/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Contents of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.14 - (show annotations) (download) (as text)
Tue Jun 27 19:08:22 2006 UTC (19 years ago) by molod
Branch: MAIN
Changes since 1.13: +3 -1 lines
File MIME type: application/x-tex
Add cross references between tutorials and verification file system directories

1 % $Header: /u/gcmpack/manual/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.13 2006/04/08 01:50:50 edhill Exp $
2 % $Name: $
3
4 \section[Global Ocean MITgcm Exmaple]{Global Ocean Simulation at $4^\circ$ Resolution}
5 \label{www:tutorials}
6 \label{sect:eg-global}
7 \begin{rawhtml}
8 <!-- CMIREDIR:eg-global: -->
9 \end{rawhtml}
10
11 \bodytext{bgcolor="#FFFFFFFF"}
12
13 %\begin{center}
14 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
15 %At Four Degree Resolution with Asynchronous Time Stepping}
16 %
17 %\vspace*{4mm}
18 %
19 %\vspace*{3mm}
20 %{\large May 2001}
21 %\end{center}
22
23
24 This example experiment demonstrates using the MITgcm to simulate
25 the planetary ocean circulation. The simulation is configured
26 with realistic geography and bathymetry on a
27 $4^{\circ} \times 4^{\circ}$ spherical polar grid.
28 The files for this experiment are in the verification directory
29 under tutorial\_global\_oce\_latlon.
30 Twenty levels are used in the vertical, ranging in thickness
31 from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
32 giving a maximum model depth of $6\,{\rm km}$.
33 At this resolution, the configuration
34 can be integrated forward for thousands of years on a single
35 processor desktop computer.
36 \\
37 \subsection{Overview}
38 \label{www:tutorials}
39
40 The model is forced with climatological wind stress data and surface
41 flux data from DaSilva \cite{DaSilva94}. Climatological data
42 from Levitus \cite{Levitus94} is used to initialize the model hydrography.
43 Levitus seasonal climatology data is also used throughout the calculation
44 to provide additional air-sea fluxes.
45 These fluxes are combined with the DaSilva climatological estimates of
46 surface heat flux and fresh water, resulting in a mixed boundary
47 condition of the style described in Haney \cite{Haney}.
48 Altogether, this yields the following forcing applied
49 in the model surface layer.
50
51 \begin{eqnarray}
52 \label{EQ:eg-global-global_forcing}
53 \label{EQ:eg-global-global_forcing_fu}
54 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
55 \\
56 \label{EQ:eg-global-global_forcing_fv}
57 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
58 \\
59 \label{EQ:eg-global-global_forcing_ft}
60 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
61 - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
62 \\
63 \label{EQ:eg-global-global_forcing_fs}
64 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
65 + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
66 \end{eqnarray}
67
68 \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
69 ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
70 momentum and in the potential temperature and salinity
71 equations respectively.
72 The term $\Delta z_{s}$ represents the top ocean layer thickness in
73 meters.
74 It is used in conjunction with a reference density, $\rho_{0}$
75 (here set to $999.8\,{\rm kg\,m^{-3}}$), a
76 reference salinity, $S_{0}$ (here set to 35~ppt),
77 and a specific heat capacity, $C_{p}$ (here set to
78 $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
79 input dataset values into time tendencies of
80 potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
81 salinity (with units ${\rm ppt}~s^{-1}$) and
82 velocity (with units ${\rm m}~{\rm s}^{-2}$).
