=120\,{\rm m},\,
118 \Delta z_{10}=155\,{\rm m},\,
119 $
120 $
121 \Delta z_{11}=200\,{\rm m},\,
122 \Delta z_{12}=260\,{\rm m},\,
123 \Delta z_{13}=320\,{\rm m},\,
124 \Delta z_{14}=400\,{\rm m},\,
125 \Delta z_{15}=480\,{\rm m},\,
126 $
127 $
128 \Delta z_{16}=570\,{\rm m},\,
129 \Delta z_{17}=655\,{\rm m},\,
130 \Delta z_{18}=725\,{\rm m},\,
131 \Delta z_{19}=775\,{\rm m},\,
132 \Delta z_{20}=815\,{\rm m}
133 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
134 give a total depth, $H$, of $-5450{\rm m}$.
135 The implicit free surface form of the pressure equation described in Marshall et. al
136 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
137 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
138
139 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
140 for both the zonal flow, $u$ and the meridional flow $v$, according to equations
141 (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
142 Thermodynamic forcing inputs are added to the equations
143 in (\ref{EQ:eg-global-model_equations}) for
144 potential temperature, $\theta$, and salinity, $S$, according to equations
145 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
146 This produces a set of equations solved in this configuration as follows:
147
148 \begin{eqnarray}
149 \label{EQ:eg-global-model_equations}
150 \frac{Du}{Dt} - fv +
151 \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
152 \nabla_{h}\cdot A_{h}\nabla_{h}u -
153 \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
154 & = &
155 \begin{cases}
156 {\cal F}_u & \text{(surface)} \\
157 0 & \text{(interior)}
158 \end{cases}
159 \\
160 \frac{Dv}{Dt} + fu +
161 \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
162 \nabla_{h}\cdot A_{h}\nabla_{h}v -
163 \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
164 & = &
165 \begin{cases}
166 {\cal F}_v & \text{(surface)} \\
167 0 & \text{(interior)}
168 \end{cases}
169 \\
170 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
171 &=&
172 0
173 \\
174 \frac{D\theta}{Dt} -
175 \nabla_{h}\cdot K_{h}\nabla_{h}\theta
176 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
177 & = &
178 \begin{cases}
179 {\cal F}_\theta & \text{(surface)} \\
180 0 & \text{(interior)}
181 \end{cases}
182 \\
183 \frac{D s}{Dt} -
184 \nabla_{h}\cdot K_{h}\nabla_{h}s
185 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
186 & = &
187 \begin{cases}
188 {\cal F}_s & \text{(surface)} \\
189 0 & \text{(interior)}
190 \end{cases}
191 \\
192 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
193 \end{eqnarray}
194
195 \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
196 $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
197 are the zonal and meridional components of the
198 flow vector, $\vec{u}$, on the sphere. As described in
199 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
200 evolution of potential temperature, $\theta$, equation is solved prognostically.
201 The total pressure, $p$, is diagnosed by summing pressure due to surface
202 elevation $\eta$ and the hydrostatic pressure.
203 \\
204
205 \subsubsection{Numerical Stability Criteria}
206
207 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
208 This value is chosen to yield a Munk layer width \cite{adcroft:95},
209 \begin{eqnarray}
210 \label{EQ:eg-global-munk_layer}
211 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
212 \end{eqnarray}
213
214 \noindent of $\approx 600$km. This is greater than the model
215 resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
216 boundary layer is adequately resolved.
217 \\
218
219 \noindent The model is stepped forward with a
220 time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
221 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
222 parameter to the horizontal Laplacian friction \cite{adcroft:95}
223 \begin{eqnarray}
224 \label{EQ:eg-global-laplacian_stability}
225 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
226 \end{eqnarray}
227
228 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
229 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
230 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
231 \\
232
233 \noindent The vertical dissipation coefficient, $A_{z}$, is set to
234 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
235 \begin{eqnarray}
236 \label{EQ:eg-global-laplacian_stability_z}
237 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
238 \end{eqnarray}
239
240 \noindent evaluates to $0.015$ for the smallest model
241 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
242 the upper stability limit.
243 \\
244
245 The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
246 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
247 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
248 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
249 Here the stability parameter
250 \begin{eqnarray}
251 \label{EQ:eg-global-laplacian_stability_xtheta}
252 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
253 \end{eqnarray}
254 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
255 stability parameter related to $K_{z}$
256 \begin{eqnarray}
257 \label{EQ:eg-global-laplacian_stability_ztheta}
258 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
259 \end{eqnarray}
260 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
261 of $S_{l} \approx 0.5$.
