/[MITgcm]/manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex
ViewVC logotype

Contents of /manual/s_examples/global_oce_latlon/climatalogical_ogcm.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.13 - (show annotations) (download) (as text)
Sat Apr 8 01:50:50 2006 UTC (19 years, 3 months ago) by edhill
Branch: MAIN
Changes since 1.12: +3 -3 lines
File MIME type: application/x-tex
LaTeX syntax cleanups:
 - the degree symbols ("\circ") are now properly raised after latex2html
 - don't use $...$ when it should be \textit{...}

1 % $Header: /u/gcmpack/manual/part3/case_studies/climatalogical_ogcm/climatalogical_ogcm.tex,v 1.12 2004/10/16 03:40:13 edhill Exp $
2 % $Name: $
3
4 \section[Global Ocean MITgcm Exmaple]{Global Ocean Simulation at $4^\circ$ Resolution}
5 \label{www:tutorials}
6 \label{sect:eg-global}
7 \begin{rawhtml}
8 <!-- CMIREDIR:eg-global: -->
9 \end{rawhtml}
10
11 \bodytext{bgcolor="#FFFFFFFF"}
12
13 %\begin{center}
14 %{\Large \bf Using MITgcm to Simulate Global Climatological Ocean Circulation
15 %At Four Degree Resolution with Asynchronous Time Stepping}
16 %
17 %\vspace*{4mm}
18 %
19 %\vspace*{3mm}
20 %{\large May 2001}
21 %\end{center}
22
23
24 This example experiment demonstrates using the MITgcm to simulate
25 the planetary ocean circulation. The simulation is configured
26 with realistic geography and bathymetry on a
27 $4^{\circ} \times 4^{\circ}$ spherical polar grid.
28 Twenty levels are used in the vertical, ranging in thickness
29 from $50\,{\rm m}$ at the surface to $815\,{\rm m}$ at depth,
30 giving a maximum model depth of $6\,{\rm km}$.
31 At this resolution, the configuration
32 can be integrated forward for thousands of years on a single
33 processor desktop computer.
34 \\
35 \subsection{Overview}
36 \label{www:tutorials}
37
38 The model is forced with climatological wind stress data and surface
39 flux data from DaSilva \cite{DaSilva94}. Climatological data
40 from Levitus \cite{Levitus94} is used to initialize the model hydrography.
41 Levitus seasonal climatology data is also used throughout the calculation
42 to provide additional air-sea fluxes.
43 These fluxes are combined with the DaSilva climatological estimates of
44 surface heat flux and fresh water, resulting in a mixed boundary
45 condition of the style described in Haney \cite{Haney}.
46 Altogether, this yields the following forcing applied
47 in the model surface layer.
48
49 \begin{eqnarray}
50 \label{EQ:eg-global-global_forcing}
51 \label{EQ:eg-global-global_forcing_fu}
52 {\cal F}_{u} & = & \frac{\tau_{x}}{\rho_{0} \Delta z_{s}}
53 \\
54 \label{EQ:eg-global-global_forcing_fv}
55 {\cal F}_{v} & = & \frac{\tau_{y}}{\rho_{0} \Delta z_{s}}
56 \\
57 \label{EQ:eg-global-global_forcing_ft}
58 {\cal F}_{\theta} & = & - \lambda_{\theta} ( \theta - \theta^{\ast} )
59 - \frac{1}{C_{p} \rho_{0} \Delta z_{s}}{\cal Q}
60 \\
61 \label{EQ:eg-global-global_forcing_fs}
62 {\cal F}_{s} & = & - \lambda_{s} ( S - S^{\ast} )
63 + \frac{S_{0}}{\Delta z_{s}}({\cal E} - {\cal P} - {\cal R})
64 \end{eqnarray}
65
66 \noindent where ${\cal F}_{u}$, ${\cal F}_{v}$, ${\cal F}_{\theta}$,
67 ${\cal F}_{s}$ are the forcing terms in the zonal and meridional
68 momentum and in the potential temperature and salinity
69 equations respectively.
70 The term $\Delta z_{s}$ represents the top ocean layer thickness in
71 meters.
