/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Contents of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download) (as text)
Mon Oct 22 11:55:48 2001 UTC (23 years, 9 months ago) by cnh
Branch: MAIN
Changes since 1.1: +3 -2 lines
File MIME type: application/x-tex
Rewording/rearranging

1 % $Header: /u/u0/gcmpack/mitgcmdoc/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.1.1.1 2001/08/08 16:16:05 adcroft Exp $
2 % $Name: $
3
4 \section{Example: 4$^\circ$ Global Climatological Ocean Simulation}
5 \label{sec:eg-global}
6
7 \bodytext{bgcolor="#FFFFFFFF"}
8
9 %\begin{center}
10 %{\Large \bf Using MITgcm to Simulate Global Climatalogical Ocean Circulation
11 %At Four Degree Resolution with Asynchronous Time Stepping}
12 %
13 %\vspace*{4mm}
14 %
15 %\vspace*{3mm}
16 %{\large May 2001}
17 %\end{center}
18
19 \subsection{Introduction}
20
21 This document describes the third example MITgcm experiment. The first
22 two examples illustrated how to configure the code for hydrostatic idealised
23 geophysical fluids simulations. This example iilustrates the use of
24 the MITgcm for large scale ocean circulation simulation.
25
26 \subsection{Overview}
27
28 This example experiment demonstrates using the MITgcm to simulate
29 the planetary ocean circulation. The simulation is configured
30 with realistic geography and bathymetry on a
31 $4^{\circ} \times 4^{\circ}$ spherical polar grid.
32 Twenty levels are used in the vertical, ranging in thickness
33 from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
34 giving a maximum model depth of $6\,{\rm km}$.
35 At this resolution, the configuration
36 can be integrated forward for thousands of years on a single
37 processor desktop computer.
38 \\
39
40 The model is forced with climatalogical wind stress data and surface
41 flux data from DaSilva \cite{DaSilva94}. Climatalogical data
42 from Levitus \cite{Levitus94} is used to initialise the model hydrography.
43 Levitus seasonal clmatology data is also used throughout the calculation
44 to provide additional air-sea fluxes.
45 These fluxes are combined with the DaSilva climatalogical estimates of
46 surface heat flux and fresh water, resulting in a mixed boundary
47 condition of the style decribed in Haney \cite{Haney}.
48 Altogether, this yields the following forcing applied
49 in the model surface layer.
50
51 \begin{eqnarray}
52 \label{EQ:global_forcing}
53 \label{EQ:global_forcing_fu}
54 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
55 \\
56 \label{EQ:global_forcing_fv}
57 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
58 \\
59 \label{EQ:global_forcing_ft}
60 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
61 - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
62 \\
63 \label{EQ:global_forcing_fs}
64 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
65 + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
66 \end{eqnarray}
67
68 \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
69 ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
70 momentum and in the potential temperature and salinity
71 equations respectively.
72 The term $\Delta z_{s}$ represents the top ocean layer thickness in
73 meters.
74 It is used in conjunction with a reference density, $\rho_{0}$
75 (here set to $999.8\,{\rm kg\,m^{-3}}$), a
76 reference salinity, $S_{0}$ (here set to 35~ppt),
77 and a specific heat capacity, $C_{p}$ (here set to
78 $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
79 input dataset values into time tendencies of
80 potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
81 salinity (with units ${\rm ppt}~s^{-1}$) and
82 velocity (with units ${\rm m}~{\rm s}^{-2}$).
83 The externally supplied forcing fields used in this
84 experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
85 $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
86 have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
87 ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
88 respectively. The salinity forcing fields ($S^{\ast}$ and
89 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
90 respectively.
91 \\
92
93
94 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
95 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
96 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
97 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
98 in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
99 also indicate the lateral extent and coastline used in the experiment.
100 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
101 domain.