262 \\
263
264 \noindent The numerical stability for inertial oscillations
265 \cite{adcroft:95}
266
267 \begin{eqnarray}
268 \label{EQ:eg-global-inertial_stability}
269 S_{i} = f^{2} {\delta t_v}^2
270 \end{eqnarray}
271
272 \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
273 the $S_{i} < 1$ upper limit for stability.
274 \\
275
276 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
277 horizontal flow
278 speed of $ | \vec{u} | = 2 ms^{-1}$
279
280 \begin{eqnarray}
281 \label{EQ:eg-global-cfl_stability}
282 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
283 \end{eqnarray}
284
285 \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
286 limit of 0.5.
287 \\
288
289 \noindent The stability parameter for internal gravity waves propagating
290 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
291 \cite{adcroft:95}
292
293 \begin{eqnarray}
294 \label{EQ:eg-global-gfl_stability}
295 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
296 \end{eqnarray}
297
298 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
299 stability limit of 0.5.
300
301 \subsection{Experiment Configuration}
302 \label{SEC:eg-global-clim_ocn_examp_exp_config}
303
304 The model configuration for this experiment resides under the
305 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
306 The experiment files
307
308 \begin{itemize}
309 \item {\it input/data}
310 \item {\it input/data.pkg}
311 \item {\it input/eedata},
312 \item {\it input/windx.bin},
313 \item {\it input/windy.bin},
314 \item {\it input/salt.bin},
315 \item {\it input/theta.bin},
316 \item {\it input/SSS.bin},
317 \item {\it input/SST.bin},
318 \item {\it input/topog.bin},
319 \item {\it code/CPP\_EEOPTIONS.h}
320 \item {\it code/CPP\_OPTIONS.h},
321 \item {\it code/SIZE.h}.
322 \end{itemize}
323 contain the code customizations and parameter settings for these
324 experiments. Below we describe the customizations
325 to these files associated with this experiment.
326
327 \subsubsection{Driving Datasets}
328
329 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
330 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
331 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
332 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
333 in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
334 also indicate the lateral extent and coastline used in the experiment.
335 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
336 domain.
337
338
339 \subsubsection{File {\it input/data}}
340
341 This file, reproduced completely below, specifies the main parameters
342 for the experiment. The parameters that are significant for this configuration
343 are
344
345 \begin{itemize}
346
347 \item Lines 7-10 and 11-14
348 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
349 $\cdots$ \\
350 set reference values for potential
351 temperature and salinity at each model level in units of $^{\circ}$C and
352 ${\rm ppt}$. The entries are ordered from surface to depth.
353 Density is calculated from anomalies at each level evaluated
354 with respect to the reference values set here.\\
355 \fbox{
356 \begin{minipage}{5.0in}
357 {\it S/R INI\_THETA}({\it ini\_theta.F})
358 \end{minipage}
359 }
360
361
362 \item Line 15,
363 \begin{verbatim} viscAz=1.E-3, \end{verbatim}
364 this line sets the vertical Laplacian dissipation coefficient to
365 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
366 for this operator are specified later. This variable is copied into
367 model general vertical coordinate variable {\bf viscAr}.
368
369 \fbox{
370 \begin{minipage}{5.0in}
371 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
372 \end{minipage}
373 }
374
375 \item Line 16,
376 \begin{verbatim}
377 viscAh=5.E5,
378 \end{verbatim}
379 this line sets the horizontal Laplacian frictional dissipation coefficient to
380 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
381 for this operator are specified later.
382
383 \item Lines 17,
384 \begin{verbatim}
385 no_slip_sides=.FALSE.
386 \end{verbatim}
387 this line selects a free-slip lateral boundary condition for
388 the horizontal Laplacian friction operator
389 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
390 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
391
392 \item Lines 9,
393 \begin{verbatim}
394 no_slip_bottom=.TRUE.
395 \end{verbatim}
396 this line selects a no-slip boundary condition for bottom
397 boundary condition in the vertical Laplacian friction operator
398 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
399
400 \item Line 19,
401 \begin{verbatim}
402 diffKhT=1.E3,
403 \end{verbatim}
404 this line sets the horizontal diffusion coefficient for temperature
405 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
406 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
407 all boundaries.
408
409 \item Line 20,
410 \begin{verbatim}
411 diffKzT=3.E-5,
412 \end{verbatim}
413 this line sets the vertical diffusion coefficient for temperature
414 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
415 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
416 the upper and lower boundaries.