83 The externally supplied forcing fields used in this
84 experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
85 $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
86 have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
87 ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
88 respectively. The salinity forcing fields ($S^{\ast}$ and
89 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
90 respectively. The source files and procedures for ingesting this data into the
91 simulation are described in the experiment configuration discussion in section
92 \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
93
94
95 \subsection{Discrete Numerical Configuration}
96 \label{www:tutorials}
97
98
99 The model is configured in hydrostatic form. The domain is discretised with
100 a uniform grid spacing in latitude and longitude on the sphere
101 $\Delta \phi=\Delta \lambda=4^{\circ}$, so
102 that there are ninety grid cells in the zonal and forty in the
103 meridional direction. The internal model coordinate variables
104 $x$ and $y$ are initialized according to
105 \begin{eqnarray}
106 x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
107 y=r\lambda,~\Delta y &= &r\Delta \lambda
108 \end{eqnarray}
109
110 Arctic polar regions are not
111 included in this experiment. Meridionally the model extends from
112 $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
113 Vertically the model is configured with twenty layers with the
114 following thicknesses
115 $\Delta z_{1} = 50\,{\rm m},\,
116 \Delta z_{2} = 50\,{\rm m},\,
117 \Delta z_{3} = 55\,{\rm m},\,
118 \Delta z_{4} = 60\,{\rm m},\,
119 \Delta z_{5} = 65\,{\rm m},\,
120 $
121 $
122 \Delta z_{6}~=~70\,{\rm m},\,
123 \Delta z_{7}~=~80\,{\rm m},\,
124 \Delta z_{8}~=95\,{\rm m},\,
125 \Delta z_{9}=120\,{\rm m},\,
126 \Delta z_{10}=155\,{\rm m},\,
127 $
128 $
129 \Delta z_{11}=200\,{\rm m},\,
130 \Delta z_{12}=260\,{\rm m},\,
131 \Delta z_{13}=320\,{\rm m},\,
132 \Delta z_{14}=400\,{\rm m},\,
133 \Delta z_{15}=480\,{\rm m},\,
134 $
135 $
136 \Delta z_{16}=570\,{\rm m},\,
137 \Delta z_{17}=655\,{\rm m},\,
138 \Delta z_{18}=725\,{\rm m},\,
139 \Delta z_{19}=775\,{\rm m},\,
140 \Delta z_{20}=815\,{\rm m}
141 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
142 give a total depth, $H$, of $-5450{\rm m}$.
143 The implicit free surface form of the pressure equation described in Marshall et. al
144 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
145 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
146
147 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
148 for both the zonal flow, $u$ and the meridional flow $v$, according to equations
149 (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
150 Thermodynamic forcing inputs are added to the equations
151 in (\ref{EQ:eg-global-model_equations}) for
152 potential temperature, $\theta$, and salinity, $S$, according to equations
153 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
154 This produces a set of equations solved in this configuration as follows:
155
156 \begin{eqnarray}
157 \label{EQ:eg-global-model_equations}
158 \frac{Du}{Dt} - fv +
159 \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
160 \nabla_{h}\cdot A_{h}\nabla_{h}u -
161 \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
162 & = &
163 \begin{cases}
164 {\cal F}_u & \text{(surface)} \\
165 0 & \text{(interior)}
166 \end{cases}
167 \\
168 \frac{Dv}{Dt} + fu +
169 \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
170 \nabla_{h}\cdot A_{h}\nabla_{h}v -
171 \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
172 & = &
173 \begin{cases}
174 {\cal F}_v & \text{(surface)} \\
175 0 & \text{(interior)}
176 \end{cases}
177 \\
178 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
179 &=&
180 0
181 \\
182 \frac{D\theta}{Dt} -
183 \nabla_{h}\cdot K_{h}\nabla_{h}\theta
184 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
185 & = &
186 \begin{cases}
187 {\cal F}_\theta & \text{(surface)} \\
188 0 & \text{(interior)}
189 \end{cases}
190 \\
191 \frac{D s}{Dt} -
192 \nabla_{h}\cdot K_{h}\nabla_{h}s
193 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
194 & = &
195 \begin{cases}
196 {\cal F}_s & \text{(surface)} \\
197 0 & \text{(interior)}
198 \end{cases}
199 \\
200 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
201 \end{eqnarray}
202
203 \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
204 $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
205 are the zonal and meridional components of the
206 flow vector, $\vec{u}$, on the sphere. As described in
207 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
208 evolution of potential temperature, $\theta$, equation is solved prognostically.