72 It is used in conjunction with a reference density, $\rho_{0}$
73 (here set to $999.8\,{\rm kg\,m^{-3}}$), a
74 reference salinity, $S_{0}$ (here set to 35~ppt),
75 and a specific heat capacity, $C_{p}$ (here set to
76 $4000~{\rm J}~^{\circ}{\rm C}^{-1}~{\rm kg}^{-1}$), to convert
77 input dataset values into time tendencies of
78 potential temperature (with units of $^{\circ}{\rm C}~{\rm s}^{-1}$),
79 salinity (with units ${\rm ppt}~s^{-1}$) and
80 velocity (with units ${\rm m}~{\rm s}^{-2}$).
81 The externally supplied forcing fields used in this
82 experiment are $\tau_{x}$, $\tau_{y}$, $\theta^{\ast}$, $S^{\ast}$,
83 $\cal{Q}$ and $\cal{E}-\cal{P}-\cal{R}$. The wind stress fields ($\tau_x$, $\tau_y$)
84 have units of ${\rm N}~{\rm m}^{-2}$. The temperature forcing fields
85 ($\theta^{\ast}$ and $Q$) have units of $^{\circ}{\rm C}$ and ${\rm W}~{\rm m}^{-2}$
86 respectively. The salinity forcing fields ($S^{\ast}$ and
87 $\cal{E}-\cal{P}-\cal{R}$) have units of ${\rm ppt}$ and ${\rm m}~{\rm s}^{-1}$
88 respectively. The source files and procedures for ingesting this data into the
89 simulation are described in the experiment configuration discussion in section
90 \ref{SEC:eg-global-clim_ocn_examp_exp_config}.
91
92
93 \subsection{Discrete Numerical Configuration}
94 \label{www:tutorials}
95
96
97 The model is configured in hydrostatic form. The domain is discretised with
98 a uniform grid spacing in latitude and longitude on the sphere
99 $\Delta \phi=\Delta \lambda=4^{\circ}$, so
100 that there are ninety grid cells in the zonal and forty in the
101 meridional direction. The internal model coordinate variables
102 $x$ and $y$ are initialized according to
103 \begin{eqnarray}
104 x=r\cos(\phi),~\Delta x & = &r\cos(\Delta \phi) \\
105 y=r\lambda,~\Delta y &= &r\Delta \lambda
106 \end{eqnarray}
107
108 Arctic polar regions are not
109 included in this experiment. Meridionally the model extends from
110 $80^{\circ}{\rm S}$ to $80^{\circ}{\rm N}$.
111 Vertically the model is configured with twenty layers with the
112 following thicknesses
113 $\Delta z_{1} = 50\,{\rm m},\,
114 \Delta z_{2} = 50\,{\rm m},\,
115 \Delta z_{3} = 55\,{\rm m},\,
116 \Delta z_{4} = 60\,{\rm m},\,
117 \Delta z_{5} = 65\,{\rm m},\,
118 $
119 $
120 \Delta z_{6}~=~70\,{\rm m},\,
121 \Delta z_{7}~=~80\,{\rm m},\,
122 \Delta z_{8}~=95\,{\rm m},\,
123 \Delta z_{9}=120\,{\rm m},\,
124 \Delta z_{10}=155\,{\rm m},\,
125 $
126 $
127 \Delta z_{11}=200\,{\rm m},\,
128 \Delta z_{12}=260\,{\rm m},\,
129 \Delta z_{13}=320\,{\rm m},\,
130 \Delta z_{14}=400\,{\rm m},\,
131 \Delta z_{15}=480\,{\rm m},\,
132 $
133 $
134 \Delta z_{16}=570\,{\rm m},\,
135 \Delta z_{17}=655\,{\rm m},\,
136 \Delta z_{18}=725\,{\rm m},\,
137 \Delta z_{19}=775\,{\rm m},\,
138 \Delta z_{20}=815\,{\rm m}
139 $ (here the numeric subscript indicates the model level index number, ${\tt k}$) to
140 give a total depth, $H$, of $-5450{\rm m}$.
141 The implicit free surface form of the pressure equation described in Marshall et. al
142 \cite{marshall:97a} is employed. A Laplacian operator, $\nabla^2$, provides viscous
143 dissipation. Thermal and haline diffusion is also represented by a Laplacian operator.