417
418 \item Line 21,
419 \begin{verbatim}
420 diffKhS=1.E3,
421 \end{verbatim}
422 this line sets the horizontal diffusion coefficient for salinity
423 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
424 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
425 all boundaries.
426
427 \item Line 22,
428 \begin{verbatim}
429 diffKzS=3.E-5,
430 \end{verbatim}
431 this line sets the vertical diffusion coefficient for salinity
432 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
433 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
434 the upper and lower boundaries.
435
436 \item Lines 23-26
437 \begin{verbatim}
438 beta=1.E-11,
439 \end{verbatim}
440 \vspace{-5mm}$\cdots$\\
441 These settings do not apply for this experiment.
442
443 \item Line 27,
444 \begin{verbatim}
445 gravity=9.81,
446 \end{verbatim}
447 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
448 \fbox{
449 \begin{minipage}{5.0in}
450 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
451 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
452 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
453 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
454 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
455 \end{minipage}
456 }
457
458
459 \item Line 28-29,
460 \begin{verbatim}
461 rigidLid=.FALSE.,
462 implicitFreeSurface=.TRUE.,
463 \end{verbatim}
464 Selects the barotropic pressure equation to be the implicit free surface
465 formulation.
466
467 \item Line 30,
468 \begin{verbatim}
469 eosType='POLY3',
470 \end{verbatim}
471 Selects the third order polynomial form of the equation of state.\\
472 \fbox{
473 \begin{minipage}{5.0in}
474 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
475 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
476 \end{minipage}
477 }
478
479 \item Line 31,
480 \begin{verbatim}
481 readBinaryPrec=32,
482 \end{verbatim}
483 Sets format for reading binary input datasets holding model fields to
484 use 32-bit representation for floating-point numbers.\\
485 \fbox{
486 \begin{minipage}{5.0in}
487 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
488 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
489 \end{minipage}
490 }
491
492 \item Line 36,
493 \begin{verbatim}
494 cg2dMaxIters=1000,
495 \end{verbatim}
496 Sets maximum number of iterations the two-dimensional, conjugate
497 gradient solver will use, {\bf irrespective of convergence
498 criteria being met}.\\
499 \fbox{
500 \begin{minipage}{5.0in}
501 {\it S/R CG2D}~({\it cg2d.F})
502 \end{minipage}
503 }
504
505 \item Line 37,
506 \begin{verbatim}
507 cg2dTargetResidual=1.E-13,
508 \end{verbatim}
509 Sets the tolerance which the two-dimensional, conjugate
510 gradient solver will use to test for convergence in equation
511 \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
512 Solver will iterate until
513 tolerance falls below this value or until the maximum number of
514 solver iterations is reached.\\
515 \fbox{
516 \begin{minipage}{5.0in}
517 {\it S/R CG2D}~({\it cg2d.F})
518 \end{minipage}
519 }
520
521 \item Line 42,
522 \begin{verbatim}
523 startTime=0,
524 \end{verbatim}
525 Sets the starting time for the model internal time counter.
526 When set to non-zero this option implicitly requests a
527 checkpoint file be read for initial state.
528 By default the checkpoint file is named according to
529 the integer number of time steps in the {\bf startTime} value.
530 The internal time counter works in seconds.
531
532 \item Line 43,
533 \begin{verbatim}
534 endTime=2808000.,
535 \end{verbatim}
536 Sets the time (in seconds) at which this simulation will terminate.
537 At the end of a simulation a checkpoint file is automatically
538 written so that a numerical experiment can consist of multiple
539 stages.
540
541 \item Line 44,
542 \begin{verbatim}
543 #endTime=62208000000,
544 \end{verbatim}
545 A commented out setting for endTime for a 2000 year simulation.
546
547 \item Line 45,
548 \begin{verbatim}
549 deltaTmom=2400.0,
550 \end{verbatim}
551 Sets the timestep $\delta t_{v}$ used in the momentum equations to
552 $20~{\rm mins}$.
553 See section \ref{SEC:mom_time_stepping}.
554
555 \fbox{
556 \begin{minipage}{5.0in}
557 {\it S/R TIMESTEP}({\it timestep.F})
558 \end{minipage}
559 }
560
561 \item Line 46,
562 \begin{verbatim}
563 tauCD=321428.,
564 \end{verbatim}
565 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
566 See section \ref{SEC:cd_scheme}.
567
568 \fbox{
569 \begin{minipage}{5.0in}
570 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
571 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
572 \end{minipage}
573 }
574
575 \item Line 47,
576 \begin{verbatim}
577 deltaTtracer=108000.,
578 \end{verbatim}
579 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
580 $30~{\rm hours}$.