209 The total pressure, $p$, is diagnosed by summing pressure due to surface
210 elevation $\eta$ and the hydrostatic pressure.
211 \\
212
213 \subsubsection{Numerical Stability Criteria}
214 \label{www:tutorials}
215
216 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
217 This value is chosen to yield a Munk layer width \cite{adcroft:95},
218 \begin{eqnarray}
219 \label{EQ:eg-global-munk_layer}
220 && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
221 \end{eqnarray}
222
223 \noindent of $\approx 600$km. This is greater than the model
224 resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
225 boundary layer is adequately resolved.
226 \\
227
228 \noindent The model is stepped forward with a
229 time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
230 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
231 parameter to the horizontal Laplacian friction \cite{adcroft:95}
232 \begin{eqnarray}
233 \label{EQ:eg-global-laplacian_stability}
234 && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
235 \end{eqnarray}
236
237 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
238 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
239 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
240 \\
241
242 \noindent The vertical dissipation coefficient, $A_{z}$, is set to
243 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
244 \begin{eqnarray}
245 \label{EQ:eg-global-laplacian_stability_z}
246 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
247 \end{eqnarray}
248
249 \noindent evaluates to $0.015$ for the smallest model
250 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
251 the upper stability limit.
252 \\
253
254 The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
255 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
256 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
257 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
258 Here the stability parameter
259 \begin{eqnarray}
260 \label{EQ:eg-global-laplacian_stability_xtheta}
261 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
262 \end{eqnarray}
263 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
264 stability parameter related to $K_{z}$
265 \begin{eqnarray}
266 \label{EQ:eg-global-laplacian_stability_ztheta}
267 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
268 \end{eqnarray}
269 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
270 of $S_{l} \approx 0.5$.
271 \\
272
273 \noindent The numerical stability for inertial oscillations
274 \cite{adcroft:95}
275
276 \begin{eqnarray}
277 \label{EQ:eg-global-inertial_stability}
278 S_{i} = f^{2} {\delta t_v}^2
279 \end{eqnarray}
280
281 \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
282 the $S_{i} < 1$ upper limit for stability.
283 \\
284
285 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
286 horizontal flow
287 speed of $ | \vec{u} | = 2 ms^{-1}$
288
289 \begin{eqnarray}
290 \label{EQ:eg-global-cfl_stability}
291 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
292 \end{eqnarray}
293
294 \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
295 limit of 0.5.
296 \\
297
298 \noindent The stability parameter for internal gravity waves propagating
299 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
300 \cite{adcroft:95}
301
302 \begin{eqnarray}
303 \label{EQ:eg-global-gfl_stability}
304 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
305 \end{eqnarray}
306
307 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
308 stability limit of 0.5.
309
310 \subsection{Experiment Configuration}
311 \label{www:tutorials}
312 \label{SEC:eg-global-clim_ocn_examp_exp_config}
313
314 The model configuration for this experiment resides under the
315 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
316 The experiment files
317
318 \begin{itemize}
319 \item {\it input/data}
320 \item {\it input/data.pkg}
321 \item {\it input/eedata},
322 \item {\it input/windx.bin},
323 \item {\it input/windy.bin},
324 \item {\it input/salt.bin},
325 \item {\it input/theta.bin},
326 \item {\it input/SSS.bin},
327 \item {\it input/SST.bin},
328 \item {\it input/topog.bin},
329 \item {\it code/CPP\_EEOPTIONS.h}
330 \item {\it code/CPP\_OPTIONS.h},
331 \item {\it code/SIZE.h}.
332 \end{itemize}
333 contain the code customizations and parameter settings for these
334 experiments. Below we describe the customizations
335 to these files associated with this experiment.