102
103
104 \subsection{Discrete Numerical Configuration}
105
106
107 The model is configured in hydrostatic form. The domain is discretised with
108 a uniform grid spacing in latitude and longitude on the sphere
109 $\Delta \phi=\Delta \lambda=4^{\circ}$, so
110 that there are ninety grid cells in the zonal and forty in the
111 meridional direction. The internal model coordinate variables
112 $x$ and $y$ are initialised according to
113 \begin{eqnarray}
114 x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
115 y=r\lambda,~\Delta x &= &r\Delta \lambda
116 \end{eqnarray}
117
118 Arctic polar regions are not
119 included in this experiment. Meridionally the model extends from
120 $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
121 Vertically the model is configured with twenty layers with the
122 following thicknesses
123 $\Delta z_{1} = 50\,{\rm m},\,
124 \Delta z_{2} = 50\,{\rm m},\,
125 \Delta z_{3} = 55\,{\rm m},\,
126 \Delta z_{4} = 60\,{\rm m},\,
127 \Delta z_{5} = 65\,{\rm m},\,
128 $
129 $
130 \Delta z_{6}~=~70\,{\rm m},\,
131 \Delta z_{7}~=~80\,{\rm m},\,
132 \Delta z_{8}~=95\,{\rm m},\,
133 \Delta z_{9}=120\,{\rm m},\,
134 \Delta z_{10}=155\,{\rm m},\,
135 $
136 $
137 \Delta z_{11}=200\,{\rm m},\,
138 \Delta z_{12}=260\,{\rm m},\,
139 \Delta z_{13}=320\,{\rm m},\,
140 \Delta z_{14}=400\,{\rm m},\,
141 \Delta z_{15}=480\,{\rm m},\,
142 $
143 $
144 \Delta z_{16}=570\,{\rm m},\,
145 \Delta z_{17}=655\,{\rm m},\,
146 \Delta z_{18}=725\,{\rm m},\,
147 \Delta z_{19}=775\,{\rm m},\,
148 \Delta z_{20}=815\,{\rm m}
149 $ (here the numeric subscript indicates the model level index number, ${\tt k}$).
150 The implicit free surface form of the pressure equation described in Marshall et. al
151 \cite{Marshall97a} is employed. A laplacian operator, $\nabla^2$, provides viscous
152 dissipation. Thermal and haline diffusion is also represented by a laplacian operator.
153
154 Wind-stress forcing is added to the momentum equations for both
155 the zonal flow, $u$ and the merdional flow $v$, according to equations
156 (\ref{EQ:global_forcing_fu}) and (\ref{EQ:global_forcing_fv}).
157 Thermodynamic forcing inputs are added to the equations for
158 potential temperature, $\theta$, and salinity, $S$, according to equations
159 (\ref{EQ:global_forcing_ft}) and (\ref{EQ:global_forcing_fs}).
160 This produces a set of equations solved in this configuration as follows:
161
162 \begin{eqnarray}
163 \label{EQ:model_equations}
164 \frac{Du}{Dt} - fv +
165 \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
166 \nabla_{h}\cdot A_{h}\nabla_{h}u -
167 \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
168 & = &
169 \begin{cases}
170 {\cal F}_u & \text{(surface)} \\
171 0 & \text{(interior)}
172 \end{cases}
173 \\
174 \frac{Dv}{Dt} + fu +
175 \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
176 \nabla_{h}\cdot A_{h}\nabla_{h}v -
177 \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
178 & = &
179 \begin{cases}
180 {\cal F}_v & \text{(surface)} \\
181 0 & \text{(interior)}
182 \end{cases}
183 \\
184 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
185 &=&
186 0
187 \\
188 \frac{D\theta}{Dt} -
189 \nabla_{h}\cdot K_{h}\nabla_{h}\theta
190 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
191 & = &
192 \begin{cases}
193 {\cal F}_\theta & \text{(surface)} \\
194 0 & \text{(interior)}
195 \end{cases}
196 \\
197 \frac{D s}{Dt} -
198 \nabla_{h}\cdot K_{h}\nabla_{h}s
199 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
200 & = &
201 \begin{cases}
202 {\cal F}_s & \text{(surface)} \\
203 0 & \text{(interior)}
204 \end{cases}
205 \\
206 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
207 \end{eqnarray}
208
209 \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
210 $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
211 are the zonal and meridional components of the
212 flow vector, $\vec{u}$, on the sphere. As described in
213 MITgcm Numerical Solution Procedure \cite{MITgcm_Numerical_Scheme}, the time
214 evolution of potential temperature, $\theta$, equation is solved prognostically.