581 See section \ref{SEC:tracer_time_stepping}.
582
583 \fbox{
584 \begin{minipage}{5.0in}
585 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
586 \end{minipage}
587 }
588
589 \item Line 47,
590 \begin{verbatim}
591 bathyFile='topog.box'
592 \end{verbatim}
593 This line specifies the name of the file from which the domain
594 bathymetry is read. This file is a two-dimensional ($x,y$) map of
595 depths. This file is assumed to contain 64-bit binary numbers
596 giving the depth of the model at each grid cell, ordered with the x
597 coordinate varying fastest. The points are ordered from low coordinate
598 to high coordinate for both axes. The units and orientation of the
599 depths in this file are the same as used in the MITgcm code. In this
600 experiment, a depth of $0m$ indicates a solid wall and a depth
601 of $-2000m$ indicates open ocean. The matlab program
602 {\it input/gendata.m} shows an example of how to generate a
603 bathymetry file.
604
605
606 \item Line 50,
607 \begin{verbatim}
608 zonalWindFile='windx.sin_y'
609 \end{verbatim}
610 This line specifies the name of the file from which the x-direction
611 surface wind stress is read. This file is also a two-dimensional
612 ($x,y$) map and is enumerated and formatted in the same manner as the
613 bathymetry file. The matlab program {\it input/gendata.m} includes example
614 code to generate a valid
615 {\bf zonalWindFile}
616 file.
617
618 \end{itemize}
619
620 \noindent other lines in the file {\it input/data} are standard values
621 that are described in the MITgcm Getting Started and MITgcm Parameters
622 notes.
623
624 \begin{small}
625 \input{part3/case_studies/climatalogical_ogcm/input/data}
626 \end{small}
627
628 \subsubsection{File {\it input/data.pkg}}
629
630 This file uses standard default values and does not contain
631 customisations for this experiment.
632
633 \subsubsection{File {\it input/eedata}}
634
635 This file uses standard default values and does not contain
636 customisations for this experiment.
637
638 \subsubsection{File {\it input/windx.sin\_y}}
639
640 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
641 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
642 Although $\tau_{x}$ is only a function of $y$n in this experiment
643 this file must still define a complete two-dimensional map in order
644 to be compatible with the standard code for loading forcing fields
645 in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
646 code for creating the {\it input/windx.sin\_y} file.
647
648 \subsubsection{File {\it input/topog.box}}
649
650
651 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
652 map of depth values. For this experiment values are either
653 $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
654 ocean. The file contains a raw binary stream of data that is enumerated
655 in the same way as standard MITgcm two-dimensional, horizontal arrays.
656 The included matlab program {\it input/gendata.m} gives a complete
657 code for creating the {\it input/topog.box} file.
658
659 \subsubsection{File {\it code/SIZE.h}}
660
661 Two lines are customized in this file for the current experiment
662
663 \begin{itemize}
664
665 \item Line 39,
666 \begin{verbatim} sNx=60, \end{verbatim} this line sets
667 the lateral domain extent in grid points for the
668 axis aligned with the x-coordinate.
669
670 \item Line 40,
671 \begin{verbatim} sNy=60, \end{verbatim} this line sets
672 the lateral domain extent in grid points for the
673 axis aligned with the y-coordinate.
674
675 \item Line 49,
676 \begin{verbatim} Nr=4, \end{verbatim} this line sets
677 the vertical domain extent in grid points.
678
679 \end{itemize}
680
681 \begin{small}
682 \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
683 \end{small}
684
685 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
686
687 This file uses standard default values and does not contain
688 customisations for this experiment.
689
690
691 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
692
693 This file uses standard default values and does not contain
694 customisations for this experiment.
695
696 \subsubsection{Other Files }
697
698 Other files relevant to this experiment are
699 \begin{itemize}
700 \item {\it model/src/ini\_cori.F}. This file initializes the model
701 coriolis variables {\bf fCorU}.
702 \item {\it model/src/ini\_spherical\_polar\_grid.F}
703 \item {\it model/src/ini\_parms.F},
704 \item {\it input/windx.sin\_y},
705 \end{itemize}
706 contain the code customisations and parameter settings for this
707 experiments. Below we describe the customisations
708 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22