336
337 \subsubsection{Driving Datasets}
338 \label{www:tutorials}
339
340 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
341 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
342 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
343 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
344 in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
345 also indicate the lateral extent and coastline used in the experiment.
346 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
347 domain.
348
349
350 \subsubsection{File {\it input/data}}
351 \label{www:tutorials}
352
353 This file, reproduced completely below, specifies the main parameters
354 for the experiment. The parameters that are significant for this configuration
355 are
356
357 \begin{itemize}
358
359 \item Lines 7-10 and 11-14
360 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
361 $\cdots$ \\
362 set reference values for potential
363 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and
364 ${\rm ppt}$. The entries are ordered from surface to depth.
365 Density is calculated from anomalies at each level evaluated
366 with respect to the reference values set here.\\
367 \fbox{
368 \begin{minipage}{5.0in}
369 {\it S/R INI\_THETA}({\it ini\_theta.F})
370 \end{minipage}
371 }
372
373
374 \item Line 15,
375 \begin{verbatim} viscAz=1.E-3, \end{verbatim}
376 this line sets the vertical Laplacian dissipation coefficient to
377 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
378 for this operator are specified later. This variable is copied into
379 model general vertical coordinate variable {\bf viscAr}.
380
381 \fbox{
382 \begin{minipage}{5.0in}
383 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
384 \end{minipage}
385 }
386
387 \item Line 16,
388 \begin{verbatim}
389 viscAh=5.E5,
390 \end{verbatim}
391 this line sets the horizontal Laplacian frictional dissipation coefficient to
392 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
393 for this operator are specified later.
394
395 \item Lines 17,
396 \begin{verbatim}
397 no_slip_sides=.FALSE.
398 \end{verbatim}
399 this line selects a free-slip lateral boundary condition for
400 the horizontal Laplacian friction operator
401 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
402 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
403
404 \item Lines 9,
405 \begin{verbatim}
406 no_slip_bottom=.TRUE.
407 \end{verbatim}
408 this line selects a no-slip boundary condition for bottom
409 boundary condition in the vertical Laplacian friction operator
410 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
411
412 \item Line 19,
413 \begin{verbatim}
414 diffKhT=1.E3,
415 \end{verbatim}
416 this line sets the horizontal diffusion coefficient for temperature
417 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
418 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
419 all boundaries.
420
421 \item Line 20,
422 \begin{verbatim}
423 diffKzT=3.E-5,
424 \end{verbatim}
425 this line sets the vertical diffusion coefficient for temperature
426 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
427 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
428 the upper and lower boundaries.
429
430 \item Line 21,
431 \begin{verbatim}
432 diffKhS=1.E3,
433 \end{verbatim}
434 this line sets the horizontal diffusion coefficient for salinity
435 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
436 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
437 all boundaries.
438
439 \item Line 22,
440 \begin{verbatim}
441 diffKzS=3.E-5,
442 \end{verbatim}
443 this line sets the vertical diffusion coefficient for salinity
444 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
445 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
446 the upper and lower boundaries.
447
448 \item Lines 23-26
449 \begin{verbatim}
450 beta=1.E-11,
451 \end{verbatim}
452 \vspace{-5mm}$\cdots$\\
453 These settings do not apply for this experiment.
454
455 \item Line 27,
456 \begin{verbatim}
457 gravity=9.81,
458 \end{verbatim}
459 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
460 \fbox{
461 \begin{minipage}{5.0in}
462 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
463 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
464 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
465 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
466 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
467 \end{minipage}
468 }
469
470
471 \item Line 28-29,
472 \begin{verbatim}
473 rigidLid=.FALSE.,
474 implicitFreeSurface=.TRUE.,
475 \end{verbatim}
476 Selects the barotropic pressure equation to be the implicit free surface
477 formulation.