144
145 Wind-stress forcing is added to the momentum equations in (\ref{EQ:eg-global-model_equations})
146 for both the zonal flow, $u$ and the meridional flow $v$, according to equations
147 (\ref{EQ:eg-global-global_forcing_fu}) and (\ref{EQ:eg-global-global_forcing_fv}).
148 Thermodynamic forcing inputs are added to the equations
149 in (\ref{EQ:eg-global-model_equations}) for
150 potential temperature, $\theta$, and salinity, $S$, according to equations
151 (\ref{EQ:eg-global-global_forcing_ft}) and (\ref{EQ:eg-global-global_forcing_fs}).
152 This produces a set of equations solved in this configuration as follows:
153
154 \begin{eqnarray}
155 \label{EQ:eg-global-model_equations}
156 \frac{Du}{Dt} - fv +
157 \frac{1}{\rho}\frac{\partial p^{'}}{\partial x} -
158 \nabla_{h}\cdot A_{h}\nabla_{h}u -
159 \frac{\partial}{\partial z}A_{z}\frac{\partial u}{\partial z}
160 & = &
161 \begin{cases}
162 {\cal F}_u & \text{(surface)} \\
163 0 & \text{(interior)}
164 \end{cases}
165 \\
166 \frac{Dv}{Dt} + fu +
167 \frac{1}{\rho}\frac{\partial p^{'}}{\partial y} -
168 \nabla_{h}\cdot A_{h}\nabla_{h}v -
169 \frac{\partial}{\partial z}A_{z}\frac{\partial v}{\partial z}
170 & = &
171 \begin{cases}
172 {\cal F}_v & \text{(surface)} \\
173 0 & \text{(interior)}
174 \end{cases}
175 \\
176 \frac{\partial \eta}{\partial t} + \nabla_{h}\cdot \vec{u}
177 &=&
178 0
179 \\
180 \frac{D\theta}{Dt} -
181 \nabla_{h}\cdot K_{h}\nabla_{h}\theta
182 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial\theta}{\partial z}
183 & = &
184 \begin{cases}
185 {\cal F}_\theta & \text{(surface)} \\
186 0 & \text{(interior)}
187 \end{cases}
188 \\
189 \frac{D s}{Dt} -
190 \nabla_{h}\cdot K_{h}\nabla_{h}s
191 - \frac{\partial}{\partial z}\Gamma(K_{z})\frac{\partial s}{\partial z}
192 & = &
193 \begin{cases}
194 {\cal F}_s & \text{(surface)} \\
195 0 & \text{(interior)}
196 \end{cases}
197 \\
198 g\rho_{0} \eta + \int^{0}_{-z}\rho^{'} dz & = & p^{'}
199 \end{eqnarray}
200
201 \noindent where $u=\frac{Dx}{Dt}=r \cos(\phi)\frac{D \lambda}{Dt}$ and
202 $v=\frac{Dy}{Dt}=r \frac{D \phi}{Dt}$
203 are the zonal and meridional components of the
204 flow vector, $\vec{u}$, on the sphere. As described in
205 MITgcm Numerical Solution Procedure \ref{chap:discretization}, the time
206 evolution of potential temperature, $\theta$, equation is solved prognostically.
207 The total pressure, $p$, is diagnosed by summing pressure due to surface
208 elevation $\eta$ and the hydrostatic pressure.
209 \\
210
211 \subsubsection{Numerical Stability Criteria}
212 \label{www:tutorials}
213
214 The Laplacian dissipation coefficient, $A_{h}$, is set to $5 \times 10^5 m s^{-1}$.
215 This value is chosen to yield a Munk layer width \cite{adcroft:95},
216 \begin{eqnarray}
217 \label{EQ:eg-global-munk_layer}
218 && M_{w} = \pi ( \frac { A_{h} }{ \beta } )^{\frac{1}{3}}
219 \end{eqnarray}
220
221 \noindent of $\approx 600$km. This is greater than the model
222 resolution in low-latitudes, $\Delta x \approx 400{\rm km}$, ensuring that the frictional
223 boundary layer is adequately resolved.