215 The total pressure, $p$, is diagnosed by summing pressure due to surface
216 elevation $\eta$ and the hydrostatic pressure.
217 \\
218
219 \subsubsection{Numerical Stability Criteria}
220
221 The laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
222 This value is chosen to yield a Munk layer width \cite{Adcroft_thesis},
223 \begin{eqnarray}
224 \label{EQ:munk_layer}
225 M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
226 \end{eqnarray}
227
228 \noindent of $\approx 600$km. This is greater than the model
229 resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
230 boundary layer is adequately resolved.
231 \\
232
233 \noindent The model is stepped forward with a
234 time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
235 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
236 parameter to the horizontal laplacian friction \cite{Adcroft_thesis}
237 \begin{eqnarray}
238 \label{EQ:laplacian_stability}
239 S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
240 \end{eqnarray}
241
242 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
243 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
244 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
245 \\
246
247 \noindent The vertical dissipation coefficient, $A_{z}$, is set to
248 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
249 \begin{eqnarray}
250 \label{EQ:laplacian_stability_z}
251 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
252 \end{eqnarray}
253
254 \noindent evaluates to $0.015$ for the smallest model
255 level spcing ($\Delta z_{1}=50{\rm m}$) which is again well below
256 the upper stability limit.
257 \\
258
259 The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
260 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
261 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
262 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
263 Here the stability parameter
264 \begin{eqnarray}
265 \label{EQ:laplacian_stability_xtheta}
266 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
267 \end{eqnarray}
268 evaluates to $0.07$, well below the stabilit limit of $S_{l} \approx 0.5$. The
269 stability parameter related to $K_{z}$
270 \begin{eqnarray}
271 \label{EQ:laplacian_stability_ztheta}
272 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
273 \end{eqnarray}
274 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
275 of $S_{l} \approx 0.5$.
276 \\
277
278 \noindent The numerical stability for inertial oscillations
279 \cite{Adcroft_thesis}
280
281 \begin{eqnarray}
282 \label{EQ:inertial_stability}
283 S_{i} = f^{2} {\delta t_v}^2
284 \end{eqnarray}
285
286 \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
287 the $S_{i} < 1$ upper limit for stability.
288 \\
289
290 \noindent The advective CFL \cite{Adcroft_thesis} for a extreme maximum
291 horizontal flow
292 speed of $ | \vec{u} | = 2 ms^{-1}$
293
294 \begin{eqnarray}
295 \label{EQ:cfl_stability}
296 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
297 \end{eqnarray}
298
299 \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
300 limit of 0.5.
301 \\
302
303 \noindent The stability parameter for internal gravity waves propogating
304 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
305 \cite{Adcroft_thesis}
306
307 \begin{eqnarray}
308 \label{EQ:cfl_stability}
309 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
310 \end{eqnarray}
311
312 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
313 stability limit of 0.5.
314
315 \subsection{Experiment Configuration}
316 \label{SEC:clim_ocn_examp_exp_config}
317
318 The model configuration for this experiment resides under the
319 directory {\it verification/exp2/}. The experiment files
320 \begin{itemize}
321 \item {\it input/data}
322 \item {\it input/data.pkg}
323 \item {\it input/eedata},
324 \item {\it input/windx.bin},
325 \item {\it input/windy.bin},
326 \item {\it input/salt.bin},
327 \item {\it input/theta.bin},
328 \item {\it input/SSS.bin},
329 \item {\it input/SST.bin},
330 \item {\it input/topog.bin},
331 \item {\it code/CPP\_EEOPTIONS.h}
332 \item {\it code/CPP\_OPTIONS.h},
333 \item {\it code/SIZE.h}.