478
479 \item Line 30,
480 \begin{verbatim}
481 eosType='POLY3',
482 \end{verbatim}
483 Selects the third order polynomial form of the equation of state.\\
484 \fbox{
485 \begin{minipage}{5.0in}
486 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
487 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
488 \end{minipage}
489 }
490
491 \item Line 31,
492 \begin{verbatim}
493 readBinaryPrec=32,
494 \end{verbatim}
495 Sets format for reading binary input datasets holding model fields to
496 use 32-bit representation for floating-point numbers.\\
497 \fbox{
498 \begin{minipage}{5.0in}
499 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
500 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
501 \end{minipage}
502 }
503
504 \item Line 36,
505 \begin{verbatim}
506 cg2dMaxIters=1000,
507 \end{verbatim}
508 Sets maximum number of iterations the two-dimensional, conjugate
509 gradient solver will use, {\bf irrespective of convergence
510 criteria being met}.\\
511 \fbox{
512 \begin{minipage}{5.0in}
513 {\it S/R CG2D}~({\it cg2d.F})
514 \end{minipage}
515 }
516
517 \item Line 37,
518 \begin{verbatim}
519 cg2dTargetResidual=1.E-13,
520 \end{verbatim}
521 Sets the tolerance which the two-dimensional, conjugate
522 gradient solver will use to test for convergence in equation
523 \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
524 Solver will iterate until
525 tolerance falls below this value or until the maximum number of
526 solver iterations is reached.\\
527 \fbox{
528 \begin{minipage}{5.0in}
529 {\it S/R CG2D}~({\it cg2d.F})
530 \end{minipage}
531 }
532
533 \item Line 42,
534 \begin{verbatim}
535 startTime=0,
536 \end{verbatim}
537 Sets the starting time for the model internal time counter.
538 When set to non-zero this option implicitly requests a
539 checkpoint file be read for initial state.
540 By default the checkpoint file is named according to
541 the integer number of time steps in the {\bf startTime} value.
542 The internal time counter works in seconds.
543
544 \item Line 43,
545 \begin{verbatim}
546 endTime=2808000.,
547 \end{verbatim}
548 Sets the time (in seconds) at which this simulation will terminate.
549 At the end of a simulation a checkpoint file is automatically
550 written so that a numerical experiment can consist of multiple
551 stages.
552
553 \item Line 44,
554 \begin{verbatim}
555 #endTime=62208000000,
556 \end{verbatim}
557 A commented out setting for endTime for a 2000 year simulation.
558
559 \item Line 45,
560 \begin{verbatim}
561 deltaTmom=2400.0,
562 \end{verbatim}
563 Sets the timestep $\delta t_{v}$ used in the momentum equations to
564 $20~{\rm mins}$.
565 See section \ref{SEC:mom_time_stepping}.
566
567 \fbox{
568 \begin{minipage}{5.0in}
569 {\it S/R TIMESTEP}({\it timestep.F})
570 \end{minipage}
571 }
572
573 \item Line 46,
574 \begin{verbatim}
575 tauCD=321428.,
576 \end{verbatim}
577 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
578 See section \ref{SEC:cd_scheme}.
579
580 \fbox{
581 \begin{minipage}{5.0in}
582 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
583 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
584 \end{minipage}
585 }
586
587 \item Line 47,
588 \begin{verbatim}
589 deltaTtracer=108000.,
590 \end{verbatim}
591 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
592 $30~{\rm hours}$.
593 See section \ref{SEC:tracer_time_stepping}.
594
595 \fbox{
596 \begin{minipage}{5.0in}
597 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
598 \end{minipage}
599 }
600
601 \item Line 47,
602 \begin{verbatim}
603 bathyFile='topog.box'
604 \end{verbatim}
605 This line specifies the name of the file from which the domain
606 bathymetry is read. This file is a two-dimensional ($x,y$) map of
607 depths. This file is assumed to contain 64-bit binary numbers
608 giving the depth of the model at each grid cell, ordered with the x
609 coordinate varying fastest. The points are ordered from low coordinate
610 to high coordinate for both axes. The units and orientation of the
611 depths in this file are the same as used in the MITgcm code. In this
612 experiment, a depth of $0m$ indicates a solid wall and a depth
613 of $-2000m$ indicates open ocean. The matlab program
614 {\it input/gendata.m} shows an example of how to generate a
615 bathymetry file.