224 \\
225
226 \noindent The model is stepped forward with a
227 time step $\delta t_{\theta}=30~{\rm hours}$ for thermodynamic variables and
228 $\delta t_{v}=40~{\rm minutes}$ for momentum terms. With this time step, the stability
229 parameter to the horizontal Laplacian friction \cite{adcroft:95}
230 \begin{eqnarray}
231 \label{EQ:eg-global-laplacian_stability}
232 && S_{l} = 4 \frac{A_{h} \delta t_{v}}{{\Delta x}^2}
233 \end{eqnarray}
234
235 \noindent evaluates to 0.16 at a latitude of $\phi=80^{\circ}$, which is below the
236 0.3 upper limit for stability. The zonal grid spacing $\Delta x$ is smallest at
237 $\phi=80^{\circ}$ where $\Delta x=r\cos(\phi)\Delta \phi\approx 77{\rm km}$.
238 \\
239
240 \noindent The vertical dissipation coefficient, $A_{z}$, is set to
241 $1\times10^{-3} {\rm m}^2{\rm s}^{-1}$. The associated stability limit
242 \begin{eqnarray}
243 \label{EQ:eg-global-laplacian_stability_z}
244 S_{l} = 4 \frac{A_{z} \delta t_{v}}{{\Delta z}^2}
245 \end{eqnarray}
246
247 \noindent evaluates to $0.015$ for the smallest model
248 level spacing ($\Delta z_{1}=50{\rm m}$) which is again well below
249 the upper stability limit.
250 \\
251
252 The values of the horizontal ($K_{h}$) and vertical ($K_{z}$) diffusion coefficients
253 for both temperature and salinity are set to $1 \times 10^{3}~{\rm m}^{2}{\rm s}^{-1}$
254 and $3 \times 10^{-5}~{\rm m}^{2}{\rm s}^{-1}$ respectively. The stability limit
255 related to $K_{h}$ will be at $\phi=80^{\circ}$ where $\Delta x \approx 77 {\rm km}$.
256 Here the stability parameter
257 \begin{eqnarray}
258 \label{EQ:eg-global-laplacian_stability_xtheta}
259 S_{l} = \frac{4 K_{h} \delta t_{\theta}}{{\Delta x}^2}
260 \end{eqnarray}
261 evaluates to $0.07$, well below the stability limit of $S_{l} \approx 0.5$. The
262 stability parameter related to $K_{z}$
263 \begin{eqnarray}
264 \label{EQ:eg-global-laplacian_stability_ztheta}
265 S_{l} = \frac{4 K_{z} \delta t_{\theta}}{{\Delta z}^2}
266 \end{eqnarray}
267 evaluates to $0.005$ for $\min(\Delta z)=50{\rm m}$, well below the stability limit
268 of $S_{l} \approx 0.5$.
269 \\
270
271 \noindent The numerical stability for inertial oscillations
272 \cite{adcroft:95}
273
274 \begin{eqnarray}
275 \label{EQ:eg-global-inertial_stability}
276 S_{i} = f^{2} {\delta t_v}^2
277 \end{eqnarray}
278
279 \noindent evaluates to $0.24$ for $f=2\omega\sin(80^{\circ})=1.43\times10^{-4}~{\rm s}^{-1}$, which is close to
280 the $S_{i} < 1$ upper limit for stability.
281 \\
282
283 \noindent The advective CFL \cite{adcroft:95} for a extreme maximum
284 horizontal flow
285 speed of $ | \vec{u} | = 2 ms^{-1}$
286
287 \begin{eqnarray}
288 \label{EQ:eg-global-cfl_stability}
289 S_{a} = \frac{| \vec{u} | \delta t_{v}}{ \Delta x}
290 \end{eqnarray}
291
292 \noindent evaluates to $6 \times 10^{-2}$. This is well below the stability
293 limit of 0.5.