334 \end{itemize}
335 contain the code customisations and parameter settings for these
336 experiements. Below we describe the customisations
337 to these files associated with this experiment.
338
339 \subsubsection{File {\it input/data}}
340
341 This file, reproduced completely below, specifies the main parameters
342 for the experiment. The parameters that are significant for this configuration
343 are
344
345 \begin{itemize}
346
347 \item Lines 7-10 and 11-14
348 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
349 $\cdots$ \\
350 set reference values for potential
351 temperature and salinity at each model level in units of $^{\circ}$C and
352 ${\rm ppt}$. The entries are ordered from surface to depth.
353 Density is calculated from anomalies at each level evaluated
354 with respect to the reference values set here.\\
355 \fbox{
356 \begin{minipage}{5.0in}
357 {\it S/R INI\_THETA}({\it ini\_theta.F})
358 \end{minipage}
359 }
360
361
362 \item Line 15,
363 \begin{verbatim} viscAz=1.E-3, \end{verbatim}
364 this line sets the vertical laplacian dissipation coefficient to
365 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
366 for this operator are specified later. This variable is copied into
367 model general vertical coordinate variable {\bf viscAr}.
368
369 \fbox{
370 \begin{minipage}{5.0in}
371 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
372 \end{minipage}
373 }
374
375 \item Line 16,
376 \begin{verbatim}
377 viscAh=5.E5,
378 \end{verbatim}
379 this line sets the horizontal laplacian frictional dissipation coefficient to
380 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
381 for this operator are specified later.
382
383 \item Lines 17,
384 \begin{verbatim}
385 no_slip_sides=.FALSE.
386 \end{verbatim}
387 this line selects a free-slip lateral boundary condition for
388 the horizontal laplacian friction operator
389 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
390 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
391
392 \item Lines 9,
393 \begin{verbatim}
394 no_slip_bottom=.TRUE.
395 \end{verbatim}
396 this line selects a no-slip boundary condition for bottom
397 boundary condition in the vertical laplacian friction operator
398 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
399
400 \item Line 19,
401 \begin{verbatim}
402 diffKhT=1.E3,
403 \end{verbatim}
404 this line sets the horizontal diffusion coefficient for temperature
405 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
406 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
407 all boundaries.
408
409 \item Line 20,
410 \begin{verbatim}
411 diffKzT=3.E-5,
412 \end{verbatim}
413 this line sets the vertical diffusion coefficient for temperature
414 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
415 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
416 the upper and lower boundaries.
417
418 \item Line 21,
419 \begin{verbatim}
420 diffKhS=1.E3,
421 \end{verbatim}
422 this line sets the horizontal diffusion coefficient for salinity
423 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
424 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
425 all boundaries.
426
427 \item Line 22,
428 \begin{verbatim}
429 diffKzS=3.E-5,
430 \end{verbatim}
431 this line sets the vertical diffusion coefficient for salinity
432 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
433 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
434 the upper and lower boundaries.
435
436 \item Lines 23-26
437 \begin{verbatim}
438 beta=1.E-11,
439 \end{verbatim}
440 \vspace{-5mm}$\cdots$\\
441 These settings do not apply for this experiment.
442
443 \item Line 27,
444 \begin{verbatim}
445 gravity=9.81,
446 \end{verbatim}
447 Sets the gravitational acceleration coeeficient to $9.81{\rm m}{\rm s}^{-1}$.\\
448 \fbox{
449 \begin{minipage}{5.0in}
450 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
451 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
452 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
453 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
454 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
455 \end{minipage}
456 }
457
458
459 \item Line 28-29,
460 \begin{verbatim}
461 rigidLid=.FALSE.,
462 implicitFreeSurface=.TRUE.,
463 \end{verbatim}
464 Selects the barotropic pressure equation to be the implicit free surface
465 formulation.