616
617
618 \item Line 50,
619 \begin{verbatim}
620 zonalWindFile='windx.sin_y'
621 \end{verbatim}
622 This line specifies the name of the file from which the x-direction
623 surface wind stress is read. This file is also a two-dimensional
624 ($x,y$) map and is enumerated and formatted in the same manner as the
625 bathymetry file. The matlab program {\it input/gendata.m} includes example
626 code to generate a valid
627 {\bf zonalWindFile}
628 file.
629
630 \end{itemize}
631
632 \noindent other lines in the file {\it input/data} are standard values
633 that are described in the MITgcm Getting Started and MITgcm Parameters
634 notes.
635
636 \begin{small}
637 \input{part3/case_studies/climatalogical_ogcm/input/data}
638 \end{small}
639
640 \subsubsection{File {\it input/data.pkg}}
641 \label{www:tutorials}
642
643 This file uses standard default values and does not contain
644 customisations for this experiment.
645
646 \subsubsection{File {\it input/eedata}}
647 \label{www:tutorials}
648
649 This file uses standard default values and does not contain
650 customisations for this experiment.
651
652 \subsubsection{File {\it input/windx.sin\_y}}
653 \label{www:tutorials}
654
655 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
656 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
657 Although $\tau_{x}$ is only a function of $y$n in this experiment
658 this file must still define a complete two-dimensional map in order
659 to be compatible with the standard code for loading forcing fields
660 in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
661 code for creating the {\it input/windx.sin\_y} file.
662
663 \subsubsection{File {\it input/topog.box}}
664 \label{www:tutorials}
665
666
667 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
668 map of depth values. For this experiment values are either
669 $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
670 ocean. The file contains a raw binary stream of data that is enumerated
671 in the same way as standard MITgcm two-dimensional, horizontal arrays.
672 The included matlab program {\it input/gendata.m} gives a complete
673 code for creating the {\it input/topog.box} file.
674
675 \subsubsection{File {\it code/SIZE.h}}
676 \label{www:tutorials}
677
678 Two lines are customized in this file for the current experiment
679
680 \begin{itemize}
681
682 \item Line 39,
683 \begin{verbatim} sNx=60, \end{verbatim} this line sets
684 the lateral domain extent in grid points for the
685 axis aligned with the x-coordinate.
686
687 \item Line 40,
688 \begin{verbatim} sNy=60, \end{verbatim} this line sets
689 the lateral domain extent in grid points for the
690 axis aligned with the y-coordinate.
691
692 \item Line 49,
693 \begin{verbatim} Nr=4, \end{verbatim} this line sets
694 the vertical domain extent in grid points.
695
696 \end{itemize}
697
698 \begin{small}
699 \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
700 \end{small}
701
702 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
703 \label{www:tutorials}
704
705 This file uses standard default values and does not contain
706 customisations for this experiment.
707
708
709 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
710 \label{www:tutorials}
711
712 This file uses standard default values and does not contain
713 customisations for this experiment.
714
715 \subsubsection{Other Files }
716 \label{www:tutorials}
717
718 Other files relevant to this experiment are
719 \begin{itemize}
720 \item {\it model/src/ini\_cori.F}. This file initializes the model
721 coriolis variables {\bf fCorU}.
722 \item {\it model/src/ini\_spherical\_polar\_grid.F}
723 \item {\it model/src/ini\_parms.F},
724 \item {\it input/windx.sin\_y},
725 \end{itemize}
726 contain the code customisations and parameter settings for this
727 experiments. Below we describe the customisations
728 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22