294 \\
295
296 \noindent The stability parameter for internal gravity waves propagating
297 with a maximum speed of $c_{g}=10~{\rm ms}^{-1}$
298 \cite{adcroft:95}
299
300 \begin{eqnarray}
301 \label{EQ:eg-global-gfl_stability}
302 S_{c} = \frac{c_{g} \delta t_{v}}{ \Delta x}
303 \end{eqnarray}
304
305 \noindent evaluates to $3 \times 10^{-1}$. This is close to the linear
306 stability limit of 0.5.
307
308 \subsection{Experiment Configuration}
309 \label{www:tutorials}
310 \label{SEC:eg-global-clim_ocn_examp_exp_config}
311
312 The model configuration for this experiment resides under the
313 directory {\it tutorial\_examples/global\_ocean\_circulation/}.
314 The experiment files
315
316 \begin{itemize}
317 \item {\it input/data}
318 \item {\it input/data.pkg}
319 \item {\it input/eedata},
320 \item {\it input/windx.bin},
321 \item {\it input/windy.bin},
322 \item {\it input/salt.bin},
323 \item {\it input/theta.bin},
324 \item {\it input/SSS.bin},
325 \item {\it input/SST.bin},
326 \item {\it input/topog.bin},
327 \item {\it code/CPP\_EEOPTIONS.h}
328 \item {\it code/CPP\_OPTIONS.h},
329 \item {\it code/SIZE.h}.
330 \end{itemize}
331 contain the code customizations and parameter settings for these
332 experiments. Below we describe the customizations
333 to these files associated with this experiment.
334
335 \subsubsection{Driving Datasets}
336 \label{www:tutorials}
337
338 Figures (\ref{FIG:sim_config_tclim}-\ref{FIG:sim_config_empmr}) show the
339 relaxation temperature ($\theta^{\ast}$) and salinity ($S^{\ast}$) fields,
340 the wind stress components ($\tau_x$ and $\tau_y$), the heat flux ($Q$)
341 and the net fresh water flux (${\cal E} - {\cal P} - {\cal R}$) used
342 in equations \ref{EQ:global_forcing_fu}-\ref{EQ:global_forcing_fs}. The figures
343 also indicate the lateral extent and coastline used in the experiment.
344 Figure ({\ref{FIG:model_bathymetry}) shows the depth contours of the model
345 domain.
346
347
348 \subsubsection{File {\it input/data}}
349 \label{www:tutorials}
350
351 This file, reproduced completely below, specifies the main parameters
352 for the experiment. The parameters that are significant for this configuration
353 are
354
355 \begin{itemize}
356
357 \item Lines 7-10 and 11-14
358 \begin{verbatim} tRef= 16.0 , 15.2 , 14.5 , 13.9 , 13.3 , \end{verbatim}
359 $\cdots$ \\
360 set reference values for potential
361 temperature and salinity at each model level in units of $^{\circ}\mathrm{C}$ and
362 ${\rm ppt}$. The entries are ordered from surface to depth.
363 Density is calculated from anomalies at each level evaluated
364 with respect to the reference values set here.\\
365 \fbox{
366 \begin{minipage}{5.0in}
367 {\it S/R INI\_THETA}({\it ini\_theta.F})
368 \end{minipage}
369 }
370
371
372 \item Line 15,
373 \begin{verbatim} viscAz=1.E-3, \end{verbatim}
374 this line sets the vertical Laplacian dissipation coefficient to
375 $1 \times 10^{-3} {\rm m^{2}s^{-1}}$. Boundary conditions
376 for this operator are specified later. This variable is copied into
377 model general vertical coordinate variable {\bf viscAr}.
378
379 \fbox{
380 \begin{minipage}{5.0in}
381 {\it S/R CALC\_DIFFUSIVITY}({\it calc\_diffusivity.F})
382 \end{minipage}
383 }
384
385 \item Line 16,
386 \begin{verbatim}
387 viscAh=5.E5,
388 \end{verbatim}
389 this line sets the horizontal Laplacian frictional dissipation coefficient to
390 $5 \times 10^{5} {\rm m^{2}s^{-1}}$. Boundary conditions
391 for this operator are specified later.
392
393 \item Lines 17,
394 \begin{verbatim}
395 no_slip_sides=.FALSE.