466
467 \item Line 30,
468 \begin{verbatim}
469 eosType='POLY3',
470 \end{verbatim}
471 Selects the third order polynomial form of the equation of state.\\
472 \fbox{
473 \begin{minipage}{5.0in}
474 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
475 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
476 \end{minipage}
477 }
478
479 \item Line 31,
480 \begin{verbatim}
481 readBinaryPrec=32,
482 \end{verbatim}
483 Sets format for reading binary input datasets holding model fields to
484 use 32-bit representation for floating-point numbers.\\
485 \fbox{
486 \begin{minipage}{5.0in}
487 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
488 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
489 \end{minipage}
490 }
491
492 \item Line 36,
493 \begin{verbatim}
494 cg2dMaxIters=1000,
495 \end{verbatim}
496 Sets maximum number of iterations the two-dimensional, conjugate
497 gradient solver will use, {\bf irrespective of convergence
498 criteria being met}.\\
499 \fbox{
500 \begin{minipage}{5.0in}
501 {\it S/R CG2D}~({\it cg2d.F})
502 \end{minipage}
503 }
504
505 \item Line 37,
506 \begin{verbatim}
507 cg2dTargetResidual=1.E-13,
508 \end{verbatim}
509 Sets the tolerance which the two-dimensional, conjugate
510 gradient solver will use to test for convergence in equation
511 \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
512 Solver will iterate until
513 tolerance falls below this value or until the maximum number of
514 solver iterations is reached.\\
515 \fbox{
516 \begin{minipage}{5.0in}
517 {\it S/R CG2D}~({\it cg2d.F})
518 \end{minipage}
519 }
520
521 \item Line 42,
522 \begin{verbatim}
523 startTime=0,
524 \end{verbatim}
525 Sets the starting time for the model internal time counter.
526 When set to non-zero this option implicitly requests a
527 checkpoint file be read for initial state.
528 By default the checkpoint file is named according to
529 the integer number of time steps in the {\bf startTime} value.
530 The internal time counter works in seconds.
531
532 \item Line 43,
533 \begin{verbatim}
534 endTime=2808000.,
535 \end{verbatim}
536 Sets the time (in seconds) at which this simulation will terminate.
537 At the end of a simulation a checkpoint file is automatically
538 written so that a numerical experiment can consist of multiple
539 stages.
540
541 \item Line 44,
542 \begin{verbatim}
543 #endTime=62208000000,
544 \end{verbatim}
545 A commented out setting for endTime for a 2000 year simulation.
546
547 \item Line 45,
548 \begin{verbatim}
549 deltaTmom=2400.0,
550 \end{verbatim}
551 Sets the timestep $\delta t_{v}$ used in the momentum equations to
552 $20~{\rm mins}$.
553 See section \ref{SEC:mom_time_stepping}.
554
555 \fbox{
556 \begin{minipage}{5.0in}
557 {\it S/R TIMESTEP}({\it timestep.F})
558 \end{minipage}
559 }
560
561 \item Line 46,
562 \begin{verbatim}
563 tauCD=321428.,
564 \end{verbatim}
565 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
566 See section \ref{SEC:cd_scheme}.
567
568 \fbox{
569 \begin{minipage}{5.0in}
570 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
571 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
572 \end{minipage}
573 }
574
575 \item Line 47,
576 \begin{verbatim}
577 deltaTtracer=108000.,
578 \end{verbatim}
579 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
580 $30~{\rm hours}$.