396 \end{verbatim}
397 this line selects a free-slip lateral boundary condition for
398 the horizontal Laplacian friction operator
399 e.g. $\frac{\partial u}{\partial y}$=0 along boundaries in $y$ and
400 $\frac{\partial v}{\partial x}$=0 along boundaries in $x$.
401
402 \item Lines 9,
403 \begin{verbatim}
404 no_slip_bottom=.TRUE.
405 \end{verbatim}
406 this line selects a no-slip boundary condition for bottom
407 boundary condition in the vertical Laplacian friction operator
408 e.g. $u=v=0$ at $z=-H$, where $H$ is the local depth of the domain.
409
410 \item Line 19,
411 \begin{verbatim}
412 diffKhT=1.E3,
413 \end{verbatim}
414 this line sets the horizontal diffusion coefficient for temperature
415 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
416 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
417 all boundaries.
418
419 \item Line 20,
420 \begin{verbatim}
421 diffKzT=3.E-5,
422 \end{verbatim}
423 this line sets the vertical diffusion coefficient for temperature
424 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
425 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
426 the upper and lower boundaries.
427
428 \item Line 21,
429 \begin{verbatim}
430 diffKhS=1.E3,
431 \end{verbatim}
432 this line sets the horizontal diffusion coefficient for salinity
433 to $1000\,{\rm m^{2}s^{-1}}$. The boundary condition on this
434 operator is $\frac{\partial}{\partial x}=\frac{\partial}{\partial y}=0$ on
435 all boundaries.
436
437 \item Line 22,
438 \begin{verbatim}
439 diffKzS=3.E-5,
440 \end{verbatim}
441 this line sets the vertical diffusion coefficient for salinity
442 to $3 \times 10^{-5}\,{\rm m^{2}s^{-1}}$. The boundary
443 condition on this operator is $\frac{\partial}{\partial z}=0$ at both
444 the upper and lower boundaries.
445
446 \item Lines 23-26
447 \begin{verbatim}
448 beta=1.E-11,
449 \end{verbatim}
450 \vspace{-5mm}$\cdots$\\
451 These settings do not apply for this experiment.
452
453 \item Line 27,
454 \begin{verbatim}
455 gravity=9.81,
456 \end{verbatim}
457 Sets the gravitational acceleration coefficient to $9.81{\rm m}{\rm s}^{-1}$.\\
458 \fbox{
459 \begin{minipage}{5.0in}
460 {\it S/R CALC\_PHI\_HYD}~({\it calc\_phi\_hyd.F})\\
461 {\it S/R INI\_CG2D}~({\it ini\_cg2d.F})\\
462 {\it S/R INI\_CG3D}~({\it ini\_cg3d.F})\\
463 {\it S/R INI\_PARMS}~({\it ini\_parms.F})\\
464 {\it S/R SOLVE\_FOR\_PRESSURE}~({\it solve\_for\_pressure.F})
465 \end{minipage}
466 }
467
468
469 \item Line 28-29,
470 \begin{verbatim}
471 rigidLid=.FALSE.,
472 implicitFreeSurface=.TRUE.,
473 \end{verbatim}
474 Selects the barotropic pressure equation to be the implicit free surface
475 formulation.
476
477 \item Line 30,
478 \begin{verbatim}
479 eosType='POLY3',
480 \end{verbatim}
481 Selects the third order polynomial form of the equation of state.\\
482 \fbox{
483 \begin{minipage}{5.0in}
484 {\it S/R FIND\_RHO}~({\it find\_rho.F})\\
485 {\it S/R FIND\_ALPHA}~({\it find\_alpha.F})
486 \end{minipage}
487 }
488
489 \item Line 31,
490 \begin{verbatim}
491 readBinaryPrec=32,
492 \end{verbatim}
493 Sets format for reading binary input datasets holding model fields to
494 use 32-bit representation for floating-point numbers.\\
495 \fbox{
496 \begin{minipage}{5.0in}
497 {\it S/R READ\_WRITE\_FLD}~({\it read\_write\_fld.F})\\
498 {\it S/R READ\_WRITE\_REC}~({\it read\_write\_rec.F})
499 \end{minipage}
500 }
501
502 \item Line 36,
503 \begin{verbatim}
504 cg2dMaxIters=1000,
505 \end{verbatim}
506 Sets maximum number of iterations the two-dimensional, conjugate
507 gradient solver will use, {\bf irrespective of convergence
508 criteria being met}.\\
509 \fbox{
510 \begin{minipage}{5.0in}
511 {\it S/R CG2D}~({\it cg2d.F})
512 \end{minipage}
513 }
514
515 \item Line 37,
516 \begin{verbatim}
517 cg2dTargetResidual=1.E-13,
518 \end{verbatim}
519 Sets the tolerance which the two-dimensional, conjugate
520 gradient solver will use to test for convergence in equation
521 \ref{EQ:congrad_2d_resid} to $1 \times 10^{-13}$.
522 Solver will iterate until
523 tolerance falls below this value or until the maximum number of
524 solver iterations is reached.\\
525 \fbox{
526 \begin{minipage}{5.0in}
527 {\it S/R CG2D}~({\it cg2d.F})
528 \end{minipage}
529 }
530
531 \item Line 42,
532 \begin{verbatim}
533 startTime=0,
534 \end{verbatim}
535 Sets the starting time for the model internal time counter.
536 When set to non-zero this option implicitly requests a
537 checkpoint file be read for initial state.
538 By default the checkpoint file is named according to
539 the integer number of time steps in the {\bf startTime} value.
540 The internal time counter works in seconds.
541
542 \item Line 43,
543 \begin{verbatim}
544 endTime=2808000.,
545 \end{verbatim}
546 Sets the time (in seconds) at which this simulation will terminate.
547 At the end of a simulation a checkpoint file is automatically
548 written so that a numerical experiment can consist of multiple
549 stages.
550
551 \item Line 44,
552 \begin{verbatim}
553 #endTime=62208000000,
554 \end{verbatim}
555 A commented out setting for endTime for a 2000 year simulation.
556
557 \item Line 45,
558 \begin{verbatim}
559 deltaTmom=2400.0,
560 \end{verbatim}
561 Sets the timestep $\delta t_{v}$ used in the momentum equations to
562 $20~{\rm mins}$.
563 See section \ref{SEC:mom_time_stepping}.
564
565 \fbox{
566 \begin{minipage}{5.0in}
567 {\it S/R TIMESTEP}({\it timestep.F})
568 \end{minipage}
569 }
570
571 \item Line 46,
572 \begin{verbatim}
573 tauCD=321428.,
574 \end{verbatim}
575 Sets the D-grid to C-grid coupling time scale $\tau_{CD}$ used in the momentum equations.
576 See section \ref{SEC:cd_scheme}.
577
578 \fbox{
579 \begin{minipage}{5.0in}
580 {\it S/R INI\_PARMS}({\it ini\_parms.F})\\
581 {\it S/R CALC\_MOM\_RHS}({\it calc\_mom\_rhs.F})
582 \end{minipage}
583 }
584
585 \item Line 47,
586 \begin{verbatim}
587 deltaTtracer=108000.,
588 \end{verbatim}
589 Sets the default timestep, $\delta t_{\theta}$, for tracer equations to
590 $30~{\rm hours}$.
591 See section \ref{SEC:tracer_time_stepping}.
592
593 \fbox{
594 \begin{minipage}{5.0in}
595 {\it S/R TIMESTEP\_TRACER}({\it timestep\_tracer.F})
596 \end{minipage}
597 }
598
599 \item Line 47,
600 \begin{verbatim}
601 bathyFile='topog.box'
602 \end{verbatim}
603 This line specifies the name of the file from which the domain
604 bathymetry is read. This file is a two-dimensional ($x,y$) map of
605 depths. This file is assumed to contain 64-bit binary numbers
606 giving the depth of the model at each grid cell, ordered with the x
607 coordinate varying fastest. The points are ordered from low coordinate
608 to high coordinate for both axes. The units and orientation of the
609 depths in this file are the same as used in the MITgcm code. In this
610 experiment, a depth of $0m$ indicates a solid wall and a depth
611 of $-2000m$ indicates open ocean. The matlab program
612 {\it input/gendata.m} shows an example of how to generate a
613 bathymetry file.