581 See section \ref{SEC:tracer_time_stepping}.
582
583 \fbox{
584 \begin{minipage}{5.0in}
585 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
586 \end{minipage}
587 }
588
589 \item Line 47,
590 \begin{verbatim}
591 bathyFile='topog.box'
592 \end{verbatim}
593 This line specifies the name of the file from which the domain
594 bathymetry is read. This file is a two-dimensional ($x,y$) map of
595 depths. This file is assumed to contain 64-bit binary numbers
596 giving the depth of the model at each grid cell, ordered with the x
597 coordinate varying fastest. The points are ordered from low coordinate
598 to high coordinate for both axes. The units and orientation of the
599 depths in this file are the same as used in the MITgcm code. In this
600 experiment, a depth of $0m$ indicates a solid wall and a depth
601 of $-2000m$ indicates open ocean. The matlab program
602 {\it input/gendata.m} shows an example of how to generate a
603 bathymetry file.
604
605
606 \item Line 50,
607 \begin{verbatim}
608 zonalWindFile='windx.sin_y'
609 \end{verbatim}
610 This line specifies the name of the file from which the x-direction
611 surface wind stress is read. This file is also a two-dimensional
612 ($x,y$) map and is enumerated and formatted in the same manner as the
613 bathymetry file. The matlab program {\it input/gendata.m} includes example
614 code to generate a valid
615 {\bf zonalWindFile}
616 file.
617
618 \end{itemize}
619
620 \noindent other lines in the file {\it input/data} are standard values
621 that are described in the MITgcm Getting Started and MITgcm Parameters
622 notes.
623
624 \begin{small}
625 \input{part3/case_studies/climatalogical_ogcm/input/data}
626 \end{small}
627
628 \subsubsection{File {\it input/data.pkg}}
629
630 This file uses standard default values and does not contain
631 customisations for this experiment.
632
633 \subsubsection{File {\it input/eedata}}
634
635 This file uses standard default values and does not contain
636 customisations for this experiment.
637
638 \subsubsection{File {\it input/windx.sin\_y}}
639
640 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
641 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
642 Although $\tau_{x}$ is only a function of $y$n in this experiment
643 this file must still define a complete two-dimensional map in order
644 to be compatible with the standard code for loading forcing fields
645 in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
646 code for creating the {\it input/windx.sin\_y} file.
647
648 \subsubsection{File {\it input/topog.box}}
649
650
651 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
652 map of depth values. For this experiment values are either
653 $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
654 ocean. The file contains a raw binary stream of data that is enumerated
655 in the same way as standard MITgcm two-dimensional, horizontal arrays.
656 The included matlab program {\it input/gendata.m} gives a complete
657 code for creating the {\it input/topog.box} file.
658
659 \subsubsection{File {\it code/SIZE.h}}
660
661 Two lines are customized in this file for the current experiment
662
663 \begin{itemize}
664
665 \item Line 39,
666 \begin{verbatim} sNx=60, \end{verbatim} this line sets
667 the lateral domain extent in grid points for the
668 axis aligned with the x-coordinate.
669
670 \item Line 40,
671 \begin{verbatim} sNy=60, \end{verbatim} this line sets
672 the lateral domain extent in grid points for the
673 axis aligned with the y-coordinate.
674
675 \item Line 49,
676 \begin{verbatim} Nr=4, \end{verbatim} this line sets
677 the vertical domain extent in grid points.
678
679 \end{itemize}
680
681 \begin{small}
682 \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
683 \end{small}
684
685 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
686
687 This file uses standard default values and does not contain
688 customisations for this experiment.
689
690
691 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
692
693 This file uses standard default values and does not contain
694 customisations for this experiment.
695
696 \subsubsection{Other Files }
697
698 Other files relevant to this experiment are
699 \begin{itemize}
700 \item {\it model/src/ini\_cori.F}. This file initializes the model
701 coriolis variables {\bf fCorU}.
702 \item {\it model/src/ini\_spherical\_polar\_grid.F}
703 \item {\it model/src/ini\_parms.F},
704 \item {\it input/windx.sin\_y},
705 \end{itemize}
706 contain the code customisations and parameter settings for this
707 experiements. Below we describe the customisations
708 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22