614
615
616 \item Line 50,
617 \begin{verbatim}
618 zonalWindFile='windx.sin_y'
619 \end{verbatim}
620 This line specifies the name of the file from which the x-direction
621 surface wind stress is read. This file is also a two-dimensional
622 ($x,y$) map and is enumerated and formatted in the same manner as the
623 bathymetry file. The matlab program {\it input/gendata.m} includes example
624 code to generate a valid
625 {\bf zonalWindFile}
626 file.
627
628 \end{itemize}
629
630 \noindent other lines in the file {\it input/data} are standard values
631 that are described in the MITgcm Getting Started and MITgcm Parameters
632 notes.
633
634 \begin{small}
635 \input{part3/case_studies/climatalogical_ogcm/input/data}
636 \end{small}
637
638 \subsubsection{File {\it input/data.pkg}}
639 \label{www:tutorials}
640
641 This file uses standard default values and does not contain
642 customisations for this experiment.
643
644 \subsubsection{File {\it input/eedata}}
645 \label{www:tutorials}
646
647 This file uses standard default values and does not contain
648 customisations for this experiment.
649
650 \subsubsection{File {\it input/windx.sin\_y}}
651 \label{www:tutorials}
652
653 The {\it input/windx.sin\_y} file specifies a two-dimensional ($x,y$)
654 map of wind stress ,$\tau_{x}$, values. The units used are $Nm^{-2}$.
655 Although $\tau_{x}$ is only a function of $y$n in this experiment
656 this file must still define a complete two-dimensional map in order
657 to be compatible with the standard code for loading forcing fields
658 in MITgcm. The included matlab program {\it input/gendata.m} gives a complete
659 code for creating the {\it input/windx.sin\_y} file.
660
661 \subsubsection{File {\it input/topog.box}}
662 \label{www:tutorials}
663
664
665 The {\it input/topog.box} file specifies a two-dimensional ($x,y$)
666 map of depth values. For this experiment values are either
667 $0m$ or $-2000\,{\rm m}$, corresponding respectively to a wall or to deep
668 ocean. The file contains a raw binary stream of data that is enumerated
669 in the same way as standard MITgcm two-dimensional, horizontal arrays.
670 The included matlab program {\it input/gendata.m} gives a complete
671 code for creating the {\it input/topog.box} file.
672
673 \subsubsection{File {\it code/SIZE.h}}
674 \label{www:tutorials}
675
676 Two lines are customized in this file for the current experiment
677
678 \begin{itemize}
679
680 \item Line 39,
681 \begin{verbatim} sNx=60, \end{verbatim} this line sets
682 the lateral domain extent in grid points for the
683 axis aligned with the x-coordinate.
684
685 \item Line 40,
686 \begin{verbatim} sNy=60, \end{verbatim} this line sets
687 the lateral domain extent in grid points for the
688 axis aligned with the y-coordinate.
689
690 \item Line 49,
691 \begin{verbatim} Nr=4, \end{verbatim} this line sets
692 the vertical domain extent in grid points.
693
694 \end{itemize}
695
696 \begin{small}
697 \input{part3/case_studies/climatalogical_ogcm/code/SIZE.h}
698 \end{small}
699
700 \subsubsection{File {\it code/CPP\_OPTIONS.h}}
701 \label{www:tutorials}
702
703 This file uses standard default values and does not contain
704 customisations for this experiment.
705
706
707 \subsubsection{File {\it code/CPP\_EEOPTIONS.h}}
708 \label{www:tutorials}
709
710 This file uses standard default values and does not contain
711 customisations for this experiment.
712
713 \subsubsection{Other Files }
714 \label{www:tutorials}
715
716 Other files relevant to this experiment are
717 \begin{itemize}
718 \item {\it model/src/ini\_cori.F}. This file initializes the model
719 coriolis variables {\bf fCorU}.
720 \item {\it model/src/ini\_spherical\_polar\_grid.F}
721 \item {\it model/src/ini\_parms.F},
722 \item {\it input/windx.sin\_y},
723 \end{itemize}
724 contain the code customisations and parameter settings for this
725 experiments. Below we describe the customisations
726 to these files associated with this experiment.

  ViewVC Help
Powered by ViewVC 1.1.22